JEE MAIN 2023

APRIL ATTEMPT

PAPER-1 (B.Tech / B.E.)

Maximum Marks : 300

SUBJECT - CHEMISTRY

LEAGUE OF TOPPERS (Since 2020) TOP 100 AIRs IN JEE ADVANCED

Admission Announcement for JEE Advanced (For Session 2023-24)

Starting From : 12 \& 19 APRIL'23
Avail Scholarship up to $\mathbf{9 0 \%}$ through R-NET on EVERY SUNDAY

CHEMISTRY

1. Find the ratio of spin magnetic moment for complexes $\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-} \&\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Ans. 1
Sol. $\quad \mathrm{Cr}^{3+}=3 \mathrm{~d}^{3} \rightarrow \mathrm{t}_{2 \mathrm{~g}}{ }^{1,1,1} \mathrm{eg}^{0,0}$
both complex has 3 unpaired electron.
2. 250 g solution containing 25% sugar and 500 g solution containing 40% sugar are mixed. Find the mass percentage of sugar in the resulting solution.
Ans. 35\%
Sol. Total mass of solution $=750 \mathrm{~g}$
Total mass of sugar $=250 \times \frac{25}{100}+500 \times \frac{40}{100}$

$$
\begin{aligned}
& =\frac{250}{4}+200 \\
& =262.5 \mathrm{~g}
\end{aligned}
$$

Mass \% of sugar $=\frac{262.5}{750} \times 100=35 \%$
3. Correct order of first ionisation energy for second period elements :

$$
\mathrm{Li}, \mathrm{Be}, \mathrm{~B}, \mathrm{C}, \mathrm{~N}, \mathrm{O}, \mathrm{~F}
$$

Sol. $\mathrm{Li}<\mathrm{B}<\mathrm{Be}<\mathrm{C}<\mathrm{O}<\mathrm{N}<\mathrm{F}$
4. In a container at a constant temperature arrange the following gases in increasing order of RMS velocity?
$\mathrm{Ne}, \mathrm{Cl}_{2}, \mathrm{UF}_{6}$
(1) $\mathrm{UF}_{6}<\mathrm{Cl}_{2}<\mathrm{Ne}$
(2) $\mathrm{UF}_{6}<\mathrm{Ne}<\mathrm{Cl}_{2}$
(3) $\mathrm{UF}_{6}>\mathrm{Cl}_{2}>\mathrm{Ne}$
(4) $\mathrm{Ne}<\mathrm{UF}_{6}<\mathrm{Cl}_{2}$

Ans. (1)
Sol. $\quad \mathrm{V}_{\mathrm{rms}}=\sqrt{\frac{3 R T}{\mathrm{M}}}$
$\mathrm{V}_{\text {rms }} \Rightarrow \mathrm{UF}_{6}<\mathrm{Cl}_{2}<\mathrm{Ne}$
5. Match the following species with their shapes:
(a) ClO_{2}^{-}
(p) Linear
\qquad
(b) $\mathrm{N}_{3}{ }^{-}$
(c) NH_{4}^{+}
(d) SF_{4}
a $\quad \mathbf{b}$
(1) $\begin{array}{lll}\mathrm{r} & \mathrm{p} & \mathrm{q} \\ \mathrm{s}\end{array}$
(2) $\mathrm{p} \quad \mathrm{q} \quad \mathrm{r} \quad \mathrm{s}$
(3) $\mathrm{r} \quad \mathrm{s} \quad \mathrm{p} \quad \mathrm{q}$
(4) $\mathrm{s} \quad \mathrm{q} \quad \mathrm{r} \quad \mathrm{p}$

Ans. (1)
Sol. (a)

(b) $[\mathrm{N}=\mathrm{N}=\mathrm{N}]^{-}$
(c)

(d)

6. Which of the following set contains ambidentate legends
(1) $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{CN}^{-}$
(2) $\mathrm{Cl}^{-}, \mathrm{OCN}^{-}, \mathrm{NO}_{2}^{-}$
(3) $\mathrm{Ox}^{2-}, \mathrm{NO}_{2}^{-}, \mathrm{F}^{-}$
(4) $\mathrm{OH}^{-}, \mathrm{CN}^{-}, \mathrm{NH}_{3}$

Ans. (2)
Sol. $\mathrm{CN}^{-}, \mathrm{OCN}^{-}$and NO_{2}^{-}are ambidentate ligand.
7. Given $\mathrm{E}_{\mathrm{Pb}^{4+} \mid \mathrm{Pb}}^{0}=\mathrm{m}$

$$
\mathrm{E}_{\mathrm{Pb}^{2+} \mid \mathrm{Pb}}^{\circ}=\mathrm{n}
$$

The value of $\mathrm{E}_{\mathrm{Pb}^{4+} \mid \mathrm{Pb}^{+2}}^{\circ}$ is \qquad
(1) $2 m-n$
(2) $2 m+n$
(3) $2 n-m$
(4) $2 m+n$

Ans. (1)
Sol. $\quad \mathrm{Pb}^{+4}+4 \mathrm{e}^{-} \longrightarrow \mathrm{Pb} \quad \Delta \mathrm{G}^{\circ}=-4 \mathrm{Fm}$
$\mathrm{Pb}^{+2}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pb} \quad \Delta \mathrm{G}^{\circ}=-2 \mathrm{Fn} \quad \ldots . .(\mathrm{ii})$
on subtraction
$\mathrm{Pb}^{+4}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pb}^{+2} \quad \Delta \mathrm{G}^{\circ}=-2 \mathrm{~F}(2 \mathrm{~m}-\mathrm{n})=-2 \mathrm{FE}_{\mathrm{Pb}^{4+} \mid \mathrm{Pb}^{+2}}^{\circ}$
$\Rightarrow \mathrm{E}_{\mathrm{Pb}^{+4} \mid \mathrm{Pb}^{+2}}^{\circ}=2 \mathrm{~m}-\mathrm{n}$
8. 0.01 molar aqueous solution of glucose is isotonic with 0.008 M aqueous solution of $\mathrm{K}_{2} \mathrm{SO}_{4}$. Calculate degree of ionisation of $\mathrm{K}_{2} \mathrm{SO}_{4}$.

Unleashing Potential
Ans. $\mathbf{0 . 1 2 5}$
Sol. $\quad \Pi_{\text {glucose }}=\Pi_{\mathrm{K}_{2} \mathrm{SO}_{4}}$
$0.01=i \times 0.008$
$i=\frac{0.01}{0.008}$
$i=\frac{5}{4}=1.25$
$i=1+\alpha(3-1)$
$1.25=1+2 \alpha$
$2 \alpha=0.25$
$\alpha=\frac{0.25}{2}=0.125$
9. Correct statement regarding GaAlCl_{4}.
(1) EN of Ga is greater than Al
(2) Oxidation number of Ga is +3
(3) Ga is co-ordinated with chlorine
(4) Cl is making bond with Ga and Al

Ans. (1)
Sol. $\mathrm{Ga}^{+}\left[\mathrm{AlCl}_{4}\right]$
Oxidation no. of $\mathrm{Ga}=+1$
10. When a photon of wavelength ' λ ' strikes on a metal, the ejected photoelectron has stopping potential $=\mathrm{V}_{0}$ volt. When another photon of wavelength ' $2 \lambda^{\prime}$ 'strikes on same metal, the ejected photoelectron has stopping potential of $\cdot \frac{V_{0}}{4}$ ' volt. The threshold wavelength $\left(\lambda_{0}\right)$ is
(1) λ
(2) 2λ
(3) 3λ
(4) 4λ

Ans. (3)
Sol. $\frac{h c}{\lambda}-\frac{h c}{\lambda_{0}}=\mathrm{eV}_{0}$
$\frac{\mathrm{hc}}{2 \lambda}-\frac{\mathrm{hc}}{\lambda_{0}}=\frac{\mathrm{eV}_{0}}{4}$
$\Rightarrow \frac{\frac{\lambda_{0}-\lambda}{\lambda \lambda_{0}}}{\frac{\lambda_{0}-2 \lambda}{2 \lambda \lambda_{0}}}=4$

$$
\Rightarrow \frac{\lambda_{0}-\lambda}{\lambda_{0}-2 \lambda}=2
$$

$\Rightarrow \lambda_{0}-\lambda=2 \lambda_{0}-4 \lambda \quad \Rightarrow \lambda_{0}=3 \lambda$
11. 1 mole each of $\mathrm{H}_{2} \mathrm{O}$ and CO react to form CO_{2} and H_{2} if 40% by weight of $\mathrm{H}_{2} \mathrm{O}$ react.
K_{C} for reaction
$\mathrm{H}_{2} \mathrm{O}+\mathrm{CO} \rightleftharpoons \mathrm{CO}_{2}+\mathrm{H}_{2}$
is $\mathrm{x} \times 10^{-2}$ find x .
Ans. 44.4
Sol. $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO} \rightleftharpoons \mathrm{CO}_{2}+\mathrm{H}_{2}$
| |
$\begin{array}{llll}1-0.4 & 1-0.4 & 0.4 & 0.4\end{array}$
$0.6 \quad 0.6$
$\mathrm{K}_{\mathrm{C}}=\frac{0.4 \times 0.4}{0.6 \times 0.6}$
$=\frac{4}{9}$

$$
=44.4 \times 10^{-2}
$$

12. Which type of copper is formed by the following reactions?

$$
\begin{aligned}
& 2 \mathrm{Cu}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{SO}_{2} \\
& 2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \longrightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}
\end{aligned}
$$

(1) Blister copper
(2) Copper crisp
(3) Reduced copper
(4) Copper slag

Ans. (1)
Sol. Blister copper is obtained after self-reduction of copper ore.
13. Find the number of atoms per unit cell if edge length is 408 pm , density $=3 \mathrm{~g} / \mathrm{cm}^{3}$, molar mass $=40 \mathrm{~g}$. (nearest integer)
Ans. 3
Sol. $\mathrm{d}=\frac{\mathrm{Z} \times 40}{6 \times 10^{23} \times(4.08)^{3} \times 10^{-24}}$
$3=\frac{\mathrm{Z} \times 40}{6 \times 10^{23} \times 67.92 \times 10^{-24}}$
$\mathrm{Z}=\frac{3 \times 6 \times 10^{23} \times 67.92 \times 10^{-24}}{40}$
$Z=\frac{3 \times 6 \times 67.92}{400}$
$\mathrm{Z}=3$
14. To 25 ml of $1 \mathrm{M} \mathrm{AgNO}_{3}, 1.05 \mathrm{M} \mathrm{KI}$ is added dropwise. In the colloidal solution formed fixed and diffused larger consist of respectively.
(2) Ag^{+}and NO_{3}^{-}
(1) I^{-}and NO_{3}^{-}
(4) K^{+}and Ag^{+}

Ans. 2

15.

How many moles of $\mathrm{CH}_{3} \mathrm{MgBr}$ are used ?
Ans. 2

Sol.

16.

Ans. (4)

Unleashing Potential

Sol.

17. The increasing order of electrophilic aromatic substitution reaction is

(I)

(II)

(III)
(1) III $>$ II $>$ I
(2) II $>$ III $>$ I
(3) I $>$ II $>$ III
(4) II $>$ I $>$ III

Ans. (2)
Sol. Rate of electrophilic substitution reaction \propto stability of σ-complex

$$
\propto+\mathrm{I} \text { and }+\mathrm{m} \text { group on benzene ring. }
$$

18. Statement-I : If BOD of water body is 4 ppm is a good quality drinking

Statement-II : If Zn and NO_{3}^{-}concentration is 5 ppm . It is a good quality of drinking water.
(1) Both Statement-I and Statement-II are correct.
(2) Both Statement-I and Statement-II are incorrect.
(3) Statement-I is correct but Statement-II is incorrect.
(4) Statement-I is incorrect but Statement-II is correct.

Ans. (1)
19. Which of the following polymer formation is catalysed by $\mathrm{A} \ell \mathrm{Et}_{3}+\mathrm{TiC}_{4}$?
(1) Low density polythene (LDPE)
(2) High density polythene consists of linear molecules
(3) Cross linked polymers of phenol \& formaldehyde.
(4)

Ans. (2)
\qquad
20. In given chromatograph what is the correct increasing order of eluting power

(1) C $<$ B $<$ A
(2) B $<$ C $<$ A
(3) C $<$ A $<$ B
(4) A $<$ C $<$ B

Ans. (1)
21.

(1)

(2)

(3)

(4)

Ans. (4)
22.

Compound (L) is :
(1)

(2)

(3)

Ans. (2)

Unleashing Potential

\qquad
23. Correct option for the given reactions
(i)

(ii)

(1) (i) $1^{\text {st }}$ order (ii) $2^{\text {nd }}$ order
(2) (i) $2^{\text {nd }}$ order (ii) $1^{\text {st }}$ order
(3) (i) and (ii) are $1^{\text {st }}$ order
(4) (i) \& (ii) are $2^{\text {nd }}$ order

Ans. (1)

RELIABLE INSTITUTE : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com
© reliablekota O reliablekota © reliableinstitutekota © reliable_kota if reliablekota

