JEE MAIN 2023

APRIL ATTEMPT

PAPER-1 (B.Tech / B.E.)

Duration : 3 Hours
Maximum Marks : 300

SUBJECT - PHYSICS

LEAGUE OF TOPPERS (Since 2020) TOP 100 AIRs IN JEE ADVANCED

Admission Announcement for JEE Advanced (For Session 2023-24)

Starting From : 12 \& 19 APRIL'23
Avail Scholarship up to $\mathbf{9 0 \%}$ through R-NET on EVERY SUNDAY

PHYSICS

1. Find the ratio of heat loss.

(1) $1: 4$
(2) $4: 1$
(3) $2: 1$
(4) $1: 1$

Ans. (2)
Sol. $\quad P_{1}=\frac{\mathrm{v}^{2}}{\frac{\mathrm{R}}{2}}=\frac{2 \mathrm{v}^{2}}{\mathrm{R}}$

$$
\mathrm{P}_{2}=\frac{\mathrm{v}^{2}}{2 \mathrm{R}}
$$

$\frac{\mathrm{H}_{1}}{\mathrm{H}_{2}}=\frac{\mathrm{P}_{1} \mathrm{t}}{\mathrm{P}_{2} \mathrm{t}}=\frac{4}{1}$
2. Two sphere of density ρ and $\frac{\rho}{3}$ of radius R and $4 R$ respectively. Find the ratio of magnitude of gravitational field at the surface respectively.

(1) $\frac{3}{4}$
(2) $\frac{4}{3}$
(3) $\frac{1}{2}$
(4) $\frac{1}{4}$

Ans. (1)
Sol. $\mathrm{g}_{1}=\frac{\mathrm{G} \rho\left(\frac{4}{3} \pi \mathrm{R}^{3}\right)}{\mathrm{R}^{2}}$
$\mathrm{g}_{2}=\frac{\mathrm{G} \frac{\rho}{3}\left(\frac{4}{3} \pi(4 \mathrm{R})^{3}\right)}{(4 \mathrm{R})^{2}}$
$\frac{\mathrm{g}_{1}}{\mathrm{~g}_{2}}=\frac{3}{4}$

Unleashing Potential
3. A projectile is projected at an angle 30° from horizontal, the height of projectile is same at $t=3 \mathrm{sec}$ and $\mathrm{t}=5 \mathrm{sec}$. Find the initial speed of the projectile ?
(1) $80 \mathrm{~m} / \mathrm{s}$
(2) $100 \mathrm{~m} / \mathrm{s}$
(3) $120 \mathrm{~m} / \mathrm{s}$
(4) $140 \mathrm{~m} / \mathrm{s}$

Ans. (1)
Sol.

$\mathrm{T}=\mathrm{t}_{\mathrm{A}}+\mathrm{t}_{\mathrm{B}}=8$ seconds
$\frac{2 \mathrm{u} \sin 30^{\circ}}{\mathrm{g}}=8$
$u=80 \mathrm{~m} / \mathrm{s}$
4. A person is firing ' n ' bullets per second, the speed of each bullet is $250 \mathrm{~m} / \mathrm{s}$. The thrust force experienced by the person is 125 N , mass of each bullet 10 grams. Find n .
(1) 50
(2) 60
(3) 70
(4) 120

Ans. (1)

Sol. $\Delta \mathrm{P}=\mathrm{mv}$
$\mathrm{F}_{\text {Thrust }}=\frac{\Delta \mathrm{p}}{\Delta \mathrm{t}}\{$ due to each bullet $\}$
$\mathrm{F}_{\text {net }}=\mathrm{nF}_{\text {trust }}=\mathrm{n}(\mathrm{mv})$
$125=(\mathrm{n}) \times \frac{10}{1000} \times 250$
$50=\mathrm{n}$
5. Two identical charge of mass 20 gm and charge $2 \mu \mathrm{C}$ are on smooth inclined plane if they are in equilibrium find out h.

(1) 30 cm
(2) 40 cm
(3) 10 cm
(4) 5 cm

Ans. (1)

Sol. $\mathrm{mg} \sin \theta=\frac{\mathrm{kq}^{2} \sin ^{2} \theta}{\mathrm{~h}^{2}}$
$\mathrm{h}=\sqrt{\frac{\mathrm{kq}^{2} \sin \theta}{\mathrm{mg}}}=\sqrt{\frac{9 \times 10^{9} \times 4 \times 10^{-12}}{2 \times 10^{-2} \times 10 \times 2}}$
$\mathrm{h}=30 \mathrm{~cm}$
6. $F=(2+3 x) N$

Find work done by force F in between $x=0$ to $x=4 m$.
(1) 32 J
(2) 72 J
(3) 80 J
(4) 60 J

Ans. (1)
Sol. $\quad \mathbf{W}=\int_{0}^{4} F d x$
$\mathbf{W}=\int_{0}^{4}(2+3 x) d x$
$\mathbf{W}=\left[\left(2 \mathrm{x}+\frac{3 \mathrm{x}^{2}}{2}\right)\right]_{0}^{4}=32 \mathrm{~J}$
7. A coin is placed on disc at 1 cm from centre of disk which is moving with maximum Angular velocity ' ω ' without slipping. If angular velocity of disc is $\frac{\omega}{2}$, then at what maximum distance coin should be placed without slipping.
(1) 2 cm
(2) 4 cm
(3) 6 cm
(4) 8 cm

Ans. (2)

Sol. $\mu \mathrm{mg}=\mathrm{m} \omega^{2} \mathrm{r}_{1}$
$\mu \mathrm{mg}=\mathrm{m}\left(\frac{\omega}{2}\right)^{2} \mathrm{r}_{2}$
From (i) and (ii)
$m \omega^{2} r_{1}=m\left(\frac{\omega}{2}\right)^{2} r_{2}$
$\mathrm{r}_{2}=4 \mathrm{r}_{1}$
$\mathrm{r}_{2}=4 \times 1$
$\mathrm{r}_{2}=4 \mathrm{~cm}$
8. If current passing through 3Ω resistor is $\frac{x}{3}$ amp. then find the value of x ?

Ans. 1

Unleashing Potential

Sol. Equivalent emf is $\mathrm{E}_{\text {eq }}=8 \mathrm{~V}-4 \mathrm{~V}=4 \mathrm{~V}$

Equivalent resistance $\mathrm{R}_{\mathrm{eq}}=\frac{6 \times 3}{6+3}+4.3+0.5+1=8 \Omega$
Current in circuit $\mathrm{I}=\frac{\mathrm{E}_{\text {eq }}}{\mathrm{R}_{\mathrm{eq}}}=\frac{4}{8}=0.5 \Omega$
Current passing through 3Ω resistor $\mathrm{I}_{1}=\frac{6}{3+6} \times \mathrm{I}$
$\mathrm{I}_{1}=\frac{6}{9} \times \frac{1}{2}=\frac{1}{3} \mathrm{amp}$
Value of x is 1 .
9. Find out which logic gate is represented by following setup

(1) AND
(2) OR
(3) NAND
(4) NOR

Ans. (1)
Sol. $\overline{\overline{\mathrm{A}}+\overline{\mathrm{B}}}=\overline{\overline{\mathrm{A}}} \cdot \overline{\overline{\mathrm{B}}}=\mathrm{A} . \mathrm{B}$
AND GATE
10. A particle under SHM is moving from mean position to extreme position. Plot graph of $\mathrm{KE} \mathrm{v} / \mathrm{s}$ position x .
(1)

(2)

(3)

(4) None of these

Ans. (2)

Unleashing Potential

Sol. K.E. $=\frac{1}{2} \mathrm{mv}^{2}$
K.E. $=\frac{1}{2} m \omega^{2}\left(A^{2}-\mathrm{x}^{2}\right)$
11. If signals from an antenna can be received upto 4 km along the ground and it is found that height of antenna is $\mathrm{x} \times 10^{-2} \mathrm{~m}$. Find the value of x . (Assume radius of Earth to be 6400 km)

Ans. 125

Sol. $\mathrm{d}=\sqrt{2 \mathrm{Rh}}$

$4000=\sqrt{2 \times 6400 \times 10^{3} \times h}$
$\mathrm{h}=1.25 \mathrm{~m}$
$\mathrm{h}=125 \times 10^{-2} \mathrm{~m}$
12. The equation of a travelling wave is given as $g=A \sin 20(160 t-0.5 x+\phi)$. Find the velocity of wave is ($\mathrm{Km} / \mathrm{hr)}$.

Ans. 1125

Sol. $\quad v=\frac{\omega}{\mathrm{K}}=\frac{160}{0.5}=320 \mathrm{~m} / \mathrm{s}$
$=320 \times \frac{18}{5}=1125 \mathrm{Km} / \mathrm{hr}$

Unleashing Potential
13. When a rod of length ℓ is stretched by 100 N force its length becomes ℓ_{1} and when it is stretched by 120 N force it's length becomes ℓ_{2}. If $\frac{\ell_{1}}{\ell_{2}}$ is $\frac{10}{11}$, then original length (ℓ) of rod is $\frac{\ell_{1}}{\mathrm{x}}$. Find value of x ?

Ans. ($\mathrm{x}=2$)
Sol.
$\Delta \ell=\frac{\mathrm{F} \ell}{\mathrm{Ay}}$
$\ell_{1}-\ell=\frac{100 \mathrm{~L}}{\mathrm{Ay}}$
When stretched by 120 N
$\ell_{2}-\ell=\frac{120 x}{A y}$
$\frac{\text { (i) }}{\text { (ii) }} \frac{\ell_{1}-\ell}{\ell_{2}-\ell}=\frac{10}{12}=\frac{5}{6}$
$6 \ell_{1}-6 \ell=5 \ell_{2}-5 \ell$
$\frac{\ell_{1}}{\ell_{2}}=\frac{10}{11} \Rightarrow \ell_{2}=\frac{11}{10} \ell_{1}$
$6 \ell_{1}-\left(\frac{11}{10} \ell_{1}\right)=\ell$
$\frac{5}{10} \ell_{1}=\ell \Rightarrow \ell=\frac{\ell_{1}}{2}$
14. A charged capacitor has potential energy U_{1}. An identical uncharged capacitor is connected across it. The potential energy stored in the combination now is U_{2}. Find U_{1} / U_{2} ?
Ans. 2

Unleashing Potential

Sol. $\quad \mathrm{U}_{1}=\frac{1}{2} \mathrm{CV}^{2}$

$\mathrm{U}_{2}=\frac{1}{2} \frac{\mathrm{CV}^{2}}{4} \times 2=\frac{\mathrm{CV}^{2}}{4}$
$\frac{\mathrm{U}_{1}}{\mathrm{U}_{2}}=2$
15. Area of loop is $4 \mathrm{~m}^{2}$ and magnetic field which is passing through is varying according to graph. Find out induced emf?

Ans. 8
Sol. $\phi=\mathrm{BA}$
$\{B(t)=2 t\}$
$\phi(\mathrm{t})=2 \mathrm{t} \times 4=8 \mathrm{t}$
$\left(\frac{\mathrm{d} \phi}{\mathrm{dt}}\right)=\mathrm{e}=8$ volt
16. Half life of nuclei A is equal to average life of nuclei of B, then correct relationship between decay constants
(1) $\lambda_{A}=2 \lambda_{B}$
(2) $2 \lambda_{\mathrm{A}}=\lambda_{\mathrm{B}}$
(3) $\lambda_{A} \ln 2=\lambda_{B}$
(4) $\lambda_{A}=\lambda_{B} \ln 2$

Ans. (4)
Sol. $\frac{\ln 2}{\lambda_{\mathrm{A}}}=\frac{1}{\lambda_{\mathrm{B}}} \quad \Rightarrow \ln 2 \lambda_{\mathrm{B}}=\lambda_{\mathrm{A}}$

Unleashing Potential
17. If current sensitivity is increased by 25% on increasing number of turns by N . Then voltage sensitivity increases by : (consider resistance constant)
(1) 25%
(2) 0%
(3) -25%
(4) 50%

Ans. (1)
Sol. C.S $\propto \mathrm{N}$
$\mathrm{R} \rightarrow$ constant
$\Rightarrow \quad$ V.S $\propto \mathrm{N}^{1}$
18. When light of wavelength λ is incident on a metallic surface its stopping potential become V_{0}. If wavelength of light becomes 2λ its stopping potential becomes $\frac{\mathrm{V}_{0}}{4}$. Then find thresold wavelength.
(1) $\frac{3 \lambda}{2}$
(2) $\frac{\lambda}{2}$
(3) 3λ
(4) $\frac{5 \lambda}{4}$

Ans. (3)
Sol. $\quad \mathrm{eV}_{\mathrm{s}}=\frac{\mathrm{hc}}{\lambda}-\phi$

$\frac{\text { (i) }}{\text { (ii) }} \quad 4=\frac{\frac{\mathrm{hc}}{\lambda}-\phi}{\frac{\mathrm{hc}}{2 \lambda}-\phi}$
$\frac{2 \mathrm{hc}}{\lambda}-4 \phi=\frac{\mathrm{hc}}{\lambda}-\phi$
$\frac{\mathrm{hc}}{\lambda}=3 \phi \Rightarrow \phi=\frac{\mathrm{hc}}{3 \lambda}=\frac{\mathrm{hc}}{\lambda_{\mathrm{Th}}} \Rightarrow \lambda_{\mathrm{Th}}=3 \lambda$
19. An uniform solid sphere is rotating with angular velocity $10 \mathrm{rad} / \mathrm{s}$. Moment of inertia about tangent is $\left(\mathrm{x} \times 10^{-2}\right) \times$ angular momentum about diameter. Find out x ?
Ans. 35
Sol. $\quad \frac{7}{2} \mathrm{mR}^{2}=\mathrm{x} \times 10^{-2} \times \frac{2}{5} \mathrm{mR}^{2} \times 10$
$7=\mathrm{x} \times 10^{-2} \times 20$
$\mathrm{x}=\frac{70}{2}=35$

Unleashing Potential
20. 1 kg of water at $100^{\circ} \mathrm{C}$ is converted to 1 kg of steam at $100^{\circ} \mathrm{C}$. Change in volume is $10^{-3} \mathrm{~m}^{3}$. Find change in potential energy.
(Given $\mathrm{P}_{0}=10^{5} \mathrm{~N} / \mathrm{m}^{2}$)
$\mathrm{P}_{0} \rightarrow$ Atmospheric pressure
$\mathrm{L}_{\mathrm{v}}=2257 \mathrm{~J} / \mathrm{kg}$
Ans. 2157 J
Sol. $\quad \Delta \mathrm{Q}=\mathrm{mL}_{\mathrm{V}}=1 \times 2257$
$\Delta \mathrm{Q}=2257 \mathrm{~J}$
$\mathrm{W}=10^{5} \times 10^{-3}=100 \mathrm{~J}$
$\Delta \mathrm{Q}=\mathrm{W}+\Delta \mathrm{U}$
$\Delta \mathrm{U}=\Delta \mathrm{Q}-\mathrm{W}$
$\Delta \mathrm{U}=2257-100$
$\Delta \mathrm{U}=2157 \mathrm{~J}$
21. The variation of impedance (z) with angular frequency (ω) for two electrical elements is shown in graph given. If $\mathrm{x}_{\mathrm{L}}, \mathrm{x}_{\mathrm{C}}$ and R are inductive reactance, capacitive reactance and resistance respectively, then

(1) A is resistor, B is inductor
(2) A is inductor, B is capacitor
(3) A is inductor, B is resistor
(4) A is capacitor, B is inductor

Ans. (2)
Sol. $\quad X_{L}=\omega L$
$\mathrm{X}_{\mathrm{C}}=\frac{1}{\omega \mathrm{C}}$

Unleashing Potential
22. If light is passed through rarer to denser medium of critical angle 45°, then the speed of wave in denser medium is :
(1) $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(2) $\frac{3 \times 10^{8}}{\sqrt{2}} \mathrm{~m} / \mathrm{s}$
(3) $3 \sqrt{2} \times 10^{8} \mathrm{~m} / \mathrm{s}$
(1) $1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Ans. (2)

Sol. $\quad \sin \theta_{\mathrm{C}}=\frac{\mu_{\mathrm{r}}}{\mu_{\mathrm{d}}}=\frac{1}{\mu}=\frac{1}{\sqrt{2}}$
$\mu=\sqrt{2}$
$\mathrm{v}=\frac{\mathrm{C}}{\mu}=\frac{3 \times 10^{8}}{\sqrt{2}} \mathrm{~m} / \mathrm{s}$
23. An equiconvex lens of radius of curvature 20 cm and refractive index 1.5 has power P_{1} in air. If this lens is immersed in liquid of refractive index $=\frac{4}{3}$, it has power P_{2} find out $\frac{P_{1}}{P_{2}}$

Ans. 4

Sol. $\mathrm{P}_{1}=\left(\frac{3}{2}-1\right)\left(\frac{2}{\mathrm{R}}\right)$
$\mathrm{P}_{2}=\left(\frac{3 / 2}{4 / 3}-1\right)\left(\frac{2}{\mathrm{R}}\right)$
$\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{\left(\frac{1}{2}\right)}{\left(\frac{1}{8}\right)}=4$
24. Temperature scale boiling point $=65^{\circ} \mathrm{C}$. Melting point $=15^{\circ} \mathrm{C}$. Find $95^{\circ} \mathrm{x}$ in Fahrenheit.

Ans. 320
Sol. $\frac{\mathrm{x}-\mathrm{x}_{\mathrm{m}}}{\mathrm{x}_{\mathrm{B}}-\mathrm{x}_{\mathrm{m}}}=\frac{\mathrm{F}-32}{180}$
$\frac{95-15}{65-15}=\frac{F-32}{180}$
$\mathrm{F}=320$

Unleashing Potential
25. In EMW wave amplitude of electric field is $20 \mathrm{v} / \mathrm{m}$. Find out energy in $4 \times 10^{-4} \mathrm{~m}^{3}$ volume.
(1) $4.42 \times 10^{-13} \mathrm{~J} / \mathrm{m}^{3}$
(2) $8.85 \times 10^{-13} \mathrm{~J} / \mathrm{m}^{3}$
(3) $15 \times 10^{-13} \mathrm{~J}$
(4) $1.52 \times 10^{-13} \mathrm{~J} / \mathrm{m}^{3}$

Ans. (2)

Sol. $\quad \mathrm{U}=2 \times \frac{1}{2} \varepsilon_{0}\left(\frac{\mathrm{E}_{0}}{\sqrt{2}}\right)^{2} \times$ volume

$$
\begin{aligned}
& =\frac{\varepsilon_{0} \mathrm{E}_{0}^{2}}{2} \times \mathrm{V} \\
& =\frac{8.85 \times 10^{-12} \times 400}{2} \times 5 \times 10^{-4}=8.85 \times 10^{-13} \mathrm{~J} / \mathrm{m}^{3}
\end{aligned}
$$

RELIABLE INSTITUTE : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com
© reliablekota O reliablekota © reliableinstitutekota © reliable_kota if reliablekota

