NARAYANA GRABS

THE LION'S SHARE IN JEE-ADV-2022

5

RANKS in OPEN GATEGOBY

 only frow NAPAYANAWITOP 10 Ali

JEE MAIN (APRIL) 2023 (10-04-2023-AN)
Mamory Based Ouestion Paper CHEMISTRY

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. Delicate balance of CO_{2} and O_{2} is not disturbed by
(1) Deforestation
(2) Photosynthesis
(3) Burning of coal
(4) Burning of petroleum

Answer (2)
Sol. Deforestation \& burning of fossil fuels increase CO_{2} level and disturb the balance in the atmosphere.
2. Which of the following options correctly represent the structure of Buna -S ?
(1)

(2) $+\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\frac{-}{n}$
(3)

(4)

Answer (1)
Sol. Buna-S is formed by polymerisation of 1, 3 butadiene \& styrene

3. Relation between radius of a lattice (r) and edge length (a) of an FCC unit cell is \qquad -.
(1) $r=\frac{a}{2}$
(2) $r=\frac{\sqrt{2} a}{2}$
(3) $r=\frac{\sqrt{2} a}{4}$
(4) $r=\frac{\sqrt{3} a}{4}$

Answer (3)
Sol. In an F.C.C. unit cell, the lattice points along the diagonal of a square face are in contact with each other.
$\therefore \quad \sqrt{2} a=4 r$
$\Rightarrow r=\frac{\sqrt{2} a}{4}$
4. The increasing order of metallic character
(1) $\mathrm{Be}>\mathrm{Ca}>\mathrm{K}$
(2) $\mathrm{K}>\mathrm{Ca}>\mathrm{Be}$
(3) $\mathrm{Ca}>\mathrm{K}>\mathrm{Be}$
(4) $\mathrm{K}>\mathrm{Be}>\mathrm{Ca}$

Answer (2)

Sol. Metallic character increases down the group and decreases from left to right along a period.
$\therefore \mathrm{K}>\mathrm{Ca}>\mathrm{Be}$ (Metallic character)
5. During bleeding from cut FeCl_{3} is used to stop bleeding as
(1) Cl^{-}cause coagulation
(2) Ferric ion cause coagulation
(3) FeCl_{3} dilutes blood
(4) Bleeding does not stop

Answer (2)

Sol. Fe^{+3} ion coagulate blood which is colloid.
6. Correct order of magnetic moment of
$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right],\left[\mathrm{CoF}_{6}\right]^{-3},\left[\mathrm{FeF}_{6}\right]^{-3},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)\right]^{+3}$
(1) $\left[\mathrm{FeF}_{6}\right]^{-3}>\left(\mathrm{CoF}_{6}\right)^{-3}>\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)\right]^{+3}>\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
(2) $\left[\mathrm{FeF}_{6}\right]^{-3}>\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]>\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)\right]^{+3}>\left[\mathrm{CoF}_{6}\right]^{-3}$
(3) $\left[\mathrm{CoF}_{6}\right]^{-3}>\left[\mathrm{FeF}_{6}\right]^{-3}>\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]>\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)\right]^{+3}$
(4) $\left[\mathrm{CoF}_{6}\right]^{-3}>\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]>\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)\right]^{+3}>\left[\mathrm{FeF}_{6}\right]^{-3}$

Answer (1)

7. Consider, a mixture of 2 moles of oxygen, 4 moles of Neon gas.

Neglect any vibrational degree of freedom.
Calculate the total internal energy of system (Assuming $\mathrm{E}=0$ at $\mathrm{T}=0 \mathrm{~K}$)
(1) 5 RT
(2) 11 RT
(3) 6RT
(4) 7RT

Answer (2)

Sol. $E=(2)\left(\frac{5 R}{2}\right)(T)+(4)\left(\frac{3 R}{2}\right)(T)$

$$
=11 \mathrm{RT}
$$

8. Which of the following is the correct hydride affinity order of carbocations
(a)

(b)

(c)

(d)

(1) (c) $<$ (b) $<$ (d) $<$ (a)
(2) (b) $<$ (d) $<$ (c) $<$ (a)
(3) (a) $<$ (d) $<$ (b) $<$ (c)
(4) (c) $<$ (a) $<$ (d) $<$ (b)

Answer (1)
Sol. The correct hydride affinity order of carbocations will be decided by the stability of carbocation. Higher the stability of carbocation, lower will be hydride affinity.
\therefore Correct hydride affinity order of carbocations is (c) < (b) < (d) < (a)
9. Water of crystallization in Soda ash and washing soda is respectively.
(1) 0,10
(2) 10,0
(3) 0,0
(4) 0,1

Answer (1)
Sol. Soda ash is $\mathrm{Na}_{2} \mathrm{CO}_{3}$
Washing soda is $\mathrm{Na}_{2} \mathrm{CO}_{3} .10 \mathrm{H}_{2} \mathrm{O}$.
Therefore correct answer is 0,10 .
10. Order of acidic strength of

(1)

(2)

(3)

(4)

Answer (1)
Sol. Correct order is

11. What process is used to make soap from fat?
(1) Saponification
(2) Electrolysis
(3) Solvay process
(4) Haber process

Answer (1)
Sol.

12. Assertion: Higher energy is required for the conversion of Mg to Mg^{2-} than that for Mg to Mg^{-}. Reason: Mg^{2-} has very small size and more charge.
(1) Both Assertion and Reason are correct and Reason is the correct explanation of Assertion
(2) Both Assertion and Reason are correct but Reason is not the correct explanation of Assertion
(3) Assertion is correct but Reason is incorrect
(4) Assertion is incorrect but Reason is correct

Answer (3)

Sol. Since Mg^{2-} has higher charge density than Mg^{-}, then interelectronic repulsion will be higher in case of Mg^{2-} as compared to Mg^{-}.

Hence, higher energy is required for the conversion of Mg to Mg^{2-} than that of Mg to Mg^{-}.
13. An unknown organic compound is heated with fuming HNO_{3}. The reaction mixture is treated with aq BaCl_{2} solution which gives white precipitate. Identify the unknown organic compound.
(1) Phenylalanine
(2) Proline
(3) Cysteine
(4) Valine

Answer (3)
Sol. The unknown organic compound contains S -atom which gets oxidised by fuming HNO_{3} to SO_{4}^{2-} ions. Addition of aq BaCl_{2} gives white precipitate of BaSO4. Among the given compounds only cysteine has S-atom.
Phenylalanine

Proline
Cysteine
Valine
14. Following two columns are provided

	Column-I (Complex)		Column-II (CFSE)
a.	$\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	(i)	$-1.2 \Delta_{0}$
b.	$\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	(ii)	$-0.6 \Delta_{0}$
c.	$\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	(iii)	0
d.	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	(iv)	$-0.8 \Delta_{0}$

(1) a(iv); b(i); c(ii); d(iii)
(2) $a(i) ; b(i i) ; c(i v) ; d(i i i)$
(3) a(iv); b(iii); c(i); d(ii)
(4) $a(i) ; b(i i) ; c(i i i) ; d(i v)$

Answer (1)
Sol. CFSE $=-\frac{2}{5} \Delta_{0}\left(\mathrm{t}_{2 \mathrm{~g}}\right.$ electrons $)+\frac{3}{5} \Delta_{0}$ (e_{g} electrons) 15.
16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, $-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. For a metal ion, $\mu=4.9$ B.M. Find out number of unpaired electrons

Answer (04.00)

Sol. $\sqrt{(n)(n+2)}=4.92$

$$
\begin{aligned}
(\mathrm{n})(\mathrm{n}+2) & =24 \\
\mathrm{n} & =4
\end{aligned}
$$

22. Find out difference in oxidation state of Xe in completely Hydrolysed form of XeF_{4} and XeF_{6}

Answer (00.00)
Sol. $\mathrm{XeF}_{6}+3 \mathrm{H}_{2} \mathrm{O} \xrightarrow[\text { Hydrolysis }]{\text { Complet }} \underset{(+6)}{\mathrm{XeO}_{3}}+6 \mathrm{HF}$

23. $\mathrm{NH}_{3}, \mathrm{NO}, \mathrm{N}_{2}, \mathrm{~F}_{2}, \mathrm{CO}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$, and XeF_{4}

Fill the number of above molecules having only two lone pair of electrons.

Answer (3)

Sol. These are $\mathrm{N}_{2}, \mathrm{CO}$ and $\mathrm{H}_{2} \mathrm{O}$.
24. How many electrons are gained by $\mathrm{MnO}_{4}^{\oplus}$ in strongly alkaline medium?

Answer (1)

Sol. $\mathrm{MnO}_{4}^{\ominus}$ gains one electron to form MnO_{4}^{-2} in strongly alkaline medium.
25. Consider a reaction at equilibrium
$\underset{(9)}{\mathrm{A}} \rightleftharpoons \underset{(\mathrm{g})}{2 \mathrm{~B}}+\underset{(\mathrm{g})}{\mathrm{C}}$
If final pressure at equilibrium is $1 \mathrm{~atm} \& \mathrm{k}_{\mathrm{p}}=\frac{1}{27}$, then \% dissociation of A will be (consider 1- $\alpha \approx 1$) (nearest integer)

Answer (21)

Sol. $\mathrm{A}(\mathrm{g}) \rightleftharpoons 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$

$$
\begin{aligned}
& \mathrm{P} \quad---\quad \mathrm{P}^{2} \\
& \mathrm{P}(1-\alpha) \quad 2 \mathrm{P} \alpha \quad \mathrm{P}_{\text {total }}=\mathrm{P}(1+2 \alpha) \\
& \mathrm{k}_{\mathrm{p}}=\frac{\left(4 \mathrm{P}^{2} \alpha^{2}\right) \mathrm{P} \alpha}{\mathrm{P}(1-\alpha)}=\frac{4 \mathrm{P}^{2} \alpha^{3}}{1-\alpha} \\
& \mathrm{k}_{\mathrm{P}}=\frac{4 \mathrm{P}_{\mathrm{T}}^{2} \alpha^{3}}{(1-\alpha)(1+2 \alpha)^{2}} \\
& \frac{1}{27}=\frac{4 \mathrm{P}_{T}^{2} \alpha^{3}}{1} \\
& \mathrm{P}_{\mathrm{T}}^{2} \alpha^{3}=\frac{1}{108} \\
& \alpha^{3}=\frac{1}{108} \\
& \alpha=\left(\frac{1}{108}\right)^{1 / 3} \times 100 \\
& =\frac{100}{4.762} \\
& \alpha \simeq 21
\end{aligned}
$$

26. $0.02 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ has specific conductance,
$\mathrm{K}=5 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1}$. Also given limiting molar conductance of $\mathrm{CH}_{3} \mathrm{COOH}$ is $400 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
Therefore, K_{a} for $\mathrm{CH}_{3} \mathrm{COOH}$ is \qquad $\times 10^{-7} \mathrm{M}$

Answer (8)

Sol. $\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{\ominus}+\mathrm{H}^{\oplus}$

$$
\Lambda_{\mathrm{m}}=\frac{\mathrm{K} \times 1000}{\mathrm{M}}=\frac{5 \times 10^{-5} \times 10^{3}}{2 \times 10^{-2}}
$$

$$
=2.5
$$

$\alpha=\frac{\Lambda_{\mathrm{m}}}{\Lambda_{\mathrm{m}}}=\frac{2.5}{400}$
$\therefore \mathrm{K}=\frac{\mathrm{C} \alpha^{2}}{1-\alpha}$
$=\frac{0.02 \times\left(\frac{2.5}{400}\right)^{2}}{1-\frac{2.5}{400}}$
$=\frac{7.8125 \times 10^{-7}}{0.99375}$
$\simeq 7.861 \times 10^{-7}$
$\mathrm{K}_{\mathrm{a}} \simeq 8 \times 10^{-7} \mathrm{M}$
27. For a first-order reaction, if the value of $\mathrm{t}_{1 / 2}$ is T , then the value of $\mathrm{t}_{7 / 8}$ will be \qquad T.

Answer (3)

Sol. $\mathrm{t}_{7 / 8}$ means 3 half lives.
$\therefore \quad \mathrm{t}_{7 / 8}=3 \mathrm{~T}$
28. Number of endothermic reactions among following
(a) $2 \mathrm{HCl}(\mathrm{g}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
(b) $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(c) $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})$
(d) Dissolution of $\mathrm{NH}_{4} \mathrm{Cl}$
(e) $\mathrm{I}_{2}(\mathrm{~g}) \longrightarrow 21(\mathrm{~g})$

Answer (04)

Sol. Burning of carbon is exothermic, all other are endothermic.
29.
30.

