PART : CHEMISTRY

1. The ratio of spin only magnetic moments of the complexes $\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$ and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is :

Ans. (1)
Sol. $\quad\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-} \quad \mathrm{Cr}^{+3} \rightarrow 3 d^{3} \Rightarrow t_{2 g}^{1,1,1} e_{g}^{0,0}, \mu=\sqrt{n(n+2)} B M$

$$
\begin{aligned}
& =\sqrt{3(3+2)}=\sqrt{15} \mathrm{BM} \\
& \mu=\sqrt{n(n+2)} \mathrm{BM} \\
& =\sqrt{3(3+2)}=\sqrt{15} \mathrm{BM}
\end{aligned}
$$

$$
\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \quad \mathrm{Cr}^{+3} \rightarrow 3 d^{3} \Rightarrow t_{2 g}^{1,1,1} e_{g}^{0,0}, \mu=\sqrt{n(n+2)} \mathrm{BM}
$$

Ratio of magnetic moments $=\frac{\sqrt{15}}{\sqrt{15}}=1$
2. If $25 \%(\mathrm{w} / \mathrm{w})$ of 250 g of sugar solution \& $40 \%(\mathrm{w} / \mathrm{w})$ of 500 g sugar solution are mixed then calculate the mass percentage of the mixer solution.
Ans. (35)
Sol. Mass of sugar $=\frac{25}{100} \times 250+\frac{40}{100} \times 500 \Rightarrow 262.5 \mathrm{~g}$
$\% w / w$ of solution $=\frac{262.5}{750} \times 100=35 \%$
3. The correct increasing order of RMS velocity of $\mathrm{Ne}, \mathrm{Cl}_{2}$ and UF_{6} present in a container at constant temperature is :
(1) $\mathrm{Ne}>\mathrm{Cl}_{2}>\mathrm{UF}_{6}$
(2) $\mathrm{Cl}_{2}>\mathrm{Ne}>\mathrm{UF}_{6}$
(3) $\mathrm{Ne}>\mathrm{UF}_{6}>\mathrm{Cl}_{2}$
(4) $\mathrm{UF}_{6}>\mathrm{Cl}_{2}>\mathrm{Ne}$

Ans. (1)
Sol. $\quad U_{R M S}=\sqrt{\frac{3 R T}{M}}$
$U_{\text {RMS }} \propto \frac{1}{\sqrt{M}}$
\therefore The correct increasing order of RMS velocities $=\mathrm{Ne}^{2} \mathrm{Cl}_{2}>\mathrm{UF}_{6}$
4. The correct increasing order of first ionization enthalpy of $\mathrm{Li}, \mathrm{Be}, \mathrm{C}, \mathrm{B}, \mathrm{N}, \mathrm{O}, \mathrm{F}$ is :
(1) $\mathrm{Li}<\mathrm{Be}<\mathrm{C}<\mathrm{B}<\mathrm{N}<\mathrm{O}<\mathrm{F}$
(2) $\mathrm{Li}<\mathrm{B}<\mathrm{Be}<\mathrm{C}<\mathrm{O}<\mathrm{N}<\mathrm{F}$
(3) $\mathrm{Li}<\mathrm{Be}<\mathrm{B}<\mathrm{C}<\mathrm{N}<\mathrm{O}<\mathrm{F}$
(4) $\mathrm{Li}<\mathrm{B}<\mathrm{Be}<\mathrm{C}<\mathrm{N}<\mathrm{O}<\mathrm{F}$

Ans. (2)
Sol. The correct increasing order of first ionization enthalpies is
$\mathrm{Li}<\mathrm{B}<\mathrm{Be}<\mathrm{C}<\mathrm{O}<\mathrm{N}<\mathrm{F}$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
5. Match the following :

	Column-I		Column-I
(A)	Acetalide	(P)	Linear
(B)	$\mathrm{H}_{3} \mathrm{O}^{+}$	(Q)	Tetrahedral
(C)	NH_{4}^{+}	(R)	Bent
(D)	ClO_{2}^{-}	(S)	Pyramidal

(1) (A) \rightarrow (P) ; (B) \rightarrow (S) ; (C) $\rightarrow(\mathrm{Q})$; (D) $\rightarrow(\mathrm{R})$
(2) (A) $\rightarrow(\mathrm{Q})$; (B) $\rightarrow(\mathrm{R})$; (C) $\rightarrow(\mathrm{P})$; (D) $\rightarrow(\mathrm{S})$
(3) $(\mathrm{A}) \rightarrow(\mathrm{R}) ;(\mathrm{B}) \rightarrow(\mathrm{S}) ;(\mathrm{C}) \rightarrow(\mathrm{Q}) ;(\mathrm{D}) \rightarrow(\mathrm{P})$
(4) $(\mathrm{A}) \rightarrow(\mathrm{S}) ;(\mathrm{B}) \rightarrow(\mathrm{Q}) ;(\mathrm{C}) \rightarrow(\mathrm{R}) ;(\mathrm{D}) \rightarrow(\mathrm{P})$

Ans. (1)
Sol. Molecule/Species

Structure

Acetalide

$$
\mathrm{H}-\mathrm{C} \equiv \overline{\mathrm{C}}
$$

Pyramidal

Tetrahedral
$\mathrm{ClO}_{2}{ }^{-}$

Bent
6. $2 \mathrm{Cu}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{SO}_{2}$
$2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \longrightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$
during this process obtained copper called as :
(1) Copper matte
(2) Blister copper
(3) Reduced copper
(4) Oxidised copper

Ans. (2)
Sol. During this process obtained copper has blistered appearance due to the evolution of SO_{2} so it is called as blister copper.
7. Which of the following complex can show meridional isomerism :
(1) $\left[\mathrm{Co}(\text { en })_{2} \mathrm{Cl}_{2}\right]$
(2) $\left[\mathrm{Co}(\mathrm{en})_{3}\right]$
(3) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$
(4) $\left[\mathrm{Co}(\mathrm{en}) \mathrm{Cl}_{4}\right]$

Ans. (3)
Sol. [$\left.\mathrm{Ma}_{3} \mathrm{~b}_{3}\right]$ can show facial and meridional isomerism.
8. $E_{\mathrm{Pb}^{+2} \mid \mathrm{Pb}}^{0}=M, E_{\mathrm{Pb}^{4} \mid \mathrm{Pb}}^{0}=N$
$\mathrm{E}_{\mathrm{Pb}^{4} \mid \mathrm{Pb}^{2+}}^{0}=[\mathrm{M}-\mathrm{X}(\mathrm{N})]$, then value of X is \qquad :
Ans. (2)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Sol. $\mathrm{Pb}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pb} \quad \mathrm{E}_{1}^{0}=\mathrm{M} ; \Delta \mathrm{G}_{1}^{0}=-2 \mathrm{FM}$

$$
\mathrm{Pb}^{4+}+4 \mathrm{e}^{-} \longrightarrow \mathrm{Pb} \quad \mathrm{E}_{2}^{0}=\mathrm{N} ; \Delta \mathrm{G}_{2}^{0}=-4 \mathrm{FM}
$$

Target eq.

$$
\mathrm{Pb}^{4+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pb}^{2+} \quad \mathrm{E}_{3}^{0}=? ; \Delta \mathrm{G}_{3}^{0}=-2 \mathrm{FE}_{3}^{0}
$$

Target eq. $=$ eq. $2-$ eq 1
$-2 \mathrm{FE}_{3}^{0}=-4 \mathrm{FN}-(-2 \mathrm{FM})$
$E_{3}^{0}=2 N-M=|M-2 N|$
$X=2$
9. If $\mathrm{K}_{2} \mathrm{SO}_{4}(0.004 \mathrm{M})$ and Glucose $(0.01 \mathrm{M})$ are isotonic. What will be the value of degree of dissociation for $\mathrm{K}_{2} \mathrm{SO}_{4}$.
Ans. (75)
Sol. Isotonic
(Glucose) $\mathrm{i}_{2}=1$

$$
\begin{aligned}
& i_{1} C_{1}=i_{2} C_{2} \\
& i_{1} \times 0.004=1 \times 0.01 \\
& i_{1}=\frac{0.01}{0.004} \times \frac{1000}{100} \\
& i_{1}=\frac{10}{4}=\frac{5}{2}=2.5 \\
& i=1+(n-1) \alpha \\
& i=1+2 \alpha \\
& 2.5=1+2 \alpha \\
& \alpha=0.75 \\
& \% \alpha=75 \%
\end{aligned}
$$

10. In which of the following set of ligands, all ligand not act as ambidentate ligand :
(1) $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{SCN}^{-}$
(2) $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}, \mathrm{NO}_{2}^{-}, \mathrm{SCN}^{-}$
(3) $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$, en, SCN^{-}
(4) $\mathrm{EDTA}^{4-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{dmg}^{-}$

Ans. (4)
Sol. Ligands which can ligate through two different sites present in it are called ambidentate ligands.
EDTA ${ }^{4-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{dmg}^{-}$are not act as ambidentate ligand.
11. Initial concentration of a reaction is 10 mole/lit after 1 hour total concentration of reactant is 8.8 mole/lit, if rate constant of reaction is $[X] \times 10^{-6} \mathrm{~mole} / \mathrm{lit} \mathrm{sec}^{-1}$, then value of X is \qquad [nearest integer]
Ans. (333)
Sol. On the basis of unit of rate constant reaction is zero order
$\mathrm{A} \longrightarrow$ Product
$\mathrm{t}=0 \quad 10 \mathrm{~mole} / \mathrm{lit}$
$\mathrm{t}=1$ hour $\quad 8.8 \mathrm{~mole} / \mathrm{lit}$
For zero order reaction $\mathrm{C}_{\mathrm{t}}=\mathrm{C}_{0}-\mathrm{Kt}$

$$
\begin{aligned}
& 8.8=10-K \times 3600 \\
& K=\left[\frac{10-8.8}{3600}\right]=333.33 \times 10^{-6}\left(\frac{\text { mole }}{\text { lit sec }}\right)
\end{aligned}
$$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
12. Which of the following statement is correct for GaAlCl_{4}
(1) Oxidation state of Ga is +3
(2) Ga is surrounded by four Cl
(3) Al atom occupy all lattice point of CCP lattice.
(4) Chlorine atom is bounded with Al

Ans. (4)
Sol. Compound is $\mathrm{Ga}^{+}\left[\mathrm{AlCl}_{4}\right]^{-}$

13. For a solid edge length of solid 200 pm and density $3 \mathrm{gram} / \mathrm{cm}^{3}$ and molecular mass of solid is 12 gram, then number of atom per unit cell is \qquad [Nearest integer] [Given $\mathrm{Na}_{\mathrm{a}}=6 \times 10^{23}$]
Ans. (1)
Sol. $d=\left\{\frac{Z \times M}{N_{A} \times a^{3}}\right\}$
$3=\frac{Z \times 12}{6 \times 10^{23} \times\left(8 \times 10^{-24}\right)}$
$z=1.2 \approx 1$
14. To $25 \mathrm{~mL} 1 \mathrm{M} \mathrm{AgNO}_{3}, 1.05 \mathrm{M} \mathrm{KI}$ is added drop wise then concentration of which ion is least in solution. [Take AgNO_{3} excess]
(1) Ag^{+}
(2) 1
(3) K^{+}
(4) NO_{3}^{-}

Ans. (2)
Sol.
Initially excess
So, concentration of 1 - is least in concentration.
15. Which of the following is least soluble in water.
(1) $\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$
(2) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\text { en })_{2}\right] \mathrm{Cl}_{3}$
(3) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
(4) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl} l_{2}\right] \mathrm{Cl}$

Ans. (1)
Sol. $\quad \mathrm{Fe}^{3+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4} \longrightarrow \mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3} \downarrow$
"Prussion Blue"
Least soluble
16. Statement I : It is 4 ppm BOD and concentration of dissolved O_{2} is 8 ppm , then it is good quality water. Statement II : It Zinc or Nitrate salt is more than 5 ppm , then it is not drinkable.
(1) Both Statement I and Statement II are correct
(2) Both Statement I and Statement II are incorrect
(3) Statement I is correct but Statement II is incorrect
(4) Statement I is incorrect but Statement II is correct

Ans. (1)
Sol. Clean water has BOD less than 5 ppm.

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more: sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

17. Statement I:

Statement II :

(1) Reaction in Statement I follow $1^{\text {st }}$ order and in II follow $2^{\text {nd }}$ order.
(2) Reaction in Statement I follow $2^{\text {nd }}$ order and in II follow $1^{\text {st }}$ order.
(3) Reaction in Statement I follow $1^{\text {st }}$ order and in II follow $1^{\text {st }}$ order.
(4) Reaction in Statement I follow $2^{\text {nd }}$ order and in II follow $2^{\text {nd }}$ order.

Ans. (2)
Sol. Reaction in Statement I follow $2^{\text {nd }}$ order as carbocation is not stable where as Reaction in Statement II follow $\left.\right|^{\text {st }}$ order as carbocation is stabilized by +M effect of Methoxy group at para position.
18.

A and B are respectively.
(1)
 and

(2)
 and

(3)
 and

(4)

Ans. (2)

Sol.

19. $[X]$ is a polymer which has linear structure and no branch. $[X]$ is prepared using titanium [IV] chloride and Aluminium (III) isopropoxide, then X is
(1) Teflon
(2) PAN
(3) LDPE
(4) HDPE

Ans. (4)
Sol. High density polythene has linear, unbranched structure and formation of HDPE requires Zeisler Natta catalyst ($\left.\mathrm{TiCl}_{4} \mathrm{Al}\left(\mathrm{O}^{-i p r}\right)_{3}\right)$.

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

20. L isomer of $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)$ gives shifts test, the compound is:
(1)

(3)

(2)

(4)

Ans. (2)
Sol. $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ has one $\mathrm{DU}, \mathrm{a},>\mathrm{C}=\mathrm{O}$ group and L in configuration, which is being satisfied by structure given in option (2)
21. The correct order of electrophilic aromatic substitution of given compound is

।

II

III

IV
(1) I $>$ III $>$ II $>$ IV
(2) III $>$ I $>$ II $>$ IV
(3) IV $>$ I $>$ II $>$ III
(4) II $>$ III $>$ IV $>$ I

Ans. (1)
Sol. EAS in favoured on more electron rich benzene nuclei. The correct order of electron density in aromatic ring is $\mathrm{I}>$ III $>$ II $>$ IV.
22.

Value of $\frac{X}{Y}$ is
Ans. (2)

Sol.

23.
 $\xrightarrow{\mathrm{HBr}}$ Stable Carbocation

Find number of hypeconjugable \mathbf{H} in carbocation?
Ans. (4)

No. of hyperconjugable " H " atom in carbocation is 4 .

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

$$
\text { Ph. No.: +91-744-2777777, } 2777700 \text { | FAX No.: +91-022-39167222 }
$$

To Know more: sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

24. O-Phenyl diamine $\xrightarrow{\mathrm{HNO}_{2}}$ Product " P ".
P is
(1)

(2)

(3)

(4)

Ans. (1)

Sol.

