NABAYANA GRABS

THE LON'S SHARE IN JEE-ADV. 2022

RANKS in OPEN GATEGORY onvy from NAPAYANA

 IN TOP 10 Ali

JEE MAIN (APRIL) 2023 (11-04-2023-FN)
Manory Based Ouection Paper MATHEMATICS

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. If $x+y+z=17$ and x, y, z are non-negative integers, then find the number of integral solutions is
(1) 136
(2) 171
(3) 90
(4) 130

Answer (2)
Sol. $x+y+z=17$

$$
\begin{aligned}
{ }^{17+3-1} C_{3-1} & ={ }^{19} C_{2} \\
& =171
\end{aligned}
$$

2. Let $M=\left[a_{i j}\right]_{2 \times 2}, 0 \leq i, j \leq 2$ where $a_{i j} \in\{0,1,2\}$ and A be the event such that M is invertible then $P(A)$ is
(1) $\frac{49}{81}$
(2) $\frac{16}{27}$
(3) $\frac{47}{81}$
(4) $\frac{46}{81}$

Answer (2)

Sol. If A is invertible then $|A| \neq 0$
Now, for $|A|=0$
(1) $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ or $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ or $\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right] \rightarrow$ Total matrix $=3$
(2) Two 1's and Two 0's \rightarrow Total matrix $=4$
(3) Two 2's and Two 0's \rightarrow Total matrix $=4$
(4) Two 1's and Two 2's \rightarrow Total matrix $=4$
(5) One 1 and Three 0's \rightarrow Total matrix $=4$
(6) One 2 and Three 0's \rightarrow Total matrix $=4$
$\therefore \quad P(A)=1-\frac{23}{81}=\frac{48}{81}=\frac{16}{27}$
3. For a given function $f(x)=\left[x^{2}-x\right]+\{x\}$
(1) $f(x)$ is continuous at $x=0, x=1$
(2) $f(x)$ is continuous and differentiable at $x=0$ and $x=1$
(3) $f(x)$ is continuous but non- differentiable at $x=0,1$
(4) $f(x)$ is continuous at $x=1$ but discontinuous at $x=0$
Answer (4)
Sol. $f(x)= \begin{cases}x+1 & -0.5<x<0 \\ 0 & x=0 \\ -1+x & 0<x<1 \\ 0 & x=1 \\ x-1 & 1<x<1.5\end{cases}$
At $x=0^{+} \quad f(x)=-1$

$$
x=0^{-} \quad f(x)=1
$$

$\therefore f(x)$ is discontinuous at $x=0$
At $x=1^{+} \quad f(x)=0$
$x=1^{-} \quad f(x)=0$
$f(1)=0$
$\therefore f(x)$ is continuous at $x=1$
4. Two complex numbers w_{1} and w_{2}, given by $w_{1}=3+5 i$ and $w_{2}=5+4 i$ are both rotated by 90° with respect to origin anti-clockwise and clockwise respectively to get the new complex numbers w_{3} and w_{4}. The principal argument of $w_{3}-w_{4}$ is
(1) $-\pi-\tan ^{-1} \frac{8}{9}$
(2) $-\pi-\tan ^{-1} \frac{33}{5}$
(3) $\pi-\tan ^{-1} \frac{8}{9}$
(4) $\pi-\tan ^{-1} \frac{33}{5}$

Answer (3)
Sol : $w_{3}=i w_{1}=i(3+5 i)=-5+3 i$

$$
\begin{aligned}
& w_{4}=-i w_{2}=-i(5+4 i)=4-5 i \\
& w_{3}-w_{4}=-9+8 i \\
& \arg \left(w_{3}-w_{4}\right)=\pi-\tan ^{-1} \frac{8}{9} \\
& \left(\because w_{3}-w_{4} \in I I \text { Quadrant }\right)
\end{aligned}
$$

5. Let a and b are roots of $x^{2}-7 x-1=0$. The value of $\frac{a^{21}+b^{21}+a^{17}+b^{17}}{a^{19}+b^{19}}$ is
(1) 29
(2) 49
(3) 53
(4) 51

Answer (4)
Sol. $\frac{a^{17}\left(a^{4}+1\right)+b^{17}\left(b^{4}+1\right)}{a^{19}+b^{19}}$

$$
\begin{aligned}
& \alpha^{2}-1=7 \alpha \\
& \Rightarrow \quad \alpha^{4}+1=51 \alpha^{2}-a \\
& \therefore \quad \frac{51 a^{19}+51 b^{19}}{a^{19}+b^{19}}=51
\end{aligned}
$$

6. Find the area bounded by $\left\{\begin{array}{l}x^{2}+(y-2)^{2} \leq 4 \\ y^{2} \leq 2 x\end{array}\right.$
(1) $\pi+\frac{4}{3}$
(2) $\pi-\frac{4}{3}$
(3) $2 \pi+\frac{8}{3}$
(4) $2 \pi-\frac{8}{3}$

Answer (2)

Sol.

On solving the curves, $(0,0)$ and $(2,2)$ will be the point of intersection
Required area $=\int_{0}^{2}\left(\sqrt{4-(y-2)^{2}}-\frac{y^{2}}{2}\right) d y$

$$
\begin{aligned}
& =\left[\frac{1}{2}(y-2) \sqrt{4-(y-2)^{2}}+\frac{4}{2} \sin ^{-1}\left(\frac{y-2}{2}\right)-\frac{y^{3}}{6}\right]_{0}^{2} \\
& =-\frac{8}{6}-\left[\frac{1}{2}(-2) \times 0-\pi\right]=\pi-\frac{4}{3}
\end{aligned}
$$

7. The number of solutions of $\cos ^{4} \theta-2 \cos ^{2} \theta$ $+3 \sin ^{6} \theta+1=0$ in $[0,2 \pi]$ is
(1) 1
(2) 2
(3) 3
(4) 4

Answer (3)
Sol. $\left(1-\cos ^{2} \theta\right)^{2}+\sin ^{2} \theta=0$

$$
\begin{aligned}
\Rightarrow & \sin ^{4} \theta+\sin ^{2} \theta=0 \\
& \sin ^{2} \theta\left(\sin ^{2} \theta+1\right)=0 \\
\Rightarrow & \sin ^{2} \theta=0 \\
& \theta=0, \pi, 2 \pi
\end{aligned}
$$

\therefore Three solutions in $[0,2 \pi]$
8. A rectangle is drawn by lines $x=0, x=2, y=0$ and $y=5$. Points A and B lie on coordinate axes. If line $A B$ divides the area of rectangle in $4: 1$, then the locus of mid-point of $A B$ is
(1) Circle
(2) Hyperbola
(3) Ellipse
(4) Straight line

Answer (2)
Sol.

$A(2 h, 0), B(0,2 k)$
Area of $\triangle O A B=8$
$\frac{1}{2} \times 2 h \times 2 k=8$
$h k=4$
Locus is $x y=4$
9. Let awards in event A is 48 and awards in event B is 25 and awards in event C is 18 and also $n(A \cup B$ $\cup C)=60, n(A \cap B \cap C)=5$, then how many got exactly two awards is
(1) 21
(2) 25
(3) 24
(4) 23

Answer (1)

Sol.

$\therefore \quad$ Number of persons who get exactly two awards

$$
\begin{aligned}
& =n(A)+n(B)+n(C)-n(A \cup B \cup C)- \\
& \quad \quad 2 n(A \cap B \cap C) \\
& =48+25+18-60-10 \\
& =21
\end{aligned}
$$

10. Let $p: I$ have fever

$$
q: \text { I do not take medicine }
$$

r : I take rest
If I have fever then I take medicine and I take rest is equivalent to
(1) $(\sim p \vee \sim q) \wedge(\sim p \vee r)$
(2) $(\sim p \vee q) \wedge(\sim p \vee \sim r)$
(3) $(\sim p \vee q) \wedge(\sim p \vee r)$
(4) $(\sim p \vee q) \wedge(\sim p \vee \sim r)$

Answer (3)
Sol. Given statement is equivalent to

$$
\begin{aligned}
p \rightarrow & (q \wedge r) \\
& =\sim p \vee(q \wedge r) \\
& =(\sim p \vee q) \wedge(\sim p \vee r)
\end{aligned}
$$

11. Let A be a 2×2 matrix such that $A^{T}=\alpha A+1$ and $\left|A^{2}+2 A\right|=4$, then a possible value of α is
(1) 1
(2) -1
(3) 3
(4) 0

Answer (2)

Sol. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

Case (I)

$c=0$
$\Rightarrow b=0$

$$
\left|A^{2}+2 A\right|=4 \quad \Rightarrow|A| \cdot|A+2 I|=4
$$

$$
\left(\frac{1}{1-\alpha}\right)^{2}\left(\frac{3-2 \alpha}{1-\alpha}\right)^{2}=4
$$

$$
\frac{3-2 \alpha}{(1-\alpha)^{2}}= \pm 2
$$

$$
\Rightarrow \quad \alpha=\frac{1 \pm \sqrt{3}}{2}
$$

Case (II)

$$
\alpha=-1
$$

12. Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $0<\left|a_{i}\right|<1, i=\{1,2,3\}$

Statement-A: $|a| \geq \max \left\{\left|a_{1}\right|,\left|a_{2}\right|,\left|a_{3}\right|\right\}$
Statement-B: $|a|<3 \max \left\{\left|a_{1}\right|,\left|a_{2}\right|,\left|a_{3}\right|\right\}$
(1) Both A and B are true
(2) Both A and B are false
(3) A is true, B is false
(4) A is false, B is true

Answer (1)

Sol. $|a|^{2}=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}} \geq \max \left\{\left|a_{1}\right|,\left|a_{2}\right|,\left|a_{3}\right|\right\}$

$$
|a|^{2}=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}<3 \times \max \left\{\left|a_{1}\right|,\left|a_{2}\right|,\left|a_{3}\right|\right\}
$$

$$
\begin{align*}
& A^{T}=\alpha A+1 \\
& \Rightarrow\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]=\left[\begin{array}{cc}
\alpha a+1 & \alpha b \\
\alpha c & \alpha d+1
\end{array}\right] \\
& a=\alpha c+1 \Rightarrow a=\frac{1}{1-\alpha} \tag{i}\\
& b=\alpha c \tag{ii}\\
& c=\alpha b \tag{iii}\\
& \text { (ii) and (iii) } c=0 \text { or } \alpha= \pm 1(\alpha \neq 1) \\
& \therefore \quad c=0 \text { or } \alpha=-1 \\
& \text { Also, } d=\alpha d+1 \Rightarrow d=\frac{1}{1-\alpha}
\end{align*}
$$

13. Solution of differential equation is $\left(1-x^{2} y^{2}\right) d x=x d y$ $+y d x$ if $y(2)=4$, then $\frac{5 y(5)+1}{5 y(5)-1}=k$ then k is
(1) $\frac{49}{81} e^{2}$
(2) $\frac{81}{49} e^{2}$
(3) e^{2}
(4) $\frac{9}{7} e^{2}$

Answer (2)

Sol. $\left(1-x^{2} y^{2}\right) d x=x d y+y d x$
$\left(1-x^{2} y^{2}\right) d x=d(x y)$
$\int d x=\int \frac{d(x y)}{1-x^{2} y^{2}}$
$x=\frac{1}{2} \log \left|\frac{1+x y}{1-x y}\right|+c$
$\because \quad y(2)=4$
$2=\frac{1}{2} \log \left|\frac{1+4 \times 2}{4 \times 2-1}\right|+c$
$4=\log \left|\frac{9}{7}\right|+c$
$c=4-\log \frac{9}{7}$
$x=\frac{1}{2} \log \left|\frac{1+x y}{x y-1}\right|+4-\log \frac{9}{7}$
For $y(5)$
$5=\frac{1}{2} \log \left|\frac{1+5 y}{5 y-1}\right|+4-\log \frac{9}{7}$
$2\left(1+\log \frac{9}{7}\right)=\log \left(\frac{1+5 y}{5 y-1}\right)$
$\frac{5 y+1}{5 y-1}=e^{2\left(1+\log \frac{9}{7}\right)} \Rightarrow \frac{81}{49} e^{2}$
14.
15.
16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, $-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. 5 boys with allotted roll numbers and seat numbers are seated in such a way that no one sits on the allotted seat. The number of such seating arrangements is

Answer (44)

Sol. Number of seating arrangements

$$
\begin{aligned}
& =5!\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}\right) \\
& =5!\left(\frac{120-120+60-20+5-1}{120}\right) \\
& =44
\end{aligned}
$$

22. $(p \vee q) \wedge(p \vee r) \Rightarrow(q \vee r)$. Number of triplets (p, q, r) such that it is true, is \qquad $-$

Answer (7)

Sol. $(p \vee q) \wedge(p \vee r) \Rightarrow(q \vee r)$
$\Rightarrow \quad p \vee(q \wedge r) \Rightarrow(q \vee r)$
This is always true if $p \vee(q \wedge r)$ is F.
$\Rightarrow \quad(p, q, r) \equiv(F, F, F),(F, F, T),(F, T, F)$
This is true if $p \vee(q \wedge r)$ is T and $(q \vee r)$ is T
$\Rightarrow \quad(p, q, r) \equiv(\mathrm{T}, \mathrm{T}, \mathrm{F}),(\mathrm{T}, \mathrm{F}, \mathrm{T}),(\mathrm{T}, \mathrm{T}, \mathrm{T}),(\mathrm{F}, \mathrm{T}, \mathrm{T})$
$\therefore 7$ triplets are possible
23. The number of rational terms in the expansion of

$$
\left(3^{3 / 4}+5^{3 / 2}\right)^{60}
$$

Answer (16)

Sol. $T_{r+1}={ }^{60} C_{r}\left((3)^{3 / 4}\right)^{60-r}\left(5^{3 / 2}\right)^{r}$

$$
={ }^{60} C_{r}(3)^{\frac{180-3 r}{4}} 5^{3 r / 2}
$$

Total rational terms $=16$
24. Consider the plane $2 x+y-3 z=6$. If (α, β, γ) is the image of point $(2,3,5)$ in the given plane, then $\alpha+\beta+\gamma=$ \qquad

Answer (10)

Sol. $\frac{x-2}{2}=\frac{y-3}{1}=\frac{z-5}{-3}=-2 \frac{(-14)}{14}$

$$
\begin{aligned}
\Rightarrow & x=6, y=5, z=-1 \\
\therefore & \alpha=6, \beta=5, \gamma=-1 \\
& \alpha+\beta+\gamma=6+5-1=10
\end{aligned}
$$

25. The mean of coefficients of $x, x^{2}, \ldots . ., x^{7}$ in the binomial expansion of $(2+x)^{9}$ is
Answer (2736)
Sol. Sum of coefficients $={ }^{9} C_{1} \cdot 2^{8}+{ }^{9} C_{2} \cdot 2^{7} \ldots .+{ }^{9} C_{7} \cdot 2^{2}$
$=(2+1)^{9}-{ }^{9} C_{0} \cdot 2{ }^{9}-{ }^{9} C_{8} \cdot 2-{ }^{9} C_{9}$
$=3^{9}-2^{9}-19=19683-572-19=19152$
Mean $=\frac{\text { Sum }}{7}=\frac{19152}{7}=2736$
26. Consider two sets A and B. Set A has 5 elements whose mean \& variance are 5 and 8 respectively. Set B has also 5 elements whose mean \& variance are $12 \& 20$ respectively. A new set C is formed by subtracting 3 from each element of set A and by adding 2 to each element of set B. The sum of mean \& variance of the set C is \qquad .

Answer (58)

Sol. $\overline{x_{c}}=$ mean of $c=\frac{(5-3)+(12+2)}{2}=8$
$\sigma_{12}^{2}=$ variance of $c=\frac{n_{1}\left(\sigma_{1}^{2}+d_{1}^{2}\right)+n_{1}\left(\sigma_{2}^{2}+d_{2}^{2}\right)}{n_{1}+n_{2}}$
$d_{1}=\overline{x_{12}}-\overline{x_{1}}$
$d_{2}=\overline{x_{12}}-\overline{x_{2}}$
$n_{1}=5, \sigma_{1}^{2}=8, d_{1}=8-2=6$
$n_{2}=5, \sigma_{2}^{2}=20, d_{2}=8-14=-6$
$\sigma_{12}^{2}=\frac{5(8+36)+5(20+36)}{10}=50$
$\therefore \quad \sigma_{12}^{2}+\overline{x_{c}}=50+8=58$
27. If $S=109+\frac{108}{5}+\frac{107}{5^{2}}+\ldots+\frac{2}{5^{107}}+\frac{1}{5^{108}}$ then the value of $165-(25)^{-54}$ is

Answer (2175)

Sol. $S=109+\frac{108}{5}+\frac{107}{5^{2}}+\ldots+\frac{2}{5^{107}}+\frac{1}{5^{108}}$

$$
\begin{aligned}
& \frac{S}{5}= \frac{109}{5}+\frac{108}{5^{2}}+\ldots+\frac{2}{5^{108}}+\frac{1}{5^{109}} \\
& \therefore \frac{4}{5} S=109-\left[\frac{1}{5}+\frac{1}{5^{2}}+\ldots \frac{1}{5^{108}}+\frac{1}{5^{109}}\right] \\
&=109-\left[\frac{1}{5} \frac{\left[1-\left(\frac{1}{5}\right)^{109}\right.}{\left(1-\frac{1}{5}\right)}\right] \\
& \therefore \quad S=\frac{5}{4}\left[109-\frac{1}{4}\left\{1-\left(\frac{1}{5}\right)^{109}\right]\right. \\
& \therefore \quad 165=20 \times 109-5+5^{-108} \\
& \therefore \quad 165-(25)^{-54}=2180-5 \\
& \therefore=2175
\end{aligned}
$$

28. If $\log _{x+\frac{7}{2}}\left(\frac{x+7}{2 x+3}\right)^{2} \geq 0$, then total number of integral solution(s) is/are \qquad .

Answer (8)

Sol. $x+\frac{7}{2}>0 \Rightarrow x>-\frac{7}{2}$
$x+\frac{7}{2} \neq 1 \Rightarrow x \neq-\frac{5}{2}$
$\frac{x+7}{2 x+3} \neq 0$
$\Rightarrow \quad x \neq-7,-\frac{3}{2}$

$$
\begin{aligned}
& \Rightarrow\left(\frac{x+7}{2 x+3}\right)^{2} \geq 1 \\
& \Rightarrow\left(\left(\frac{x+7}{2 x+3}\right)-1\right)\left(\frac{x+7}{2 x+3}+1\right) \geq 0 \\
& \Rightarrow\left(\frac{-x+4}{2 x+3}\right)\left(\frac{3 x+10}{2 x+3}\right) \geq 0 \\
& \Rightarrow \frac{(x-4)(3 x+10)}{(2 x+3)^{2}} \leq 0
\end{aligned}
$$

$$
\Rightarrow \frac{\square}{-\frac{10}{3}} \Rightarrow x \in\left[-\frac{10}{3}, 4\right] \ldots \text { (iv) }
$$

$$
\text { (i) } \cap \text { (ii) } \cap \text { (iii) } \cap \text { (iv) }
$$

$$
x \in\left[-\frac{10}{3}, 4\right]-\left\{-\frac{5}{2},-\frac{3}{2}\right\}
$$

$\therefore \quad$ integral values of $x=\{-3,-2,-1,0,1,2,3,4\}$ $=8$ values
29.
30.

