

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- 1. Which of the following has minimum boiling point?
 - (1) Na

(2) K

(3) Rb

(4) Cs

Answer (4)

- **Sol.** Cs has minimum boiling point as boiling point of alkali metals decreases down the group.
- 2. Which of the following has maximum number of l.p. at central atom?
 - (1) CIO_3^-
- (2) SF₄
- (3) XeF₄
- $(4) I_3^-$

Answer (4)

Sol.

From the structures of the given species, it can be clearly seen that I_3^- has maximum number of lone pairs at central atom

Statement-1: Sulphides are converted into oxide first.

Statement-2: Because oxides can be reduced easily.

- (1) Only 1st is correct
- (2) Only 2nd is correct
- (3) Both are correct
- (4) Both are incorrect

Answer (3)

- **Sol.** Sulphide ores are roasted for conversion to oxides before reduction. Oxides can be easily reduced as compared to sulphides.
- 4. Red ppt. by Benedict solution is
 - (1) Glucose
 - (2) RNA
 - (3) DNA
 - (4) Sucrose

Answer (1)

Sol. Benedict solution oxidises aldoses and ketoses to gluconic acid and itself gets reduced to red ppt. of Cu₂O.

Glucose + Benedict solution →

DNA, RNA and Sucrose do not react with Benedict solution.

- 5. $\left[\text{Fe} \left(\text{H}_2 \text{O} \right)_6 \right]^{+3}$, $\left[\text{Fe} \left(\text{CN} \right)_6 \right]^{-3}$ magnetic spin only magnetic moment is respectively
 - (1) 8.87 and 6.92
- (2) 5.98 and 1.732
- (3) 6.92 and 6.92
- (4) 3.87 and 1.732

Answer (2)

Sol. Both complexes have d^5 configuration

$$\left[\text{Fe} \left(\text{H}_2 \text{O} \right)_6 \right]^{+3} \rightarrow 5 \text{ unpaired electrons}$$

$$\mu = \sqrt{35} \, B.M.$$

$$\left[\text{Fe}(\text{CN})_{6} \right]^{-3} \rightarrow 1 \text{ unpaired electron}$$

$$\mu = \sqrt{3} \, B. \, M.$$

- 6. **Statement 1**: Nylon-6 is made by Caprolactum **Statement 2**: LDP is made by TiCl₄ & Al(Et)₃
 - (1) Only 1st is correct
- (2) Only 2nd is correct
- (3) Both are correct
- (4) Both are incorrect

Answer (1)

- **Sol.** $TiCl_4$ + $Al(Et)_3$ is used as a catalyst in preparation HDP
- 7. Consider the following change:

$$\left[\text{NiBr}_2\text{CI}_2\right]^{2-} \longrightarrow \left[\text{PtCI}_2\text{Br}_2\right]^{2-}$$

During the above change, which of the following properties does not change?

- (1) Geometrical isomerism
- (2) Structure
- (3) Optical activity
- (4) Splitting energy

Answer (3)

Sol. $[NiBr_2Cl_2]^{2^-}$ This complex species is tetrahedral as Br^{\ominus} & Cl^{\ominus} are weak field ligands.

 $[PtBr_2Cl_2]^{2-}$ \longrightarrow As Pt belongs to 5d series, this complex species is square planar.

Splitting energy will be different as central atom is different.

Both the complex species are optically inactive.

 $\left[\text{NiBr}_2\text{CI}_2\right]^{2^-}$, being tetrahedral does not show G.I. $\left[\text{PtBr}_2\text{CI}_2\right]^{2^-}$ shows two G.I.

8. $A \xrightarrow{K} B$

Follows first order kinetics w.r.t. A and B, Both i.e. $r = K[A]^{1}[B]^{1}$

r	[A]	[B]
20	0.1	0.5
(X)	0.4	0.5
40	(0.8)	(Y)

Find out "K" and "Y"

- (1) 80, 2
- (2) 80, 1
- (3) 80, 0.125
- (4) 40, 0.125

Answer (3)

Sol. [A] : 4 times \Rightarrow rate 4 times

$$\Rightarrow$$
 X = 80

9.
$$\frac{\text{NaNO}_2}{\text{HCI}} \times X \xrightarrow{\text{HNO}_3} Y \xrightarrow{\text{(NH}_4)_2S} Z$$
majo

Compound Z is

$$(1) \bigcirc SH \qquad (2) \bigcirc OH$$

$$(3) \bigcirc NH_2 \bigcirc OH$$

$$(4) \bigcirc NH_2 \bigcirc OH$$

Answer (2)

Sol.
$$\begin{array}{c}
NaNO_2 \\
HCI \text{ or } HNO_2
\end{array}$$

$$\begin{array}{c}
NO_2 \\
OH
\end{array}$$

$$\begin{array}{c}
NO_2 \\
OH
\end{array}$$

$$\begin{array}{c}
(NH_4)_2S \\
OH
\end{array}$$

- 10. What is the chemical formula of freon gas?
 - (1) $C_2CI_2F_4$
- (2) $C_2F_2H_4$
- (3) CHF₃
- (4) CCI₂F₂

Answer (4)

Sol. The chemical formula of freon gas is CCl₂F₂.

- 11. 2 gm of x is present in 1 mole of H_2O . Find the mass % of x.
 - (1) 10%
- (2) 20%

- (3) 5%
- (4) 7%

Answer (1)

Sol. Mass % of $x = \frac{2}{20} \times 100 = 10$

JEE (Main)-2023: Phase-2 (11-04-2023)-Evening

12. Assertion: CI CH_3 N_2H_4/KOH CH_3 CH_3 CH_4

Reason: Wolf Kirshner reduction is used for $\overset{\text{O}}{\parallel}$ reduction of $\overset{\text{C}}{\mid}$ into $\overset{\text{CH}_2}{\mid}$.

- Assertion and Reason both are correct and Reason is correct explanation of Assertion
- (2) Assertion and Reason both are correct but the Reason is not correct explanation of Assertion
- (3) Assertion and Reason both are incorrect
- (4) Assertion is incorrect and reason is correct statement

Answer (4)

Because heating in the presence of base results in elimination

- 13. Glucose is added in 100 gm of water. Lowering in vapor pressure is 0.2 mm Hg. Vapour pressure of pure water is 54.2 mm Hg. Then weight of glucose is
 - (1) 3.70 gm
- (2) 4.92 gm
- (3) 6.73 gm
- (4) 8.74 gm

Answer (1)

Sol. 0.2 54.2

$$\frac{0.2}{54} = \frac{n_{glucose}}{(100/18)}$$

$$n_{glucose} \frac{0.2}{54} = \frac{100}{18}$$

Mass of glucose = $\frac{0.2}{54} \times \frac{100}{18} \times 180 = 3.70 \text{ gm}$

 Which of the following will not give precipitate with AqNO₃(aq.)

(1) Br (2) Br (3) Br (4) Br

Answer (2)

Sol. Compounds which result in the formation of stable carbocation intermediate will give precipitate with aq. AgNO₃

$$\begin{array}{c}
& \text{Br} \\
& \text{AgNO}_3(\text{aq}) \\
& \text{Very unstable}
\end{array}$$

Benzylic carbocation (stablized by resonance)

- 15. Least stable Hydride is
 - (1) HF

- (2) LiH
- (3) BeH₂
- (4) NaH

Answer (3)

- **Sol.** BeH₂ is least stable as it has significant covalent character and is an electron-deficient hydride.
- 16. Find the root mean square velocity for Nitrogen gas at 27°C (in m/sec)
 - (1) 426
- (2) 517
- (3) 327
- (4) 646

Answer (2)

Sol.
$$v = \frac{\sqrt{3RT}}{M} = \sqrt{\frac{3 \times 8.314 \times 300}{28 \times 10^{-3}}}$$

= 516.95
 $\approx 517 \text{ m/sec}$

- 17. Assertion (A): Glycine react with Cl₂ in the presence of red P to give optically active compound Reason (R): Compound containing two chiral centres is always optically active
 - (1) Both (A) & (R) are correct & (R) is the correct explanation of (A)
 - (2) Both (A) & (R) are correct & (R) is not the correct explanation of (A)
 - (3) (A) is correct, (R) is incorrect statement
 - (4) (A) & (R), both are incorrect

Answer (3)

Sol.
$$H_2N - CH_2 - COOH \xrightarrow{RedP} H_2N - \tilde{C}H - COOH$$

| CI

Contain chiral centre

18.

19.

20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, –00.33, –00.30, 30.27, –27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. How many of the following are intrinsic properties?

Gibbs free energy, E_{cell}, Volume, Molarity

Answer (02.00)

- **Sol.** E_{cell} and molarity are intrinsic properties. But Gibb's Free Energy and Volume are extrinsic properties.
- 22. 2-Chloro-1-butene → HCl → Number of Isomeric product possible are?
 (excluding rearranged products)

Answer (03.00)

(i)
$$C - C - C - C$$
 (2)

(ii)
$$C - C - C - C$$
 (1)

Total 3 Isomers

23. When 2 gm magnesium reasts with excess of HCl and H_2 gas is produced then the volume of H_2 gas produced is ____ × 10^{-2} liter at STP? (Nearest Integer)

Answer (187)

Sol. Mg + 2HCl
$$\rightarrow$$
 MgCl₂ + H₂(g)

$$\frac{2}{24} \times 22.4$$
= 1.87 L
$$\approx 187 \times 10^{-2} \text{ L}$$

24.
$$P_4 + SOCl_2 \longrightarrow 4PCl_3 + x SO_2 + y S_2Cl_2$$

 $x + y \text{ is} \underline{\hspace{1cm}}$

Answer (6)

Sol.
$$P_4 + 8SOCl_2 \longrightarrow 4PCl_3 + 4SO_2 + 2S_2Cl_2$$

 $x = 4$
 $y = 2$
 $x + y = 6$

- 25.
- 26.
- 27.
- 28.
- 29.
- 30.