11/04/2023 Evening

Corporate Office: Aakash Tower, 8, Pusa Road, New Delhi-110005 | Ph.: 011-47623456

Memory Based Answers & Solutions

Time : 3 hrs. M.M. : 300

JEE (Main)-2023 (Online) Phase-2

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:

- (1) The test is of **3 hours** duration.
- (2) The Test Booklet consists of 90 questions. The maximum marks are 300.
- (3) There are **three** parts in the question paper consisting of **Physics**, **Chemistry** and **Mathematics** having 30 questions in each part of equal weightage. Each part (subject) has two sections.
 - (i) **Section-A:** This section contains 20 multiple choice questions which have only one correct answer. Each question carries **4 marks** for correct answer and **–1 mark** for wrong answer.
 - (ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and -1 mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer.

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- Density (ρ) of a body depends on the force applied (F), its speed (v) and time of motion (t) by the relation $\rho = KF^a v^b t^c$, where K is a dimensionless constant. Then
 - (1) a = 1, b = -4, c = -2
 - (2) a = 2, b = -4, c = -1
 - (3) a = -1, b = -4, c = 2
 - (4) a = 1, b = 4, c = -2

Answer (1)

Sol.
$$[ML^{-3}] = [MLT^{-2}]^a[LT^{-1}]^b[T]^c$$

= $[M^aL^{a+b}T^{-2a-b+c}]$

$$a + b = -3$$
,

$$\Rightarrow b = -4$$

$$also -2a - b + c = 0$$

$$c = -2$$

- In which of the following process, the internal 2. energy of gas remains constant.
 - (1) Isothermal
- (2) Isochoric
- (3) Isobaric
- (4) Adiabatic

Answer (1)

Sol. $T = \text{constant} \Rightarrow U = \text{constant}$

- A particle is projected at an angle of 30° with ground with speed 40 m/s. The speed of particle after two seconds is (use $g = 10 \text{ m/s}^2$)
 - (1) $20\sqrt{2}$ m/s
- (2) $20\sqrt{3}$ m/s
- (3) 20 m/s
- (4) $10\sqrt{3}$ m/s

Answer (2)

Sol. At t = 2 particle is at maximum height moving with 40cos30° m/s.

- Potential at the surface of a uniformly charged nonconducting sphere is V. Then the potential at its centre is
 - (1) 0

- (2) $\frac{V}{2}$
- (3) 2V

Answer (4)

Sol.
$$V = \frac{KQ}{2R^3} (3R^2 - r^2)$$
 at $r = R \Rightarrow V = \left(\frac{KQ}{R}\right)$

at
$$r = R \Rightarrow V = \left(\frac{KQ}{R}\right)$$

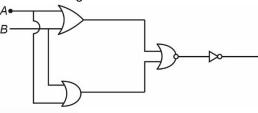
at
$$r = 0$$
, $V_0 = \frac{3KQ}{2R} = \left(\frac{3V}{2}\right)$

- If $\vec{A} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ and $\vec{A} \vec{B} = 2\hat{j}$, then find $|\vec{B}|$.
 - (1) 3

(2) $3\sqrt{3}$

(3) 2

(4) $\sqrt{3}$

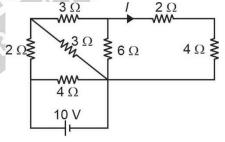

Answer (1)

Sol.
$$(2\hat{i} + 3\hat{j} + 2\hat{k}) - \vec{B} = 2\hat{j}$$

$$\Rightarrow \vec{B} = 2\hat{i} + \hat{j} + 2\hat{k}$$

$$\Rightarrow \left| \vec{B} \right| = 3$$

The resultant gate is


- (1) NAND
- (2) NOR
- (3) OR
- (4) AND

Answer (4)

Sol.
$$(A+B) (A\cdot B) = (A\cdot AB) + A\cdot (AB)$$

= (AB)

For the given circuit diagram, find the current *I*.

- (1) $\frac{5}{16}$ A
- (2) $\frac{5}{48}$ A
- (3) $\frac{5}{12}$ A
- (4) $\frac{1}{16}$ A

Answer (3)

Sol.
$$i_{\text{battery}} = \frac{10}{2} = 5 \text{ A}$$

$$I = i_{\text{battery}} \times \frac{1}{2} \times \frac{1}{3} \times \frac{1}{2} = \frac{5}{12} \text{ A}$$

- If a nucleus is divided in ratio of 1: 21/3, then find ratio of velocity of the parts is
 - (1) 2

- $(2) 2^{1/3}$
- $(3) 2^{2/3}$
- $(4) 2^{-1/3}$

Answer (2)

JEE (Main)-2023: Phase-2 (11-04-2023)-Evening

Sol. From conservation of momentum,

$$m_0 \vec{v}_1 + 2^{1/3} m_0 \vec{v}_2 = 0$$

$$\Rightarrow \left| \frac{\vec{v}_1}{\vec{v}_2} \right| = 2^{1/3}$$

If electric field (\vec{E}) at an instant is $6.6\hat{j}$ N/C and the EM wave is propagating along positive x-direction then B at that instant is given by

(1)
$$2.2 \times 10^{-8} \hat{k}$$
 T

(2)
$$-2.2 \times 10^{-8} \hat{k}$$
 T

(3)
$$-0.5 \times 10^{-8} \hat{k} \text{ T}$$
 (4) $19.8 \times 10^{8} \hat{k} \text{ T}$

(4)
$$19.8 \times 10^8 \hat{k}$$

Answer (1)

Sol.
$$\left| \vec{E} \right| = C \left| \vec{B} \right|$$

$$|\vec{B}| = \frac{6.6}{3 \times 10^8} = 2.2 \times 10^{-8} \text{ T}$$

Also
$$\hat{E} \times \hat{B} = \hat{C}$$

10. Find average speed of N₂ at 27°C.

Answer (1)

Sol.
$$\overline{v} = \sqrt{\frac{8RT}{\pi M}} = \sqrt{\frac{8 \times 8.314 \times 300}{3.14 \times 28 \times 10^{-3}}} = 476 \text{ m/s}$$

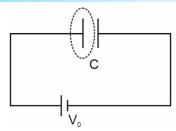
- 11. A charge particle is projected inside along the axis of long solenoid, then
 - (a) Path will be straight line
 - (b) There is no effect of magnetic field on charge
 - (c) Path will be parabolic
 - (d) Path will be circular
 - (1) a, d
- (2) a, b
- (3) b, d
- (4) a.b.d

Answer (2)

Sol.
$$\vec{F} = q\vec{v} \times \vec{B} = 0$$

- 12. Six identical small liquid drops are mixed together to form a bigger drop. The terminal velocity of bigger drop if terminal velocity of small drop is 10 m/s, will be
 - (1) $10 \times (6)^{\frac{1}{3}}$ m/s (2) $10 \times (6)^{\frac{2}{3}}$ m/s

 - (3) $5 \times (3)^{\frac{2}{3}}$ m/s (4) $10 \times (6)^3$ m/s


Answer (2)

Sol. $R = 6^{1/3}r$

Also,
$$\frac{V_b}{V_s} = \frac{R^2}{r^2}$$
 (:: $V_T \propto (\text{Radius})^2$)

$$V_b = 10 \times (6)^{2/3}$$

13. A parallel plate capacitor C connected with a battery of voltage V_0 . A close gaussian surface is shown by dotted boundary as shown. The electric flux through the surface is

- $(1) \ \frac{2CV}{\in_0}$

Answer (1)

Sol.
$$\phi = \frac{Q}{\epsilon_0} = \frac{CV_0}{\epsilon_0}$$

- 14. A satellite is moving around earth surface. How much minimum speed should be increased so that it escapes from earth surface? (g = acceleration due to gravity, R = radius of earth)
 - (1) $2\sqrt{gR}$

$$(2) \left(\sqrt{2}-1\right)\sqrt{gR}$$

(3)
$$\sqrt{\frac{gR}{2}}$$

(3)
$$\sqrt{\frac{gR}{2}}$$
 (4) $(\sqrt{3}-1)\sqrt{gR}$

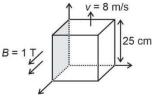
Answer (2)

Sol.
$$v_{\text{circular}} = \sqrt{\frac{GM}{R}} = \sqrt{gR}$$
; $\Delta v = (\sqrt{2} - 1)\sqrt{gR}$

$$V_{\text{escape}} = \sqrt{\frac{2GM}{R}} = \sqrt{2gR}$$

- 15. A: Moving magnet in conducting pipe slows down.
 - R: Because eddy current is formed.
 - (1) A is correct, R is wrong
 - (2) A and R both are wrong
 - (3) A and R both are correct
 - (4) A is wrong, R is correct

Answer (3)


- Sol. Moving magnet in conducting pipe causes change in flux and hence induced emf. This emf causes eddy current in conducting pipe in such a way that it tries to oppose the change in flux, therefore magnet slows down.
- 16. A source of sound is moving away from a stationary observer with constant velocity 40 m/s. Find frequency heard by observer, if original frequency of source is 400 Hz and speed of sound in air is 360 m/s
 - (1) 330 Hz
- (2) 320 Hz
- (3) 360 Hz
- (4) 280 Hz

Answer (3)

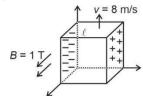
Sol.
$$f = 400 \left(\frac{360}{360 + 40} \right) = 360 \text{ Hz}$$

17. Find emf induces across the faces of given cube.

(1) 2V

(2) 4V

(3) 8V


(4) 6V

Answer (1)

Sol.
$$\varepsilon_{ind} = Bv\ell$$

$$\varepsilon_{\text{ind}} = 1(8)(0.25)$$

 $\varepsilon_{ind} = 2 \text{ volt}$

18.

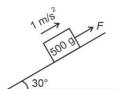
19.

20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

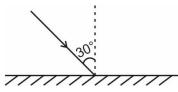
21. A body is rotating with kinetic energy *E*. If angular velocity of body is increased to three times of initial angular velocity then kinetic energy becomes *nE*. Find *n*.


Answer (9)

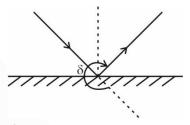
Sol. K.E. =
$$\frac{1}{2}I\omega^2 = E$$

$$E_f = \frac{1}{2}I(3\omega)^2 = 9 \times \left(\frac{1}{2}I\omega^2\right)$$

$$F_f = 9F$$


22. Find power delivered by F at t = 10 s. Body start from rest.

Answer (30)


Sol.
$$F - 0.5 \text{ g sin} 30^{\circ} = 0.5 \text{ a} \Rightarrow F = 0.5 + 2.5 = 3 \text{ N}$$

 $v_{10} = u + at \Rightarrow v_{10} = 0 + 1(10) = 10 \text{ m/s}$
 $P_{10} = Fv = 30 \text{ w}$

23. A ray of light is incident on a plane mirror as shown in figure. Find the deviation of ray (in degree and clockwise direction).

Answer (240)

Sol. $\delta = 180^{\circ} + 60^{\circ} = 240^{\circ}$ (clockwise)

24. Proton and electrons have equal kinetic energy, the ratio of de Broglie wavelength of proton and electron is $\frac{1}{x}$. Find x. (Mass of proton = 1849 times mass of electron)

Answer (43)

Sol.
$$P = \sqrt{2Km}$$

$$\lambda = \frac{h}{P}$$

$$\frac{\lambda_p}{\lambda_e} = \frac{P_e}{P_p} = \sqrt{\frac{2Km_e}{2Km_p}} = \sqrt{\frac{m_e}{m_p}} = \sqrt{\frac{1}{1849}} = \frac{1}{43}$$

25. Energy of hydrogen in ground state is -13.6 eV. The energy of He⁺ in first exited state is -13.6x. Find the value of x.

Answer (1)

Sol. For He+

$$E = \frac{-13.6Z^2}{2^2} = \frac{-13.6 \times 4}{4} = -13.6 \text{ eV}$$

- 26.
- 27.
- 28.
- 29.
- 30.