

JEE-Mains-11-04-2023 [Memory Based] [Morning Shift]

Physics

Question: Wave equation $x = 10^{-2} \sin(160t - 0.2x + \pi/4)$ find wave velocity **Options:**

(a) 200 m/s

(b) 400 m/s

(c) 800 m/s

(d) 1600 m/s

Answer: (c)

Solution: $V = \frac{\omega}{K} = \frac{160}{0.2} = 800$

Question: Coin placed on a disc rotating with angular vel ω slips at a distance 1 cm from centre. At what distance it will slip when angular velocity is halved?

Options:

(a) 1 cm

(b) 2 cm

(c) 3 cm (d) 4 cm

Answer: (d)

Question: If area of coil is 4 m² find EMF from 2 to 4 seconds

Question: Find the ratio of displacement and distance.

Solution:

Positive area =

$$\left(\frac{1}{2} \times 5 \times 10\right) + (5 \times 10) + \frac{1}{2}(30)5 + \frac{1}{2} \times 5 \times 20$$

= 25 + 50 + 75 + 50 = 200
Negative area = $\frac{1}{2} \times 5 \times 5 = \frac{25}{2}$
Distance = positive area + negative area = $200 + \frac{25}{2} = \frac{425}{2}$
Displacement = positive area - negative area = $200 - \frac{25}{2} = \frac{375}{2}$
So ratio = $\frac{15}{2}$

So ratio = $\frac{15}{17}$

Question: In photoelectric effect $V_{max,1} = V_0$ when wavelength is $\lambda \& V_{max,2}$ is $= V_0/4$. When 2λ is used. Find work function. **Solution:**

$$\frac{1}{2} \times \left(eV_0 = \frac{hc}{\lambda} - \phi \right)$$
$$e\frac{V_0}{4} = \frac{hc}{2\lambda} - \phi$$
$$(-)$$
$$\frac{eV_0}{2} - \frac{eV_0}{4} = \frac{-\phi}{2} + \phi$$
$$\frac{eV_0}{4} = \frac{\phi}{2} \Longrightarrow \phi = \frac{eV_0}{2}$$

Question: There are two identical resistances first they are joined in series then in parallel find ratio of heat produced in two cases assuming potential difference remains same **Options:**

Question: A planet has density 1/3 of density of earth & radius 4 time that of earth. find ratio of acceleration due to gravity on surface of planet & on Earth

Options: (a) 4 : 3 (b) 2 : 3 (c) 5 : 7 (d) 1 : 1 Answer: (a) Solution:

$$g_{s} = \frac{GM}{R^{2}} = \frac{G\rho \frac{4}{3}\pi R^{3}}{R^{2}}$$
$$g_{s} = \frac{4}{3}\pi G\rho R$$
So $\frac{g_{p}}{g_{E}} = \frac{\frac{4}{3}\pi G\left(\frac{1}{3}\right)4}{\frac{4}{3}\pi G(1)(1)} = \frac{4}{3}$

Question: A gun fires a bullet of mass 10 gm with vel 250 m/s as a result gun experiences a thrust force of 125 N find the number of bullets fired per second.

Answer: 50.00

$$F = \left(\frac{NmO}{t}\right)$$
$$125 = \left(\frac{N}{t}\right) \cdot 10 \times 10^{-3} \times 250$$
$$\frac{N}{t} = \frac{1}{2} \times 100 = 50$$

Question: A force 2 + 3x acts on particle at origin find work done from x = 0 to x = 4 (in J) Answer: 32.00

$$W = \int_{x_1}^{x_2} F \, dx = \int_{0}^{4} (2+3x) \, dx = \left[2x + \frac{3}{2}x^2 \right]_{0}^{4}$$
$$= (2 \times 4) + \left(\frac{3}{2} \times 4^2 \right) - 0 = 8 + 24 = 32$$

Question: Current sensitivity is increased by 25% by changing N and A and keeping R constant. Find the change in voltage sensitivity

Options:

(a) 25%
(b) 50%
(c) 12.5%
(d) 75%

Answer: (a) Solution:

$$\left(\frac{\phi}{V}\right) = \frac{1}{R} \times \left(\frac{\phi}{i}\right)$$

So equal increase if R is constant So 25%.

Question: A projectile is fired at an angle 30° with horizontal, it has same speed at t = 3 s and t = 5 s. find initial velocity

Options:

(a) 60 m/s

- (b) 70 m/s
- (c) 80 m/s
- (d) 90 m/s

Answer: (c)

Solution:

Velocity in × doesn't change and velocity magnitude in Y is also given same $\theta = 30^{\circ}$ $|V_y| = |V_y|$

 $u \sin \theta - g(3) = \left| u \sin \theta - g(5) \right|$

 $u\sin\theta - g3 = g5 - u\sin\theta$ $2u\sin\theta = 8g \Rightarrow u = 80$

Question: Statement 1: au, parsec, lightyear are units of length. Statement 2: au < parsec < lightyear Options: (a) S1 - Correct, S2 - Correct (b) S1 - Correct, S2 - False (c) S1 - False, S2 - Correct (d) S1 - False, S2 - False Answer: (b)

Question: If height of transmitter antenna is 0 then find the receiver antenna in $x \times 10^{-2}$ such that Line of sight is 4 km

Answer: 125.00 Solution: Range = $0 + \sqrt{2R_E h_r}$ $4 \times 10^3 = \sqrt{2 \times 64 \times 10^5 \times x \times 10^{-2}}$ $16 \times 10^6 = 64 \times 2 \times 10^3 \times x$ $\frac{1000}{8} = x = 125$

Question: Capacitor charged to potential V has energy U_1 then its is connected to identical uncharged capacitor and final energy of system is U_2 find U_2/U_1

Options:

(a) 1 : 1 (b) 1 : 3

(c) 2 : 5 (d) 1 : 2 Answer: (d) Solution: $U = \frac{1}{2}Q^2$ and for

 $U_{1} = \frac{1}{2} \frac{Q^{2}}{C} \text{ and finally change divides equally}$ $U_{2} = 2 \times \left[\frac{1}{2} \frac{(Q/2)^{2}}{C} \right]$ $U_{2} = \frac{1}{2} \left[\frac{1}{2} \frac{QL}{C} \right]$ So $U_{2} = \frac{1}{2} U_{1} \Rightarrow \frac{U_{2}}{U_{1}} = 2$

Question: Half life of nucleus A is equal to mean life of nucleus B find the relation between $\lambda_A \& \lambda_B$

Options:

(a) $\lambda_A = \ln 2 / \lambda_B$ (b) $\lambda_A = \ln 2 \lambda_B$ (c) $\lambda_A = \lambda_B/2$ (d) $\lambda_A = 2 \lambda_B$ **Answer: (b) Solution:** $\frac{\ln(2)}{\lambda_A} = \frac{1}{\lambda_B}$ $\lambda_A = \ln 2\lambda_B$

Question: Identify the logic operation of following circuit.

Options: (a) AND (b) OR (c) NOR (d) NAND Answer: (a)

Question: If the magnetic moment of both coils A & B are equal then choose the correct relation if $r_A = 10$ cm, $r_B = 20$ cm, $N_A =$ Number of turns of coil A, $N_B =$ Number of turns of coil B, $I_A =$ Current in coil A, $I_B =$ Current in coil B

Options:

Answer: (c) Solution: $M_1 = M_2$ $N_1 i_1 A_1 = N_2 i_2 A_2$ $N_1 i_1 \pi (10 \times 10^{-2})^2 = N_2 i_2 \pi (20 \times 10^{-2})^2$ $N_1 i_1 = 4N_2 i_2$

Question: If light is passing through a medium of critical angle 45° then wave speed is **Options:**

(a)
$$\frac{3}{\sqrt{2}} \times 10^8$$

(b) $3\sqrt{2} \times 10^8$
(c) $\frac{3}{2} \times 10^8$
(d) 3×10^8
Answer: (a)
Solution:
 $\sin^{-1}\left(\frac{1}{\mu}\right) = i_c = 45^\circ$
 $\frac{1}{\mu} = \frac{1}{\sqrt{2}} \Rightarrow \mu = \sqrt{2}$
So, $V = \frac{C}{\mu} = \frac{3 \times 10^8}{\sqrt{2}}$ m/s

Question: Find the current flowing in 3Ω resistor in the given circuit.

(a) 0.4 A (b) 0.2 A (c) 0.8 A (d) 0.6 A Answer: (c) Solution: $i = \frac{12}{0.5 + 1 + 6.5 + 2} = 1.2$ So,

Question: A solid sphere is rotating with $\omega = 10$ rad s⁻¹. If I represents MOI about tangent to sphere & L represents angular moment about diameter & $I = [x \times 10^{-2}]$ L. Find x ? **Answer: 35.00**

Solution:

Question: For a scale, melting point is -15° , boiling point is 65° , temp of -95° on this scale will represent what value on fahrenheit scale?

Options:

(a) 100°F (b) -123°F (c) 273°F (d) -148°F **Answer: (d) Solution:**

x - (-15)	F - 32
65-(-15)	180
but $x = -95$	
-95+15_	F - 32
80	180
-180 + 32 =	= <i>F</i>
$\Rightarrow F = -14$	8°

JEE-Mains-11-04-2023 [Memory Based] [Morning Shift]

Chemistry

Question: Find the ratio of spin only magnetic moment of $Cr(CN)_6^{3-}$ and $Cr(H_2O)_6^{3+}$ **Options:**

(a) 1 : 1

- (b) 1 : 2 (c) 2 : 1
- (c) 2 : 1(d) 2 : 3

Solution: $\mu = \sqrt{n(n+2)}$

 $Cr = 24(3d^54s^1), Cr^{+3} - 3d^34s^0$ Both CN^- and H_2O complex will have 3 unpaired electrons $\therefore 1: 1$

Question: Ionisation Energy order of period second elements? Li, Be, C, B, N, O, F

Options:

(a) Li > Be > B > C > N > F > O(b) F > O > N > C > Be > B > Li(c) F > O > N > C > B > Be > Li(d) F > N > O > C > Be > B > LiAnswer: (d) Solution: Half filled and fully filled are extra stable F > N > O > C > Be > B > Li

Question: Statement-1: Clean water would have BOD value of less than 5 ppm whereas highly polluted water could have a BOD value of 17 ppm or more.

Statement-2: For Clean water the maximum prescribed concentration of zinc and Nitrate is 5 ppm each.

Options:

(a) Both statement 1 and statement 2 are correct

(b) both statement 1 and statement 2 are incorrect

(c) statement 1 is incorrect and statement 2 is correct

(d) statement 1 is incorrect but statement 2 is correct

Answer: (a)

Solution: Clean water would have BOD value of less than 5 ppm whereas highly polluted water could have a BOD value of 17 ppm or more.

Question. Match the species with concerts	
Column-I	Column-II
(A) NH_4^+	(P) Bent
(B) ClO ₂ ⁻	(Q) Linear

Question: Match the species with correct shape

(C) SF ₄	(R) Tetrahedral
(D) N ₃ ⁻	(S) See-saw

Options:

(a) A - R; B - P; C - S; D - Q
(b) A - Q; B - P; C - R; D - S
(c) A - S; B - P; C - Q; D - R

(d) A - Q; B - P; C - S; D - R

Answer: (a)

Solution: Check hybridization for shapes

Question: Which of the following is correct set of non-ambidentate ligand? **Options:**

(a) NO₂, EDTA
(b) SCN-, NO₂
(c) C₂O₄, H₂O
(d) SCN-, CNAnswer: (c)
Solution: Fact based.

Question: 25% of 250g sugar solution & 40% of 500g sugar solution are mixed then find out the mass percentage in the solution

Options:

(a) 35

(b) 45

(c) 40

(d) 38

Answer: (a) Solution: $25 \times 250 + 40 \times 500 = x \times 750$

x = 35

Question: 0.004M solution of K_2SO_4 is isotonic with 0.01 M of glucose. Find degree of dissociation of K_2SO_4 ,

Options:

(a) 75% (b) 25% (c) 50% (d) 85% **Answer: (a) Solution:** $\pi_1 = \pi_2$ For isotonic $\therefore 0.004 \times i \times RT = 0.01 RT$ $i = \frac{0.01}{0.004} = 2.5$

$$\alpha = \frac{i-1}{n-1}$$
$$\alpha = 0.75$$

Question: Find correct order of electrophilic aromatic substitution reaction a)

(b) c > d > b > a

(c) d > c > b > a

(d) a > b > c > d

Answer: (a) Solution: EWG increases EAS reaction.

Question: Statement-1: CH₄ and H₂O in presence of Ni Catalyst produces H₂ gas. **Statement-2:** Sodium Nitrite reacts with NH₄Cl gives H₂, N₂ and H₂O

Options:

(a) Both statement 1 and statement 2 are correct

- (b) Both statements are incorrect
- (c) Statement 1 is correct and statement 2 is incorrect

(d) Statement 1 is incorrect and statement 2 is correct

Answer: (a)

Solution: In the laboratory, dinitrogen is prepared by treating an aqueous solution of ammonium chloride with sodium nitrate.

 $NH_4Cl(aq) + NaNO_2(aq) \rightarrow N_2(g) + 2H_2O(l) + NaCl (aq)$

e.g.,

 $CH_4(g) + H_2O(g) \xrightarrow{1270K} CO(g) + 3H_2(g)$

Question: If electrode potentials are

Pb²⁺/Pb = m Pb⁴⁺/Pb = n Then Find the value of x in? Pb²⁺/Pb⁴⁺ =m-xn **Options:** (a) 2 (b) 3 (c) 4 (d) 1 **Answer:** (a) **Solution:** $\Delta G_1^0 = -2Fm$, $\Delta G_2^0 = -4Fn$

```
\Delta G_3^0 = \Delta G_1^0 - \Delta G_2^0 \text{ Thus (m-2n)}
```

Question: To 25 ml of 1M silver nitrate 1.05 M potassium iodide is added dropwise. In

colloidal Sol formed fixed and diffused layer consist of respectively:

Options:

(a) NO₃⁻, Ag⁺
(b)Ag⁺, K⁺
(c) Ag⁺, I⁻
(d) Ag⁺, NO₃⁻
Answer: (d)
Solution: Fixed layer of Ag⁺ on AgI and mobile layer of NO₃⁻

Question: A Solutions contain 2 salts anions,

Statement-1: Solution on treatment with freshly prepared FeSO₄ gave a brown ring. **Statement-2:** On reaction with FeCl₃ and boiling gave a reddish-brown precipitate? The two anions are :

Options:

(a) nitrate and acetate
(b) nitrite and sulphate
(c) nitrite and oxalate
(d) nitrate and phosphate
Answer: (a)
Solution: Fact based

Question: Which type of copper is formed by the following reactions? $2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$ $2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$ Options: (a) Blister copper (b) Copper crisp (c) Reduced copper (d) Copper slag Answer: (a) Solution: Fact based

Question: Identify the correct statement about the compound GaAlCl₄
Options:

(a) Chlorine atom is bonded to both Ga and Al
(b) Ga is cationic part and less electronegative than Al
(c) Chlorine atom forms co – ordinate bond with Ga

(d) Chlorine atom is bonded to Al

Answer: (d)

Solution: Fact based.

Question: In a container at constant temperature correct RMS velocity of the following. **Options:**

(a) $Ne > Cl_2 > UF_6$ (b) $Cl_2 > Ne > UF_6$ (c) $UF_6 > Ne > Cl_2$ (d) $UF_6 > Cl_2 > Ne$ **Answer: (a) Solution:**

$$u_{rms} = \sqrt{\frac{3RT}{M}}$$

 \therefore RMS is inversely proportional to molecular mass (UF₆ > Cl₂ > Ne)

Question: Which of the following can be represented as a meridional isomer? **Options:**

(a) $[Pt(NH_3)_3Cl_3]^+$ (b) $[Pt(en)_3]^{4+}$ (c) $[Pt(en)_2Cl_2]^{2+}$ (d) $[Pt(en)_2(NH_3)_2]^{4+}$ Answer: (a) Solution: Fact based.

Question: o-phenylenediamine Options: (a) N_2^{\oplus}

JEE-Mains-11-04-2023 [Memory Based] [Morning Shift]

Mathematics

Question: $z_1 = 5 + 2i$ is rotated by 90° anticlockwise to get ω_1 , and $z_2 = 3 + i$ is rotated 90° clockwise to get ω_2 . arg $(\omega_1 - \omega_2) = ?$

Answer: $\pi - \tan^{-1}\left(\frac{8}{3}\right)$

Solution:

$$\omega_{1} = (5+2i)i = 5i - 2$$

$$\omega_{2} = (3+i)(-i) = -3i + 1$$

$$\omega_{1} - \omega_{2} = 8i - 3 = -3 + 8i$$

$$\arg(\omega_{1} - \omega_{2}) = \arg(-3 + 8i)$$

$$= \pi - \tan^{-1}\left(\frac{8}{3}\right)$$

Question: Number of integral terms in $\left(3^{\frac{1}{2}} + 5^{\frac{1}{4}}\right)^{680}$ is

Answer: 171.00 Solution:

$$T_{k+1} = {}^{680}C_k \left(3\right)^{\frac{680-k}{2}} \left(5\right)^{\frac{k}{4}}$$

 $k = 0, 4, 8, \dots, 680$

Number of integral terms = $\frac{680}{4} + 1 = 171$

So 171 terms

Question: In the expansion of $(2+x)^9$, find the mean of the coefficients of $x, x^2, x^3, ...x^7$. Answer: 2736.00 Solution:

$${}^{9}C_{1} \times 2^{8} + {}^{9}C_{2} \times 2^{7} + \dots + {}^{9}C_{7}2^{2}$$
$$\frac{3^{9} - 2^{9} - 9 \times 2 - 1}{7} = \frac{3^{9} - 2^{9} - 19}{7}$$

Question: $M = (m_{ij}); m_{ij} \in \{0,1,2\}, i \ge 1, j \le 2$. $A = \{m: M \text{ is invertible}\}$. Number of n(A). Answer: 52.00 Solution:

Order: 1×1 , M = (1) or $(2) \rightarrow 2$ matrices

Order: 2×2, $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$

ad = bc = 0, No. of matrices $= 5 \times 5 = 25$

ad = bc = 1, No. of matrices $= 1 \times 1 = 1$

ad = bc = 2, No. of matrices = $2 \times 2 = 4$

ad = bc = 4, No. of matrices $= 1 \times 1 = 1$

No. of invertible matrix of order 2×2

 $=3^4 - 25 - 1 - 4 - 1 = 50$

Total = 50 + 2 = 52

Question: Five students given roll number and to be seated according to it. Find ways such that no students is on correct seat. Answer: 44.00

Solution:

Number of seating arrangements

 $5! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} \right]$ $= 5! \left(\frac{120 - 120 + 60 - 20 + 5 - 1}{120} \right)$ = 44

Question: a and b are the roots of $x^2 - 7x - 1 = 0$, then $\frac{a^{21} + b^{21} + a^{17} + b^{17}}{a^{19} + b^{19}} = ?$

Answer: 51.00 Solution:

Given $x^2 - 7x - 1 = 0$ $a^2 - 1 = 7a$ $a^4 + 1 = 49a^2 + 2a^2$ $a^4 + 1 = 51a^2$ $\frac{a^{21} + b^{21} + a^{17} + b^{17}}{a^{19} + b^{19}} = \frac{a^{17}(51a^2) + b^{17}(51b^2)}{a^{19} + b^{19}} = 51$

Question: Number of ordered truth values of (p,q,r) such that $(p \lor q) \land (p \lor r) \rightarrow (q \lor r)$ is true.

Answer: 7.00 Solution:

False only if

 $(p \lor q) \land (p \lor r)$ is T & $q \lor r$ is F

$$q = r = F$$

So *p* has to be true

In remaining 7 cases it is True

Question: x + y + z = 15. Find number of ordered solutions (x, y, z) such that $x, y, z \ge 0$ Answer: 136.00 Solution:

Total ordered solutions

 $\Rightarrow^{15+3-1}C_{3-1} = {}^{17}C_2$ $\Rightarrow^{15+2}C_2 = 136$

Question: Area of region (x, y): $x^2 + (y-2)^2 \le 4$; $x^2 \ge 2y$ is **Options:**

(a)
$$\pi - \frac{8}{3}$$

(b) $\pi + \frac{8}{3}$
(c) $2\pi - \frac{16}{3}$
(d) $2\pi + \frac{16}{3}$
Answer: (a)

Solution:

 $x^{2} = 2y$ $2y + (y - 2)^{2} = 4$ $y^{2} - 2y = 0$ y = 0, 2 $a + b + c = \frac{\pi}{4} \cdot 4 = \pi$ $a = \frac{1}{2} \cdot 2 \cdot 2 = 2$ $b = \frac{8}{6 \cdot 2} = \frac{2}{3}$ $c = \pi - 2 - \frac{2}{3} = \pi - \frac{8}{3}$

(2, 2)

Question: The lines y = 0, x = 0, y = 5, $x = \frac{2}{3}$ forms a rectangle. A(0,a) and B(b,0) are points such that *AB* divides area of rectangle in 1:4. Midpoint of *AB* lies on Answer: $xy = \frac{1}{3}$ Solution:

 $A_{R} = \frac{10}{3}$ $A_{\Delta} = \frac{ab}{2} = \frac{2}{3}$ $ab = \frac{4}{3}$ $\left(\frac{b}{2}, \frac{a}{2}\right) \text{ lies on } xy = \frac{1}{3}$

Question: Number of elements in set $S = [\theta \in [0, 2\pi]: 3\cos^4 \theta - 5\cos^2 \theta - 2\sin^6 \theta + 2 = 0]$ is **Answer: 9.00** Solution:

 $3\cos^{4}\theta - 5\cos^{2}\theta - 2\sin^{6}\theta + 2 = 0$ $3\cos^{4}\theta - 3\cos^{2}\theta - 2\cos^{2}\theta - 2\sin^{6}\theta + 2 = 0$ Writing in x terms $(3\cos^{4}x - 3\cos^{2}x) - 2\sin^{6}x + 2\sin^{2}x = 0$ $3\cos^{2}x(\cos^{2}x - 1) - 2\sin^{2}x(-\sin^{4}x + 1) = 0$ $3\cos^{2}x \times \sin^{2}x = 2\sin^{2}x \times \cos^{2}x(1 + \sin^{2}x)$ $\sin^{2}x = 0 \rightarrow 3 \text{ solutions}$ $\cos^{2}x = 0 \rightarrow 2 \text{ solutions}$ $\sin^{2}x = \frac{1}{2} \rightarrow 4 \text{ solutions}$

So total 9 solutions.

Question: 48 medals were given in event A. 25 medals were given in event B and 18 medals were given in event C. Total men = 60.5 men got medals in all 3 events. How many got medals in exactly 2 events.

Answer: 21.00 Solution:

Question: $A^{T} = \alpha A - I$, $|A^{2} - A| = 4$. Find sum of all possible values of α . Order of A is 2. Answer: 4.00 Solution:

For
$$n = \alpha$$
,
 $A = \alpha A^T - I$
 $A^T = \alpha A - I$
 $A = \alpha (\alpha A - I) - I$
 $A = \alpha^2 A - (\alpha + 1)I$
 $A = \frac{-(\alpha + 1)}{1 - \alpha^2}I = \frac{I}{\alpha - 1}$
 $|A^2 - A| = |A||A - I|$
 $= \left(\frac{1}{\alpha - 1}\right)^n \left(\frac{2 - \alpha}{\alpha - 1}\right)^n = 4$
 $(2 - \alpha)^2 = 4(\alpha - 1)^4$
 $= 4\left[\alpha^4 - 4\alpha^3 + 1\right]$

Sum of $\alpha = 4$

Question:
$$(1-x^2y^2)dx = x dy + y dx$$
. $y(1) = 2$, $y(2) = \alpha$. Find α .
Answer:
Solution:

$$(1 - x^{2}y^{2})dx = d(xy)$$

$$\int dx = \int \frac{dxy}{1 - x^{2}y^{2}}$$

$$x = \frac{1}{2}\ln\left|\frac{1 + xy}{1 - xy}\right| + C$$

$$(1, 2)$$

$$1 = \frac{1}{2}\ln|-3| + C$$

$$C = \frac{2}{\ln 3}$$

Question: $f(x) = [x^2 - x] + [|[x] - x|]$ check continuity at x = 0, 1Answer: Discontinuous at x = 1Solution: $f(x) = [x^2 - x] + \{x\}$

$$f(x) = \lfloor x^2 - x \rfloor$$

 $\lim_{x \to 0^{+}} f(x) = -1, \lim_{x \to 0^{-}} f(x) = 0$ $\lim_{x \to 1^{+}} f(x) = 0, \lim_{x \to 1^{-}} f(x) = -1$

Question: Consider the plane 2x + y - 3z = 6. If (α, β, γ) is the image of point (-2, 3, 5) in the given plane, then $\alpha + \beta + \gamma =$ _____ **Answer: 0.00** Solution:

$$\frac{\alpha+2}{2} = \frac{\beta-3}{1} = \frac{\gamma-5}{-3} = \frac{-2(-22)}{14}$$

By solving

 $\alpha + \beta + \gamma = 0$

Question: $x_1, x_2, ..., x_{100}$ are in A.P. If $x_1 = 2$, $\overline{x} = 200$, $y_i = i(x_i - 1), i \in \{1, 2, ..., 100\}$, then $\overline{y} = ?$ Answer: $\frac{26765}{2}$ Solution: $2, x_2, x_3, ..., x_{100}$ are in AP

$$\frac{\frac{100}{2}(4+99\times d)}{100} = 200$$

$$d = 4$$

$$y_i = i(2+(i-1)d)-1$$

$$y_i = i(2+(i-1)4)-1$$

$$y_i = i(4i-3) = 4i^2 - 3i$$

$$\overline{y} = \frac{4\sum_{i=1}^{2} -3\sum_{i=1}^{2} i}{100}$$

$$= \frac{4\times\frac{100\times101\times201}{6} - 3\times\frac{100\times101}{2}}{100}$$

$$= \frac{26765}{2}$$

Question: If $\log_{x+\frac{7}{2}} \left(\frac{x+7}{2x+3}\right)^2 \ge 0$, then total number of integral solutions is/are _____

Answer: 7.00

Solution:

Case 1: when base is
$$0 < \left(x + \frac{7}{2}\right) < 1$$
 and $\left|\frac{x+7}{2x+3}\right| \le 1 \Longrightarrow -1 \le \frac{x+7}{2x+3} \le 1$

(i)
$$\frac{x+7}{2x+3} \le 1 \Longrightarrow \frac{x+7}{2x+3} \le 1$$

 $x \in \left(-\infty, -\frac{3}{2}\right) \cup [4, \infty]$

Or

(ii)
$$-1 \le \frac{x+7}{2x+3} \Rightarrow \frac{3x+10}{2x+3} \ge 0$$

 $x \in \left(-\infty, -\frac{10}{3}\right] \cup \left[-\frac{3}{2}, \infty\right)$

Required solutions for case $1 x \in \left(-\frac{7}{2}, -\frac{5}{3}\right)$

Case 2: when base is $\left(x + \frac{7}{2}\right) > 1$ and $\left|\frac{x+7}{2x+3}\right| \ge 1 \Rightarrow \frac{x+7}{2x+3} \ge 1$ or $-1 \ge \frac{x+7}{2x+3}$ (i) $\frac{x+7}{2x+3} \ge 1 \Rightarrow \frac{x-4}{2x+3} \le 0$ $x \in \left(-\frac{3}{2}, 4\right)$

Or

(ii)
$$-1 \ge \frac{x+7}{2x+3} \Rightarrow \frac{3x+10}{2x+3} \le 0$$

 $x \in \left(-\frac{10}{3}, -\frac{3}{2}\right) \cup \left(-\frac{5}{2}, -\frac{3}{2}\right)$

Required solutions for case 2

$$x \in \left(-\frac{5}{2}, -\frac{3}{2}\right) \cup \left(-\frac{3}{2}, 4\right]$$

Total number of integral solutions = $\pm 2, \pm 1, 0, 3, 4$

Question: Find the value of integral
$$\int_{-\log e^2}^{\log e^2} e^x \left(\log_e \left(e^x + \sqrt{1 + e^{2x}} \right) dx \right)$$
 is

Answer: Solution:

$$\int_{-\log e^2}^{\log e^2} e^x \left(\log_e \left(e^x + \sqrt{1 + e^{2x}} \right) dx \right)$$

Put $e^x = t$

$$\int_{\frac{1}{2}}^{2} \ln\left(t + \sqrt{1 + t^2}\right) dt$$

$$t \ln\left(t + \sqrt{1 + t^{2}}\right)\Big|_{\frac{1}{2}}^{2} - \int_{\frac{1}{2}}^{2} \frac{t}{\sqrt{1 + t^{2}}}$$
$$2 \ln\left(2 + \sqrt{5}\right) - \frac{1}{2} \ln\left(\frac{1 + \sqrt{5}}{2}\right) - \frac{1}{2} 2 \times \sqrt{1 + t^{2}}\Big|_{\frac{1}{2}}^{2}$$
$$2 \ln\left(2 + \sqrt{5}\right) - \frac{1}{2} \ln\left(\frac{1 + \sqrt{5}}{2}\right) - \left(\sqrt{5} - \frac{\sqrt{5}}{2}\right)$$