JEE-Mains-11-04-2023 [Memory Based]
 [Morning Shift]

Physics

Question: Wave equation $x=10^{-2} \sin (160 t-0.2 x+\pi / 4)$ find wave velocity
Options:
(a) $200 \mathrm{~m} / \mathrm{s}$
(b) $400 \mathrm{~m} / \mathrm{s}$
(c) $800 \mathrm{~m} / \mathrm{s}$
(d) $1600 \mathrm{~m} / \mathrm{s}$

Answer: (c)
Solution: $V=\frac{\omega}{K}=\frac{160}{0.2}=800$
Question: Coin placed on a disc rotating with angular vel ω slips at a distance 1 cm from centre. At what distance it will slip when angular velocity is halved?
Options:
(a) 1 cm
(b) 2 cm
(c) 3 cm
(d) 4 cm

Answer: (d)
Solution:

So
$\frac{\mu N}{\mu N}=\frac{m \omega^{2}(1)}{m\left(\frac{\omega}{2}\right)^{2} \cdot R}$
$x=4 \mathrm{~cm}$
Question: If area of coil is $4 \mathrm{~m}^{2}$ find EMF from 2 to 4 seconds

Options:

(a) $8 \times 10^{-3} \mathrm{~V}$
(b) $12 \times 10^{-3} \mathrm{~V}$
(c) $4 \times 10^{-3} \mathrm{~V}$
(d) $8 \times 10^{-2} \mathrm{~V}$

Answer: (a)

Solution:

$\varepsilon=\left|A \cdot \frac{d B}{d t}\right|$ and $\frac{d B}{d t}=2\left(\frac{m T}{S}\right)$
So,
$\varepsilon=4 \times 2 \times 10^{-3} \mathrm{~T} / \mathrm{s}$
$\varepsilon=8 \times 10^{-3} \mathrm{~V}$
Question: Find the ratio of displacement and distance.

Solution:

Positive area $=$
$\left(\frac{1}{2} \times 5 \times 10\right)+(5 \times 10)+\frac{1}{2}(30) 5+\frac{1}{2} \times 5 \times 20$
$=25+50+75+50=200$
Negative area $=\frac{1}{2} \times 5 \times 5=\frac{25}{2}$
Distance $=$ positive area + negative area $=200+\frac{25}{2}=\frac{425}{2}$
Displacement $=$ positive area - negative area $=200-\frac{25}{2}=\frac{375}{2}$
So ratio $=\frac{15}{17}$
Question: In photoelectric effect $\mathrm{V}_{\max , 1}=\mathrm{V}_{0}$ when wavelength is $\lambda \& \mathrm{~V}_{\mathrm{max}, 2}$ is $=\mathrm{V}_{0} / 4$. When 2λ is used. Find work function.

Solution:

$\frac{1}{2} \times\left(e V_{0}=\frac{h c}{\lambda}-\phi\right)$
$e \frac{V_{0}}{4}=\frac{h c}{2 \lambda}-\phi$
(-)
$\frac{e V_{0}}{2}-\frac{e V_{0}}{4}=\frac{-\phi}{2}+\phi$
$\frac{e V_{0}}{4}=\frac{\phi}{2} \Rightarrow \phi=\frac{e V_{0}}{2}$
Question: There are two identical resistances first they are joined in series then in parallel find ratio of heat produced in two cases assuming potential difference remains same
Options:
(a) $3: 1$
(b) $4: 1$
(c) $5: 1$
(d) $2: 1$

Answer: (b)

Solution:

Case 1:

Heat $=2 \mathrm{i}^{2} \mathrm{Rt}$
$=2\left(\frac{V}{2 R}\right)^{2} R t=\left(\frac{V^{2}}{2 R} . t\right)$
Case 2:

$(\text { Heat })_{2}=\frac{V^{2}}{(R / 2)} \cdot t$
$=\frac{2 V^{2}}{R} . t$
So $\frac{(\text { Heat })_{2}}{(\text { Heat })_{1}}=\frac{2 \frac{V^{2}}{R} \cdot t}{\frac{V^{2}}{2 R} \cdot t}=\frac{4}{1}$

Question: A planet has density $1 / 3$ of density of earth \& radius 4 time that of earth. find ratio of acceleration due to gravity on surface of planet \& on Earth
Options:
(a) $4: 3$
(b) $2: 3$
(c) $5: 7$
(d) $1: 1$

Answer: (a)

Solution:

$g_{s}=\frac{G M}{R^{2}}=\frac{G \rho \frac{4}{3} \pi R^{3}}{R^{2}}$
$g_{s}=\frac{4}{3} \pi G \rho R$
So $\frac{g_{p}}{g_{E}}=\frac{\frac{4}{3} \pi G\left(\frac{1}{3}\right) 4}{\frac{4}{3} \pi G(1)(1)}=\frac{4}{3}$

Question: A gun fires a bullet of mass 10 gm with vel $250 \mathrm{~m} / \mathrm{s}$ as a result gun experiences a thrust force of 125 N find the number of bullets fired per second.
Answer: 50.00

Solution:

$F=\left(\frac{N m U}{t}\right)$
$125=\left(\frac{N}{t}\right) .10 \times 10^{-3} \times 250$
$\frac{N}{t}=\frac{1}{2} \times 100=50$

Question: A force $2+3 x$ acts on particle at origin find work done from $x=0$ to $x=4$ (in J)
Answer: 32.00

Solution:

$$
\begin{aligned}
& W=\int_{x_{1}}^{x_{2}} F d x=\int_{0}^{4}(2+3 x) d x=\left[2 x+\frac{3}{2} x^{2}\right]_{0}^{4} \\
& =(2 \times 4)+\left(\frac{3}{2} \times 4^{2}\right)-0=8+24=32
\end{aligned}
$$

Question: Current sensitivity is increased by 25% by changing N and A and keeping R constant. Find the change in voltage sensitivity

Options:

(a) 25%
(b) 50%
(c) 12.5%
(d) 75%

Answer: (a)

Solution:

$\left(\frac{\phi}{V}\right)=\frac{1}{R} \times\left(\frac{\phi}{i}\right)$
So equal increase if R is constant
So 25%.
Question: A projectile is fired at an angle 30° with horizontal, it has same speed at $\mathrm{t}=3 \mathrm{~s}$ and $t=5 \mathrm{~s}$. find initial velocity
Options:
(a) $60 \mathrm{~m} / \mathrm{s}$
(b) $70 \mathrm{~m} / \mathrm{s}$
(c) $80 \mathrm{~m} / \mathrm{s}$
(d) $90 \mathrm{~m} / \mathrm{s}$

Answer: (c)
Solution:
Velocity in \times doesn't change and velocity magnitude in Y is also given same $\theta=30^{\circ}$
$\left|V_{y}\right|=\left|V_{y}\right|$
$u \operatorname{Sin} \theta-g(3)=|u \operatorname{Sin} \theta-g(5)|$
$u \sin \theta-g 3=g 5-u \operatorname{Sin} \theta$
$2 u \sin \theta=8 g \Rightarrow u=80$
Question: Statement 1: au, parsec, lightyear are units of length.
Statement 2: au < parsec $<$ lightyear

Options:

(a) S1 - Correct, S2 - Correct
(b) S1 - Correct, S2 - False
(c) S1 - False, S2 - Correct
(d) S1-False, S2 - False

Answer: (b)
Question: If height of transmitter antenna is 0 then find the receiver antenna in $x \times 10^{-2}$ such that Line of sight is 4 km
Answer: $\mathbf{1 2 5 . 0 0}$

Solution:

Range $=0+\sqrt{2 R_{E} h_{r}}$
$4 \times 10^{3}=\sqrt{2 \times 64 \times 10^{5} \times x \times 10^{-2}}$
$16 \times 10^{6}=64 \times 2 \times 10^{3} \times x$
$\frac{1000}{8}=x=125$
Question: Capacitor charged to potential V has energy U_{1} then its is connected to identical uncharged capacitor and final energy of system is U_{2} find U_{2} / U_{1}
Options:
(a) $1: 1$
(b) $1: 3$
(c) $2: 5$
(d) $1: 2$

Answer: (d)

Solution:

$U_{1}=\frac{1}{2} \frac{Q^{2}}{C}$ and finally change divides equally
$U_{2}=2 \times\left[\frac{1}{2} \frac{(Q / 2)^{2}}{C}\right]$
$U_{2}=\frac{1}{2}\left[\frac{1}{2} \frac{Q L}{C}\right]$
So $U_{2}=\frac{1}{2} U_{1} \Rightarrow \frac{U_{2}}{U_{1}}=2$
Question: Half life of nucleus A is equal to mean life of nucleus B find the relation between $\lambda_{\mathrm{A}} \& \lambda_{\mathrm{B}}$

Options:

(a) $\lambda_{A}=\ln 2 / \lambda_{B}$
(b) $\lambda_{\mathrm{A}}=\ln 2 \lambda_{\mathrm{B}}$
(c) $\lambda_{\mathrm{A}}=\lambda_{\mathrm{B}} / 2$
(d) $\lambda_{\mathrm{A}}=2 \lambda_{\mathrm{B}}$

Answer: (b)

Solution: $\frac{\ln (2)}{\lambda_{A}}=\frac{1}{\lambda_{B}}$
$\lambda_{A}=\ln 2 \lambda_{B}$
Question: Identify the logic operation of following circuit.

Options:

(a) AND
(b) OR
(c) NOR
(d) NAND

Answer: (a)
Question: If the magnetic moment of both coils A \& B are equal then choose the correct relation if $\mathrm{r}_{\mathrm{A}}=10 \mathrm{~cm}, \mathrm{r}_{\mathrm{B}}=20 \mathrm{~cm}, \mathrm{~N}_{\mathrm{A}}=$ Number of turns of coil $\mathrm{A}, \mathrm{N}_{\mathrm{B}}=$ Number of turns of coil $\mathrm{B}, \mathrm{I}_{\mathrm{A}}=$ Current in coil $\mathrm{A}, \mathrm{I}_{\mathrm{B}}=$ Current in coil B
Options:
(a) $2 \mathrm{~N}_{\mathrm{A}} \mathrm{I}_{\mathrm{A}}=\mathrm{N}_{\mathrm{B}} \mathrm{I}_{\mathrm{B}}$
(b) $\mathrm{N}_{\mathrm{A}} \mathrm{I}_{\mathrm{A}}=\mathrm{N}_{\mathrm{B}} \mathrm{I}_{\mathrm{B}}$
(c) $\mathrm{N}_{\mathrm{A}} \mathrm{I}_{\mathrm{A}}=4 \mathrm{~N}_{\mathrm{B}} \mathrm{I}_{\mathrm{B}}$
(d) $\mathrm{N}_{\mathrm{A}} \mathrm{I}_{\mathrm{A}}=2 \mathrm{~N}_{\mathrm{B}} \mathrm{I}_{\mathrm{B}}$

Answer: (c)

Solution:

$M_{1}=M_{2}$
$N_{1} i_{1} A_{1}=N_{2} i_{2} A_{2}$
$N_{1} i_{1} \pi\left(10 \times 10^{-2}\right)^{2}=N_{2} i_{2} \pi\left(20 \times 10^{-2}\right)^{2}$
$N_{1} i_{1}=4 N_{2} i_{2}$

Question: If light is passing through a medium of critical angle 45° then wave speed is Options:
(a) $\frac{3}{\sqrt{2}} \times 10^{8}$
(b) $3 \sqrt{2} \times 10^{8}$
(c) $\frac{3}{2} \times 10^{8}$
(d) 3×10^{8}

Answer: (a)

Solution:

$\sin ^{-1}\left(\frac{1}{\mu}\right)=i_{c}=45^{\circ}$
$\frac{1}{\mu}=\frac{1}{\sqrt{2}} \Rightarrow \mu=\sqrt{2}$
So, $V=\frac{C}{\mu}=\frac{3 \times 10^{8}}{\sqrt{2}} \mathrm{~m} / \mathrm{s}$
Question: Find the current flowing in 3Ω resistor in the given circuit.

Options:

(a) 0.4 A
(b) 0.2 A
(c) 0.8 A
(d) 0.6 A

Answer: (c)

Solution:

$i=\frac{12}{0.5+1+6.5+2}=1.2$
So,

(1,2-x)
$3 x=(1.2-x) 6$
$x=2.4-2 x$
$x=0.8$
Question: A solid sphere is rotating with $\omega=10 \mathrm{rad} \mathrm{s}^{-1}$. If I represents MOI about tangent to sphere \& L represents angular moment about diameter \& $\mathrm{I}=\left[x \times 10^{-2}\right]$ L. Find x ?
Answer: 35.00

Solution:

$I_{c m}=\frac{2}{5} m R^{2}$
$I=\frac{7}{5} m R^{2}$
So $\frac{I_{c m}}{I}=\frac{2}{7} \Rightarrow I_{\mathrm{cm}}=\frac{2}{7} I$
$L=I \mathrm{~cm} \omega=\frac{2}{7} I . \omega$
$I=\frac{7}{2} \omega L=35 L$
Question: For a scale, melting point is -15°, boiling point is 65°, temp of -95° on this scale will represent what value on fahrenheit scale?

Options:

(a) $100^{\circ} \mathrm{F}$
(b) $-123^{\circ} \mathrm{F}$
(c) $273{ }^{\circ} \mathrm{F}$
(d) $-148^{\circ} \mathrm{F}$

Answer: (d)
Solution:

$$
\begin{aligned}
& \frac{x-(-15)}{65-(-15)}=\frac{F-32}{180} \\
& \text { but } x=-95 \\
& \frac{-95+15}{80}=\frac{F-32}{180} \\
& -180+32=F \\
& \Rightarrow F=-148^{\circ}
\end{aligned}
$$

JEE-Mains-11-04-2023 [Memory Based]
 [Morning Shift]

Chemistry

Question: Find the ratio of spin only magnetic moment of $\mathrm{Cr}(\mathrm{CN})_{6}{ }^{3-}$ and $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$
Options:
(a) $1: 1$
(b) $1: 2$
(c) $2: 1$
(d) $2: 3$

Solution: $\mu=\sqrt{n(n+2)}$
$\mathrm{Cr}=24\left(3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1}\right), \mathrm{Cr}^{+3}-3 \mathrm{~d}^{3} 4 \mathrm{~s}^{0}$
Both CN^{-}and $\mathrm{H}_{2} \mathrm{O}$ complex will have 3 unpaired electrons
$\therefore 1: 1$
Question: Ionisation Energy order of period second elements?
Li, Be, C, B, N, O, F
Options:
(a) $\mathrm{Li}>\mathrm{Be}>$ B $>\mathrm{C}>\mathrm{N}>$ F $>\mathrm{O}$
(b) $\mathrm{F}>\mathrm{O}>\mathrm{N}>\mathrm{C}>\mathrm{Be}>\mathrm{B}>\mathrm{Li}$
(c) $\mathrm{F}>\mathrm{O}>\mathrm{N}>\mathrm{C}>\mathrm{B}>\mathrm{Be}>\mathrm{Li}$
(d) $\mathrm{F}>\mathrm{N}>\mathrm{O}>\mathrm{C}>\mathrm{Be}>\mathrm{B}>\mathrm{Li}$

Answer: (d)
Solution: Half filled and fully filled are extra stable
$\mathrm{F}>\mathrm{N}>\mathrm{O}>\mathrm{C}>\mathrm{Be}>\mathrm{B}>\mathrm{Li}$
Question: Statement-1: Clean water would have BOD value of less than 5 ppm whereas highly polluted water could have a BOD value of 17 ppm or more.
Statement-2: For Clean water the maximum prescribed concentration of zinc and Nitrate is 5 ppm each.

Options:

(a) Both statement 1 and statement 2 are correct
(b) both statement 1 and statement 2 are incorrect
(c) statement 1 is incorrect and statement 2 is correct
(d) statement 1 is incorrect but statement 2 is correct

Answer: (a)
Solution: Clean water would have BOD value of less than 5 ppm whereas highly polluted water could have a BOD value of 17 ppm or more.

Question: Match the species with correct shape

Column-I	Column-II
(A) NH_{4}^{+}	(P) Bent
(B) $\mathrm{ClO}_{2}{ }^{-}$	(Q) Linear

(C) SF_{4}	(R) Tetrahedral
(D) $\mathrm{N}_{3}{ }^{-}$	(S) See-saw

Options:
(a) $\mathrm{A}-\mathrm{R} ; \mathrm{B}-\mathrm{P} ; \mathrm{C}-\mathrm{S} ; \mathrm{D}-\mathrm{Q}$
(b) A - Q ; B - P; C - R; D - S
(c) $\mathrm{A}-\mathrm{S} ; \mathrm{B}-\mathrm{P} ; \mathrm{C}-\mathrm{Q} ; \mathrm{D}-\mathrm{R}$
(d) $\mathrm{A}-\mathrm{Q} ; \mathrm{B}-\mathrm{P} ; \mathrm{C}-\mathrm{S} ; \mathrm{D}-\mathrm{R}$

Answer: (a)
Solution: Check hybridization for shapes

Question: Which of the following is correct set of non-ambidentate ligand?
Options:
(a) NO_{2}, EDTA
(b) $\mathrm{SCN}-, \mathrm{NO}_{2}$
(c) $\mathrm{C}_{2} \mathrm{O}_{4}, \mathrm{H}_{2} \mathrm{O}$
(d) $\mathrm{SCN}-, \mathrm{CN}-$

Answer: (c)
Solution: Fact based.

Question: 25% of 250 g sugar solution \& 40% of 500 g sugar solution are mixed then find out the mass percentage in the solution
Options:
(a) 35
(b) 45
(c) 40
(d) 38

Answer: (a)

Solution: $25 \times 250+40 \times 500=\mathrm{x} \times 750$
$\mathrm{x}=35$
Question: 0.004 M solution of $\mathrm{K}_{2} \mathrm{SO}_{4}$ is isotonic with 0.01 M of glucose. Find degree of dissociation of $\mathrm{K}_{2} \mathrm{SO}_{4}$,
Options:
(a) 75%
(b) 25%
(c) 50%
(d) 85%

Answer: (a)
Solution: $\pi_{1}=\pi_{2}$
For isotonic
$\therefore 0.004 \times \mathrm{i} \times \mathrm{RT}=0.01 \mathrm{RT}$
$i=\frac{0.01}{0.004}=2.5$
$\alpha=\frac{i-1}{n-1}$
$\alpha=0.75$
Question: Find correct order of electrophilic aromatic substitution reaction a)

b)

c)

d)

Options:
(a) d $>$ c $>$ a $>b$
(b) $\mathrm{c}>\mathrm{d}>$ b $>$ a
(c) d $>$ c $>$ b $>$ a
(d) a $>$ b $>$ c $>$ d

Answer: (a)

Solution: EWG increases EAS reaction.

Question: Statement-1: CH_{4} and $\mathrm{H}_{2} \mathrm{O}$ in presence of Ni Catalyst produces H_{2} gas.
Statement-2: Sodium Nitrite reacts with $\mathrm{NH}_{4} \mathrm{Cl}$ gives $\mathrm{H}_{2}, \mathrm{~N}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$

Options:

(a) Both statement 1 and statement 2 are correct
(b) Both statements are incorrect
(c) Statement 1 is correct and statement 2 is incorrect
(d) Statement 1 is incorrect and statement 2 is correct

Answer: (a)
Solution: In the laboratory, dinitrogen is prepared by treating an aqueous solution of ammonium chloride with sodium nitrate.
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})+\mathrm{NaNO}_{2}(\mathrm{aq}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NaCl}(\mathrm{aq})$
e.g.,
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \xrightarrow[\mathrm{Ni}]{1270 \mathrm{~K}} \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$

Question: If electrode potentials are
$\mathrm{Pb}^{2+} / \mathrm{Pb}=\mathrm{m}$
$\mathrm{Pb}^{4+} / \mathrm{Pb}=\mathrm{n}$
Then Find the value of x in?
$\mathrm{Pb}^{2+} / \mathrm{Pb}^{4+}=\mathrm{m}-\mathrm{xn}$
Options:
(a) 2
(b) 3
(c) 4
(d) 1

Answer: (a)
Solution: $\Delta \mathrm{G}_{1}{ }^{0}=-2 \mathrm{Fm}, \Delta \mathrm{G}_{2}{ }^{0}=-4 \mathrm{Fn}$
$\Delta \mathrm{G}_{3}{ }^{0}=\Delta \mathrm{G}_{1}{ }^{0}-\Delta \mathrm{G}_{2}{ }^{0}$ Thus (m-2n)

Question: To 25 ml of 1 M silver nitrate 1.05 M potassium iodide is added dropwise. In colloidal Sol formed fixed and diffused layer consist of respectively:

Options:

(a) $\mathrm{NO}_{3}{ }^{-}, \mathrm{Ag}^{+}$
(b) $\mathrm{Ag}+, \mathrm{K}^{+}$
(c) $\mathrm{Ag}+\mathrm{I}^{-}$
(d) $\mathrm{Ag}+, \mathrm{NO}_{3}^{-}$

Answer: (d)
Solution: Fixed layer of Ag^{+}on AgI and mobile layer of $\mathrm{NO}_{3}{ }^{-}$

Question: A Solutions contain 2 salts anions,
Statement-1: Solution on treatment with freshly prepared FeSO_{4} gave a brown ring.
Statement-2: On reaction with FeCl_{3} and boiling gave a reddish-brown precipitate?
The two anions are :

Options:

(a) nitrate and acetate
(b) nitrite and sulphate
(c) nitrite and oxalate
(d) nitrate and phosphate

Answer: (a)

Solution: Fact based

Question:

B is

Options:

(a)

(b)

(c)

(d)

Answer: (d)

Solution: Popoff rule is followed to form A

reduction of carbonyl is done

Question: Which type of copper is formed by the following reactions?
$2 \mathrm{Cu}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{SO}_{2}$
$2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \rightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$
Options:
(a) Blister copper
(b) Copper crisp
(c) Reduced copper
(d) Copper slag

Answer: (a)
Solution: Fact based

Question: Identify the correct statement about the compound GaAlCl_{4} Options:
(a) Chlorine atom is bonded to both Ga and Al
(b) Ga is cationic part and less electronegative than Al
(c) Chlorine atom forms co - ordinate bond with Ga
(d) Chlorine atom is bonded to Al

Answer: (d)
Solution: Fact based.

Question: In a container at constant temperature correct RMS velocity of the following. Options:
(a) $\mathrm{Ne}>\mathrm{Cl}_{2}>\mathrm{UF}_{6}$
(b) $\mathrm{Cl}_{2}>\mathrm{Ne}>\mathrm{UF}_{6}$
(c) $\mathrm{UF}_{6}>\mathrm{Ne}>\mathrm{Cl}_{2}$
(d) $\mathrm{UF}_{6}>\mathrm{Cl}_{2}>\mathrm{Ne}$

Answer: (a)

Solution:

$u_{r m s}=\sqrt{\frac{3 R T}{M}}$
\therefore RMS is inversely proportional to molecular mass $\left(\mathrm{UF}_{6}>\mathrm{Cl}_{2}>\mathrm{Ne}\right)$

Question: Which of the following can be represented as a meridional isomer? Options:
(a) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]^{+}$
(b) $\left[\mathrm{Pt}(\mathrm{en})_{3}\right]^{4+}$
(c) $\left[\mathrm{Pt}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{2+}$
(d) $\left[\mathrm{Pt}(\mathrm{en})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{4+}$

Answer: (a)
Solution: Fact based.

Question: o-phenylenediamine $\xrightarrow{\mathrm{HNO}_{2}}$
Options:
(a)

(b)

(c)

(d)

Answer: (b)
Solution:

JEE-Mains-11-04-2023 [Memory Based] [Morning Shift]

Mathematics

Question: $z_{1}=5+2 i$ is rotated by 90° anticlockwise to get ω_{1}, and $z_{2}=3+i$ is rotated 90° clockwise to get $\omega_{2} \cdot \arg \left(\omega_{1}-\omega_{2}\right)=$?
Answer: $\pi-\tan ^{-1}\left(\frac{8}{3}\right)$

Solution:

$$
\begin{aligned}
& \omega_{1}=(5+2 i) i=5 i-2 \\
& \omega_{2}=(3+i)(-i)=-3 i+1 \\
& \omega_{1}-\omega_{2}=8 i-3=-3+8 i \\
& \arg \left(\omega_{1}-\omega_{2}\right)=\arg (-3+8 i) \\
& =\pi-\tan ^{-1}\left(\frac{8}{3}\right)
\end{aligned}
$$

Question: Number of integral terms in $\left(3^{\frac{1}{2}}+5^{\frac{1}{4}}\right)^{680}$ is

Answer: 171.00

Solution:

$T_{k+1}={ }^{680} C_{k}(3)^{\frac{680-k}{2}}(5)^{\frac{k}{4}}$
$k=0,4,8, \ldots, 680$
Number of integral terms $=\frac{680}{4}+1=171$
So 171 terms

Question: In the expansion of $(2+x)^{9}$, find the mean of the coefficients of $x, x^{2}, x^{3}, \ldots x^{7}$.
Answer: 2736.00
Solution:

$$
\begin{aligned}
& { }^{9} C_{1} \times 2^{8}+{ }^{9} C_{2} \times 2^{7}+\ldots .+{ }^{9} C_{7} 2^{2} \\
& \frac{3^{9}-2^{9}-9 \times 2-1}{7}=\frac{3^{9}-2^{9}-19}{7}
\end{aligned}
$$

Question: $M=\left(m_{i j}\right) ; m_{i j} \in\{0,1,2\}, i \geq 1, j \leq 2 . A=\{m: M$ is invertible $\}$. Number of $n(A)$.
Answer: 52.00

Solution:

Order: $1 \times 1, M=(1)$ or $(2) \rightarrow 2$ matrices
Order: $2 \times 2, M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a d-b c$
$a d=b c=0$, No. of matrices $=5 \times 5=25$
$a d=b c=1$, No. of matrices $=1 \times 1=1$
$a d=b c=2$, No. of matrices $=2 \times 2=4$
$a d=b c=4$, No. of matrices $=1 \times 1=1$
No. of invertible matrix of order 2×2
$=3^{4}-25-1-4-1=50$
Total $=50+2=52$

Question: Five students given roll number and to be seated according to it. Find ways such that no students is on correct seat.

Answer: 44.00

Solution:

Number of seating arrangements
$5!\left[1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}\right]$
$=5!\left(\frac{120-120+60-20+5-1}{120}\right)$
$=44$

Question: a and b are the roots of $x^{2}-7 x-1=0$, then $\frac{a^{21}+b^{21}+a^{17}+b^{17}}{a^{19}+b^{19}}=$?
Answer: 51.00

Solution:

Given $x^{2}-7 x-1=0$
$a^{2}-1=7 a$
$a^{4}+1=49 a^{2}+2 a^{2}$
$a^{4}+1=51 a^{2}$
$\frac{a^{21}+b^{21}+a^{17}+b^{17}}{a^{19}+b^{19}}=\frac{a^{17}\left(51 a^{2}\right)+b^{17}\left(51 b^{2}\right)}{a^{19}+b^{19}}=51$

Question: Number of ordered truth values of (p, q, r) such that $(p \vee q) \wedge(p \vee r) \rightarrow(q \vee r)$ is true.
Answer: 7.00

Solution:

False only if
$(p \vee q) \wedge(p \vee r)$ is $\mathrm{T} \& q \vee r$ is F

$$
q=r=F
$$

So p has to be true
In remaining 7 cases it is True

Question: $x+y+z=15$. Find number of ordered solutions (x, y, z) such that $x, y, z \geq 0$
Answer: 136.00

Solution:

Total ordered solutions
$\Rightarrow{ }^{15+3-1} C_{3-1}={ }^{17} C_{2}$
$\Rightarrow{ }^{15+2} C_{2}=136$

Question: Area of region $(x, y): x^{2}+(y-2)^{2} \leq 4 ; x^{2} \geq 2 y$ is

Options:

(a) $\pi-\frac{8}{3}$
(b) $\pi+\frac{8}{3}$
(c) $2 \pi-\frac{16}{3}$
(d) $2 \pi+\frac{16}{3}$

Answer: (a)

Solution:

$$
\begin{aligned}
& x^{2}=2 y \\
& 2 y+(y-2)^{2}=4 \\
& y^{2}-2 y=0 \\
& y=0,2
\end{aligned}
$$

$a+b+c=\frac{\pi}{4} \cdot 4=\pi$
$a=\frac{1}{2} \cdot 2 \cdot 2=2$
$b=\frac{8}{6 \cdot 2}=\frac{2}{3}$
$c=\pi-2-\frac{2}{3}=\pi-\frac{8}{3}$

Question: The lines $y=0, x=0, y=5, x=\frac{2}{3}$ forms a rectangle. $A(0, a)$ and $B(b, 0)$ are points such that $A B$ divides area of rectangle in 1:4. Midpoint of $A B$ lies on Answer: $x y=\frac{1}{3}$

Solution:

$A_{R}=\frac{10}{3}$
$A_{\Delta}=\frac{a b}{2}=\frac{2}{3}$
$a b=\frac{4}{3}$
$\left(\frac{b}{2}, \frac{a}{2}\right)$ lies on $x y=\frac{1}{3}$

Question: Number of elements in set $S=\left[\theta \in[0,2 \pi]: 3 \cos ^{4} \theta-5 \cos ^{2} \theta-2 \sin ^{6} \theta+2=0\right]$ is
Answer: 9.00

Solution:

$3 \cos ^{4} \theta-5 \cos ^{2} \theta-2 \sin ^{6} \theta+2=0$
$3 \cos ^{4} \theta-3 \cos ^{2} \theta-2 \cos ^{2} \theta-2 \sin ^{6} \theta+2=0$
Writing in x terms
$\left(3 \cos ^{4} x-3 \cos ^{2} x\right)-2 \sin ^{6} x+2 \sin ^{2} x=0$
$3 \cos ^{2} x\left(\cos ^{2} x-1\right)-2 \sin ^{2} x\left(-\sin ^{4} x+1\right)=0$
$3 \cos ^{2} x \times \sin ^{2} x=2 \sin ^{2} x \times \cos ^{2} x\left(1+\sin ^{2} x\right)$
$\sin ^{2} x=0 \rightarrow 3$ solutions
$\cos ^{2} x=0 \rightarrow 2$ solutions
$\sin ^{2} x=\frac{1}{2} \rightarrow 4$ solutions
So total 9 solutions.

Question: 48 medals were given in event A. 25 medals were given in event B and 18 medals were given in event C. Total men $=60.5$ men got medals in all 3 events. How many got medals in exactly 2 events.
Answer: 21.00

Solution:

$$
\begin{aligned}
& 76-2(a+b+c)+(a+b+c)+5=60 \\
& \Rightarrow a+b+c=21
\end{aligned}
$$

Question: $A^{T}=\alpha A-I,\left|A^{2}-A\right|=4$. Find sum of all possible values of α. Order of A is 2 .

Answer: 4.00

Solution:

For $n=\alpha$,
$A=\alpha A^{T}-I$
$A^{T}=\alpha A-I$
$A=\alpha(\alpha A-I)-I$
$A=\alpha^{2} A-(\alpha+1) I$
$A=\frac{-(\alpha+1)}{1-\alpha^{2}} I=\frac{I}{\alpha-1}$
$\left|A^{2}-A\right|=|A||A-I|$
$=\left(\frac{1}{\alpha-1}\right)^{n}\left(\frac{2-\alpha}{\alpha-1}\right)^{n}=4$
$(2-\alpha)^{2}=4(\alpha-1)^{4}$
$=4\left[\alpha^{4}-4 \alpha^{3}+1\right]$

Sum of $\alpha=4$

Question: $\left(1-x^{2} y^{2}\right) d x=x d y+y d x . y(1)=2, y(2)=\alpha$. Find α.
Answer:
Solution:
$\left(1-x^{2} y^{2}\right) d x=d(x y)$
$\int d x=\int \frac{d x y}{1-x^{2} y^{2}}$
$x=\frac{1}{2} \ln \left|\frac{1+x y}{1-x y}\right|+C$
$(1,2)$
$1=\frac{1}{2} \ln |-3|+C$
$C=\frac{2}{\ln 3}$

Question: $f(x)=\left[x^{2}-x\right]+[|[x]-x|]$ check continuity at $x=0,1$
Answer: Discontinuous at $x=1$
Solution:
$f(x)=\left[x^{2}-x\right]+\{x\}$
$f(x)=\left[x^{2}-x\right]$
$\lim _{x \rightarrow 0^{+}} f(x)=-1, \lim _{x \rightarrow 0^{-}} f(x)=0$
$\lim _{x \rightarrow 1^{+}} f(x)=0, \lim _{x \rightarrow 1^{-}} f(x)=-1$

Question: Consider the plane $2 x+y-3 z=6$. If (α, β, γ) is the image of point $(-2,3,5)$ in the given plane, then $\alpha+\beta+\gamma=$ \qquad
Answer: 0.00

Solution:

$\frac{\alpha+2}{2}=\frac{\beta-3}{1}=\frac{\gamma-5}{-3}=\frac{-2(-22)}{14}$
By solving

$$
\alpha+\beta+\gamma=0
$$

Question: $x_{1}, x_{2}, \ldots x_{100}$ are in A.P. If $x_{1}=2, \bar{x}=200, y_{i}=i\left(x_{i}-1\right), i \in\{1,2, \ldots 100\}$, then $\bar{y}=$? Answer: $\frac{26765}{2}$

Solution:

$2, x_{2}, x_{3}, \ldots x_{100}$ are in AP

$$
\frac{\frac{100}{2}(4+99 \times d)}{100}=200
$$

$$
d=4
$$

$$
y_{i}=i(2+(i-1) d)-1
$$

$$
y_{i}=i(2+(i-1) 4)-1
$$

$$
y_{i}=i(4 i-3)=4 i^{2}-3 i
$$

$$
\bar{y}=\frac{4 \sum i^{2}-3 \sum i}{100}
$$

$$
=\frac{4 \times \frac{100 \times 101 \times 201}{6}-3 \times \frac{100 \times 101}{2}}{100}
$$

$$
=\frac{26765}{2}
$$

Question: If $\log _{x+\frac{7}{2}}\left(\frac{x+7}{2 x+3}\right)^{2} \geq 0$, then total number of integral solutions is/are \qquad

Answer: 7.00

Solution:

Case 1: when base is $0<\left(x+\frac{7}{2}\right)<1$ and $\left|\frac{x+7}{2 x+3}\right| \leq 1 \Rightarrow-1 \leq \frac{x+7}{2 x+3} \leq 1$
(i) $\frac{x+7}{2 x+3} \leq 1 \Rightarrow \frac{x+7}{2 x+3} \leq 1$
$x \in\left(-\infty,-\frac{3}{2}\right) \cup[4, \infty]$
Or
(ii) $-1 \leq \frac{x+7}{2 x+3} \Rightarrow \frac{3 x+10}{2 x+3} \geq 0$
$x \in\left(-\infty,-\frac{10}{3}\right] \cup\left[-\frac{3}{2}, \infty\right)$
Required solutions for case $1 x \in\left(-\frac{7}{2},-\frac{5}{3}\right)$
Case 2: when base is $\left(x+\frac{7}{2}\right)>1$ and
$\left|\frac{x+7}{2 x+3}\right| \geq 1 \Rightarrow \frac{x+7}{2 x+3} \geq 1$ or $-1 \geq \frac{x+7}{2 x+3}$
(i) $\frac{x+7}{2 x+3} \geq 1 \Rightarrow \frac{x-4}{2 x+3} \leq 0$
$x \in\left(-\frac{3}{2}, 4\right)$
Or
(ii) $-1 \geq \frac{x+7}{2 x+3} \Rightarrow \frac{3 x+10}{2 x+3} \leq 0$
$x \in\left(-\frac{10}{3},-\frac{3}{2}\right) \cup\left(-\frac{5}{2},-\frac{3}{2}\right)$
Required solutions for case 2

$$
x \in\left(-\frac{5}{2},-\frac{3}{2}\right) \cup\left(-\frac{3}{2}, 4\right]
$$

Total number of integral solutions $= \pm 2, \pm 1,0,3,4$

Question: Find the value of integral $\int_{-\log e^{e^{2}}}^{\log e^{2}} e^{x}\left(\log _{e}\left(e^{x}+\sqrt{1+e^{2 x}}\right) d x\right)$ is
Answer:
Solution:
$\int_{-\log e^{2}}^{\log e^{2}} e^{x}\left(\log _{e}\left(e^{x}+\sqrt{1+e^{2 x}}\right) d x\right)$
Put $e^{x}=t$

$$
\begin{aligned}
& \int_{\frac{1}{2}}^{2} \ln \left(t+\sqrt{1+t^{2}}\right) d t \\
& \left.t \ln \left(t+\sqrt{1+t^{2}}\right)\right|_{\frac{1}{2}} ^{2}-\int_{\frac{1}{2}}^{2} \frac{t}{\sqrt{1+t^{2}}} \\
& 2 \ln (2+\sqrt{5})-\frac{1}{2} \ln \left(\frac{1+\sqrt{5}}{2}\right)-\frac{1}{2} 2 \times\left.\sqrt{1+t^{2}}\right|_{\frac{1}{2}} ^{2} \\
& 2 \ln (2+\sqrt{5})-\frac{1}{2} \ln \left(\frac{1+\sqrt{5}}{2}\right)-\left(\sqrt{5}-\frac{\sqrt{5}}{2}\right)
\end{aligned}
$$

