

JEE MAIN 2023

APRIL ATTEMPT

PAPER-1 (B.Tech / B.E.)

QUESTIONS & SOLUTIONS Reproduced from Memory Retention

12 APRIL, 2023
9:00 AM to 12:00 Noon

Duration : 3 Hours

Maximum Marks : 300

SUBJECT - CHEMISTRY

LEAGUE OF TOPPERS (Since 2020) TOP 100 AIRs IN JEE ADVANCED

Admission Announcement for JEE Advanced (For Session 2023-24)

Reliable Institute : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com

CHEMISTRY

- 1. How much water (in litre) is added to 1 litre of HCl solution of pH = 1 to make its pH = 2.
- Ans. 9 litre

Sol. $M_1V_1 = M_2V_2$ $0.1 \times 1 = 0.01 \times V_2$ $V_2 = 10$ litre Ans. 10 - 1 = 9 litre

2. Consider the following reaction sequence

$$\begin{array}{cccc} CaCl_{2} + Na_{2}CO_{3} \longrightarrow X + Y \\ & & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline \hline \hline & & & \\ \hline \hline$$

Unleashing Potential											
Sol.	(P)	Ni ⁺⁴ -	\rightarrow [Ar]3d ⁶								
	$t_{2g}^{2,2,2}e_{g}^{0,0}$										
		CFSE	$=-0.4 \times 6\Delta_0$	$= -2.4\Delta_{0}$							
	(Q) $[Ti(H_2O)_6]^{3+}$										
	$\mathrm{Ti}^{+3} \rightarrow \mathrm{[Ar]} \mathrm{3d}^{\mathrm{1}}$										
	$t_{2g}^{1,0,0}e_{g}^{0,0}$										
	(R)										
	(R) $[Fe(CN)_6]^{3-}$ $Fe^{+3} \rightarrow [Ar]3d^5$ $CN^- = SFL$										
	$t_{2g}^{2,2,1}e_{g}^{0,0}$										
	$CFSE = -0.4 \times 5\Delta_0 = -2\Delta_0$										
	(S) $[Ni(NH_3)_6]^{2+}$										
	$Ni^{+2} \rightarrow [Ar]3d^{8}$										
	(b) $[I4(I413)_{0}]$ $Ni^{+2} \rightarrow [Ar]3d^{8}$ $t_{2g}^{2,2,2}e_{g}^{-1,1}$ $CFSE = -0.4 \times 6\Delta_{0} + 2 \times 0.6\Delta_{0}$ $= -2.4 \Delta_{0} + 1.2 \Delta_{0} = -1.2\Delta_{0}$										
	$CFSE = -0.4 \times 6\Delta_0 + 2 \times 0.6\Delta_0$										
	$= -2.4 \Delta_0 + 1.2 \Delta_0 = -1.2 \Delta_0$										
4.	(Column-II Column-II									
	(P) El	lectron p	orecise	(i)	(i) B_2H_6						
	(Q) E	Electron	rich	(ii)	(ii) HF (iii) MgH ₂ (iv) CH ₄						
	(R) E	lectron	deficient	(iii)	(iii) MgH ₂						
	(S) Sa	aline Hy	dride	(iv)	(iv) CH ₄						
	(1) P-	(iv)	Q – (ii)	R – (i)	S – (iii)						
	(2) P-	·(ii)	Q – (iii)	R – (i)	S - (iv)						
	(3) P-		Q – (iii)	R-(ii)	S – (i)						
	(4) P-	·(ii)	Q – (iv)	R-(i)	S – (iii)						
Ans.	(1)										
Sol.	Electron precise			CH ₄							
	Electron rich Electron deficient Saline Hydride			$egin{array}{c} \mathrm{HF} \ \mathrm{B}_{2}\mathrm{H}_{6} \ \mathrm{MgH}_{2} \end{array}$							

Statement-1 : 5f e⁻ can participate in bonding to a greater extent as compared to 4f electrons. 5.

Statement-2 : Both resemble in their angular part of wave function but 5f is not as buried as 4f orbitals.

(1) Both statement-1 and statement-2 are correct and statement-2 is correct expalantion of statement-1

(2) Both statement-1 and statement-2 are correct but statement-2 is not correct expalantion of statement-1

- (3) Statement-1 is correct and statement-2 is incorrect
- (4) Statement-1 is incorrect and statement-2 is correct

 C_2^{2-} has same magnetic property and bond order with : 6. $(1) NO^{+}$ $(2) O_2^+$ $(3) N_2^+$

(1) Ans.

Sol.
$$C_2^{2-} \Rightarrow \sigma 1s^2 \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \left[\pi 2p_x^2 = \pi 2p_y^2\right]\sigma 2p_x^2$$

B.O. =
$$\frac{10-4}{2}$$
 = 3 (Diamagnetic

, O2 $NO^{\oplus} \Rightarrow$ According N₂ like configuration (No. of electrons = 7 + 8 - 1 = 14) $\sigma 1s^2 \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \left[\pi 2p_x^2 = \pi 2p_y^2\right]\sigma 2p_z^2$ B.O. = $\frac{10-4}{2} = 3$ (Diamagnetic) $O_2^{\oplus} \implies \sigma 1s^2 \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_z^2, \left\lceil \pi 2p_x^2 = \pi 2p_y^2 \right\rceil \left[\pi^* 2p_x^1 = \pi^* 2p_y^0\right]$

(No. of electrons = 16 - 1 = 15)

B.O.
$$=\frac{10-5}{2}=2.5$$
 (Paramagnetic)

7. Light of wavelengths 400 nm is used for photoelectric effect.

Metal	Li	Na	Κ	Mg	Cu
Work function	2.42	2.3	2.25	3.7	4.8

In how many of the following metals photoelectric is possible?

Ans. (3)

(Li, Na, K) Sol.

$$E = \frac{1240}{\lambda} = \frac{1240}{400} = 3.1 \text{ eV}$$

Li, Na and K have less work function in comparison of energy of incident light.

So, Li, Na and K can show photoelectric effect but Mg and Cu can not show photoelectric effect.

8. Correct order of density for alkali metal

$$(1) Li < Na < K < Rb < Cs$$

- (2) Li < K < Na < Rb < Cs
- (3) Li > Na > K > Rb > Cs
- (4) Li > K > Na > Rb > Cs

Ans. (2)

- Order of density : Li < K < Na < Rb < CsSol.
- Statement-1 : Boron is hard as it has high lattice energy. 9.

ergy. Statement-2 : Boron has high melting and boiling point as compared to other group members.

- (1) Both statements-1 and 2 are correct.
- (2) Both statement-1 and 2 are incorrect.
- (3) Statement-1 is correct and statement-2 is incorrect.
- (4) Statement-1 is incorrect and statement-2 is correct.
- Ans. (1)

Ans. 4

 $\frac{2R \times T_{B}}{M_{B}} = \sqrt{\frac{3RT}{M_{A}}}$ Sol. $\frac{2\times90}{M_{\rm B}} = \frac{3\times600}{40}$ $M_{\rm B} = 4$

- 13. An ideal gas in container with conducting walls is expanded isothermally from 2L to 3L against constant external pressure of 2 atm. Determine work done by the gas in Joule.
- 200 to 203 Ans.

Sol.
$$W = -P_{ext}(V_2 - V_1)$$

= $-2(3 - 2) = -2$ atm-L
= -2×101.3
= -202.6 J

14. A volatile chloride contains 55% chlorine by weight. 0.57 gm metal chloride vapour occupies 100 ml at STP. Formula of metal chloride : (1) MCl₂ (2) MCl₄ (3) MCl₃ (4) MCl Ans. (1) Molecular mass of metal chloride (MCl_x) Sol. $= 0.57 \times 227 = 129 = A + 35.5x$ Mass of Cl $=\frac{55}{45}=\frac{35.5x}{A}$ Mass of metal A = 29xMolecular mass = A + 35.5x = 127.564.5x = 129 \Rightarrow x = 2Potential Metal chloride is MCl₂ 15. **Column-I Column-II** (a) Polyester (i) Nylon-2, Nylon-6 (b) Addition polymer (ii) Dacron (c) Synthetic polymer (iii) PAN (d) Biodegradable polymer (iv) 2-chlorobuta-1,3-diene (1) (i)-(d); (ii)-(a); (iii)-(b); (iv)-(c) Ans. (1) Find the products A and B in the given reaction : 16. Hex-2-ene $\xrightarrow{O_3}_{H_2O_2}$ A + B

Ans. (4)

(Classroom) ··-→ selected for

ASIAN PACIFIC MATHEMATICS OLYMPIAD (APMO) 2023

IMOTC 2023 Camp (Conducted by HBCSE)

Success Delivered to the Deserving

RELIABLE INSTITUTE : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 | Website : www.reliablekota.com | E-mail : info@reliablekota.com f reliablekota reliablekota reliablekota reliablekota