JEE MAIN 2023

APRIL ATTEMPT

PAPER-1 (B.Tech / B.E.)

Maximum Marks : 300

SUBJECT - CHEMISTRY

LEAGUE OF TOPPERS (Since 2020) TOP 100 AIRs IN JEE ADVANCED

Admission Announcement for JEE Advanced (For Session 2023-24)

Starting From : 12 \& 19 APRIL'23
Avail Scholarship up to $\mathbf{9 0 \%}$ through R-NET on EVERY SUNDAY

CHEMISTRY

1. How much water (in litre) is added to 1 litre of HCl solution of $\mathrm{pH}=1$ to make its $\mathrm{pH}=2$.

Ans. 9 litre
Sol. $\quad \mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$
$0.1 \times 1=0.01 \times V_{2}$
$\mathrm{V}_{2}=10$ litre
Ans. $10-1=9$ litre
2. Consider the following reaction sequence

(A) $\mathrm{X}: \mathrm{CaCO}_{3}, \quad \mathrm{Y}: \mathrm{NaCl}, \quad \mathrm{Z}: \mathrm{HCl}$
(B) $\mathrm{X}: \mathrm{CaO}, \quad \mathrm{Y}: \mathrm{NaCl}+\mathrm{CO}_{2}$,

Z : KCl
(C) $\mathrm{X}: \mathrm{CaO}, \quad \mathrm{Y}: \mathrm{NaCl}+\mathrm{CO}_{2}$,

Z : NaCl
(D) $\mathrm{X}: \mathrm{CaCO}_{3}, \quad \mathrm{Y}: \mathrm{NaCl}$,
$\mathrm{Z}: \mathrm{KCl}$
Ans. (A)
Sol. $\mathrm{CaCl}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow \mathrm{CaCO}_{3}+\mathrm{NaCl}$

3. Complex
(P) $\left[\mathrm{NiF}_{6}\right]^{2-}$
(Q) $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(R) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
(S) $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
(1) P-(ii) ; Q-(iii) ; R-(i) ; S-(iv)
(2) P-(i) ; Q-(ii) ; R-(iii) ; S-(iv)
(3) P-(iii) ; Q-(ii) ; R-(iv) ; S-(i)
(4) P-(iv) ; Q-(iii) ; R-(ii) ; S-(i)

Ans. (1)
$\mathrm{Ni}^{+4} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{6}$

$$
\mathrm{t}_{2 \mathrm{~g}}^{2,2,2} \mathrm{e}_{\mathrm{g}}^{0,0}
$$

$$
\mathrm{CFSE}=-0.4 \times 6 \Delta_{0}=-2.4 \Delta_{0}
$$

(Q) $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
$\mathrm{Ti}^{+3} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{1}$
$\mathrm{t}_{2 \mathrm{~g}}^{1,0,0} \mathrm{e}_{\mathrm{g}}{ }^{0,0}$
CFSE $=-0.4 \times 1 \Delta_{0}=-0.4 \Delta_{0}$
(R) $\quad\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$

$$
\begin{aligned}
& \mathrm{Fe}^{+3} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{5} \quad \mathrm{CN}^{-}=\mathrm{SFL} \\
& \mathrm{t}_{2 \mathrm{~g}}^{2,2,1} \mathrm{e}_{\mathrm{g}}^{0,0} \\
& \mathrm{CFSE}=-0.4 \times 5 \Delta_{0}=-2 \Delta_{0}
\end{aligned}
$$

(S) $\quad\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
$\mathrm{Ni}^{+2} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{8}$
$t_{2 g}^{2,2,2} \mathrm{e}_{\mathrm{g}}{ }^{1,1}$
CFSE $=-0.4 \times 6 \Delta_{0}+2 \times 0.6 \Delta_{0}$

$$
=-2.4 \Delta_{0}+1.2 \Delta_{0}=-1.2 \Delta_{0}
$$

4.

Column-I

(P) Electron precise
(Q) Electron rich
(R) Electron deficient
(S) Saline Hydride
(1) P-(iv) Q - (ii)
(2) P-(ii) $\quad \mathrm{Q}$ - (iii)
(3) P -(iv) Q - (iii)
(4) P-(ii) $\quad \mathrm{Q}$ - (iv)

Column-Î

(i) $\mathrm{B}_{2} \mathrm{H}_{6}$
(ii) HF
(iii) MgH_{2}
(iv) CH_{4}

R-(i)
S - (iii)
R-(i) S - (iv)
R-(ii)

$$
S-(i)
$$

R-(i)

Ans. (1)
Sol. Electron precise
CH_{4}
Electron rich
Electron deficient
HF
Saline Hydride
$\mathrm{B}_{2} \mathrm{H}_{6}$ MgH_{2}
5. Statement-1:5f e can participate in bonding to a greater extent as compared to 4 f electrons.

Statement-2 : Both resemble in their angular part of wave function but 5 f is not as buried as 4 f orbitals.
(1) Both statement-1 and statement-2 are correct and statement-2 is correct expalantion of statement-1
(2) Both statement-1 and statement-2 are correct but statement-2 is not correct expalantion of statement-1
(3) Statement-1 is correct and statement-2 is incorrect
(4) Statement-1 is incorrect and statement-2 is correct

Ans. (1)
6. $\quad \mathrm{C}_{2}{ }^{2-}$ has same magnetic property and bond order with :
(1) NO^{+}
(2) $\mathrm{O}_{2}{ }^{+}$
(3) $\mathrm{N}_{2}{ }^{+}$
(4) O_{2}

Ans. (1)
Sol. $\quad \mathrm{C}_{2}^{2-} \Rightarrow \sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}, \sigma * 2 \mathrm{~s}^{2},\left[\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right] \sigma 2 \mathrm{p}_{\mathrm{z}}^{2}$

$$
\text { B.O. }=\frac{10-4}{2}=3 \quad \text { (Diamagnetic) }
$$

$\mathrm{NO}^{\oplus} \Rightarrow$ According N_{2} like configuration
(No. of electrons $=7+8-1=14$)
$\sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}, \sigma^{*} 2 \mathrm{~s}^{2},\left[\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right] \sigma 2 \mathrm{p}_{\mathrm{z}}^{2}$

$$
\text { B.O. }=\frac{10-4}{2}=3 \quad \text { (Diamagnetic) }
$$

$\mathrm{O}_{2}{ }^{\oplus} \Rightarrow \sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}, \sigma^{*} 2 \mathrm{~s}^{2}, \sigma 2 \mathrm{p}_{\mathrm{z}}^{2},\left[\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right]\left[\pi^{*} 2 \mathrm{p}_{\mathrm{x}}^{1}=\pi^{*} 2 \mathrm{p}_{\mathrm{y}}^{0}\right]$
(No. of electrons $=16-1=15)$

$$
\text { B.O. }=\frac{10-5}{2}=2.5 \quad(\text { Paramagnetic })
$$

7. Light of wavelengths 400 nm is used for photoelectric effect.

Metal	Li	Na	K	Mg	Cu
Work function	2.42	2.3	2.25	3.7	4.8

In how many of the following metals photoelectric is possible?
Ans. (3)
Sol. (Li, Na, K)

$$
\mathrm{E}=\frac{1240}{\lambda}=\frac{1240}{400}=3.1 \mathrm{eV}
$$

Li, Na and K have less work function in comparison of energy of incident light.
So, Li, Na and K can show photoelectric effect but Mg and Cu can not show photoelectric effect.
8. Correct order of density for alkali metal
(1) $\mathrm{Li}<\mathrm{Na}<\mathrm{K}<\mathrm{Rb}<\mathrm{Cs}$
(2) $\mathrm{Li}<\mathrm{K}<\mathrm{Na}<\mathrm{Rb}<\mathrm{Cs}$
(3) $\mathrm{Li}>\mathrm{Na}>\mathrm{K}>\mathrm{Rb}>\mathrm{Cs}$
(4) $\mathrm{Li}>\mathrm{K}>\mathrm{Na}>\mathrm{Rb}>\mathrm{Cs}$

Ans. (2)
Sol. Order of density : $\mathrm{Li}<\mathrm{K}<\mathrm{Na}<\mathrm{Rb}<\mathrm{Cs}$
9. Statement-1 : Boron is hard as it has high lattice energy.

Statement-2 : Boron has high melting and boiling point as compared to other group members.
(1) Both statements-1 and 2 are correct.
(2) Both statement-1 and 2 are incorrect.
(3) Statement-1 is correct and statement-2 is incorrect.
(4) Statement- 1 is incorrect and statement- 2 is correct.

Ans. (1)

Unleashing Potential
10. Statement-1: SbCl_{5} is more covalent than SbCl_{3}.

Statement-2 : Higher oxidation state of halogens is more stable.
(1) Both statements- 1 and 2 are correct.
(2) Both statement-1 and 2 are incorrect.
(3) Statement-1 is correct and statement-2 is incorrect.
(4) Statement- 1 is incorrect and statement- 2 is correct.

Ans. (3)
11. (A) During changing PbSO_{4} is converted into PbO_{2} at anode.
(B) During changing PbSO_{4} is converted into at PbO_{2} at cathode.
(C) In lead storage battery $\sim 38 \%$ con. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is used.

Correct statements are:
(1) A, B, C
(2) A, B
(3) A, C
(4) B, C

Ans. (3)
12. Most probable speed of gas B at 90 K is same as root mean square speed of gas A (Molar mass $=$ 40) at 600 K .

Calculate molar mass of gas B.
Ans. 4
Sol. $\sqrt{\frac{2 R \times T_{B}}{M_{B}}}=\sqrt{\frac{3 R T_{A}}{M_{A}}}$
$\frac{2 \times 90}{\mathrm{M}_{\text {в }}}=\frac{3 \times 600}{40}$
$M_{B}=4$
13. An ideal gas in container with conducting walls is expanded isothermally from 2 L to 3 L against constant external pressure of 2 atm . Determine work done by the gas in Joule.
Ans. 200 to 203
Sol. $\quad \mathrm{W}=-\mathrm{P}_{\text {ext }}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$
$=-2(3-2)=-2$ atm -L
$=-2 \times 101.3$
$=-202.6 \mathrm{~J}$
14. A volatile chloride contains 55% chlorine by weight.
0.57 gm metal chloride vapour occupies 100 ml at STP.

Formula of metal chloride :
(1) MCl_{2}
(2) MCl_{4}
(3) MCl_{3}
(4) MCl

Ans. (1)
Sol. Molecular mass of metal chloride $\left(\mathrm{MCl}_{\mathrm{x}}\right)$

$$
\begin{aligned}
& \qquad=0.57 \times 227=129=\mathrm{A}+35.5 \mathrm{x} \\
& \frac{\text { Mass of Cl }}{\text { Mass of metal }}=\frac{55}{45}=\frac{35.5 \mathrm{x}}{\mathrm{~A}} \\
& \mathrm{~A}=29 \mathrm{x} \\
& \text { Molecular mass }=\mathrm{A}+35.5 \mathrm{x}=127.5 \\
& \quad 64.5 \mathrm{x}=129 \\
& \Rightarrow \quad \mathrm{x}=2
\end{aligned}
$$

Metal chloride is MCl_{2}
15. Column-I
(i) Nylon-2, Nylon-6
(ii) Dacron
(iii) PAN
(iv) 2-chlorobuta-1,3-diene
(1) (i)-(d); (ii)-(a); (iii)-(b); (iv)-(c)

Column-II

(a) Polyester
(b) Addition polymer
(c) Synthetic polymer
(d) Biodegradable polymer

Ans. (1)
16. Find the products A and B in the given reaction :

Hex-2-ene $\xrightarrow[\mathrm{H}_{2} \mathrm{O}_{2}]{\mathrm{O}_{3}} \mathrm{~A}+\mathrm{B}$
(1)

(A)

(B)
(2)

(B)
(3)

(B)
(4)

(A)

(B)

Ans. (4)

Major product is :
(1)

(2)

(3)

(4)

Ans. (1)

Sol.

18.

Which is incorrect.
(1) $\stackrel{\oplus}{\mathrm{N}} \mathrm{O}$ is electrophile
(2) X is para nitroso phenol
(3) Y is para nitro phenol
(4) x is para nitro phenol

Ans. (4)
19.

What will be the value of R_{F} of most polar component
If R_{F} is $\mathrm{x} \times 10^{-2}$. What is x ?
Ans. 25
Sol. $\quad \mathrm{R}_{\mathrm{F}}=\frac{2}{8}=\frac{1}{4}=0.25$
So, $x=25$
20.

(i) A show tautomerism
(ii) B is aromatic
(iii) All carbon bond length is equal in (B)
(iv) B is monoanion

Which is/are correct statements :
(1) (i), (ii), (iii)
(2) (i), (ii), (iv)
(3) (ii), (iii), (iv)
(4) (i) \& (iv)

Ans. (1)
21.

(1)

(2)

(3)

(4)

Ans. (2)
22. Match the column

Column-I

(a) Acid rain
(b) CO_{2}
(c) CH_{4}
(d) Phosphate fertilizer

Column-II
(p) Oxide of nitrogen
(q) Eutrophication
(r) Global warning
(s) Rain water at pH 5.6

Ans. (a)-(p); (b)-(s); (c)-(r); (d)-(q)

RELIABLE INSTITUTE : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com
© reliablekota O reliablekota © reliableinstitutekota © reliable_kota if reliablekota

