

JEE MAIN 2023

APRIL ATTEMPT

PAPER-1 (B.Tech / B.E.)

QUESTIONS & SOLUTIONS Reproduced from Memory Retention

12 APRIL, 2023
9:00 AM to 12:00 Noon

Duration : 3 Hours

Maximum Marks : 300

SUBJECT - PHYSICS

LEAGUE OF TOPPERS (Since 2020) TOP 100 AIRs IN JEE ADVANCED

Admission Announcement for JEE Advanced (For Session 2023-24)

Reliable Institute : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com

PHYSICS

If a Planet has mass equal to 16 times the mass of earth and radius equal to 4 times that of Earth. 1. The ratio of escape speed of Planet is to that of Earth is:

(3) $\sqrt{2}$:1 (1) 2 : 1(2) 1 : 2 (4)4:1

Ans. (1)

Sol.
$$V_{\text{planet}} = \sqrt{\frac{2 \text{ G } 16m_e}{4 \text{ R}_e}}$$

 $V_{\text{planet}} = 2\sqrt{\frac{2 \text{ G } m_e}{\text{ R}_e}}$
 $V_{\text{planet}} = 2V_{\text{earth}}$

A body is projected vertically upwards with a velocity 150 m/sec. Find the ratio of speeds at t = 32. sec. and t = 5 sec.?

- 3. If proton and α particle are moving with accelerating potential difference 2 V and 4 V respectively. Find out ratio of their de-Broglie wave length :
 - (1)1:2(2) 2 : 1 (3) 4 : 1 (4)1:4

(3) Ans.

Sol.
$$\lambda = \frac{h}{\sqrt{2mqv}}$$

 $\lambda_p = \frac{h}{\sqrt{2mq(2v)}}$
 $\lambda_\alpha = \frac{h}{\sqrt{2 \times 4m \times 2q \times (4v)}}$
 $\frac{\lambda_p}{\lambda_\alpha} = 4$

A particle under SHM having amplitude A. Find ratio of potential energy and KE of $x = \frac{A}{2}$ from 4.

A body of mass 5 kg is in equilibrium due to forces F₁, F₂ and F₃. F₂ and F₃ are perpendicular to 5. each other. If F_1 is removed then what would be the acceleration of body.

Given $F_2 = 6N$ and $F_3 = 8$ N

(1) 2 m/s^2 (2) 1 m/s^2 $(3) 4 \text{ m/s}^2$ (4) 8 m/s²

Ans. (1)

Sol.
$$\vec{a} = \frac{\vec{F} + \vec{F}_3}{m}$$

 $\vec{a} = \frac{6\hat{i} + 8\hat{j}}{5}$
 $|\vec{a}| = \frac{10}{5} = 2 \text{ m/s}^2$

Given, the message signal is $y_m = A_m \sin(4\pi t)$ and carrier signal is $y_c = A_c \sin(1000 \pi t)$. Choose 6. the frequencies given below which lies in the bandwidth of amplitude modulated signal as given below:

(A) 428 Hz (B) 425 Hz (C) 498 Hz (D) 502 Hz (E) 500 Hz (1) A, B, C (2) C, D, E (3) B, D (4) B, D, E

Ans. (2)

rotational kir international k A spherical shell is performing pure rolling motion. If the ratio of rotational kinetic energy and 7. total kinetic energy is $\frac{x}{5}$? Find the value of x.

Ans. 2

Sol.

$$K_{Tr} = \frac{1}{2} mv^{2}, \quad K_{R} = \frac{1}{2} \left(\frac{2}{3} mR^{2}\right) \omega^{2}$$

$$K_{T} = K_{Tr} + K_{R}$$

$$= \frac{mv^{2}}{2} + \frac{mv^{2}}{3}$$

$$K_{T} = \frac{5mv^{2}}{6}$$

$$\frac{K_{R}}{K_{T}} = \frac{1/3mv^{2}}{5/6mv^{2}} = \frac{2}{5}$$

8. A car of mass 500 kg is moving with constant velocity 80 km/hr. If friction coefficient between tyre of car and road is 0.04. Find work done (KJ) by engine of car in moving 4 km :

800 Ans.

 $F = umg = 0.04 \times 5000 = 200 N$ Sol.

 $w = 200 \times 4000$

w = 8000 kJ

9. Two satellites of masses m and 2 m are revolving in same orbit about earth. Which quantities will be same for both satellites

- (1) Kinetic energy
- (3) Total energy

Ans. (4)

Orbital speed Sol.

$$v = \sqrt{\frac{GM_e}{r}}$$

 $M_e = mass of earth$

r = radius of orbit

these will depend on mass of satellite

$$KE = \frac{GM_{e}m}{2r}$$
$$PE = -\frac{GM_{e}m}{r}$$

$$TE = -\frac{GM_{e}m}{2r}$$

NSTINS USINS les 64 identical drops each charged to 10 volts coalesce to form a bigger drop. Find potential of 10. bigger bubble (in volt) :

160 Ans.

By volume conservation Sol.

$$64 \times \frac{4}{3}\pi r^{3} = \frac{4}{3}\pi R^{3}$$

$$R = 4r$$
Now, $V = \frac{kQ}{r} = 10$ volt
$$V' = \frac{k(64Q)}{4r}$$

$$= \frac{16kQ}{r} = 160$$
 volt

- (2) Potential energy
- (4) Speed

(4) 220

11. Temperature of body down from 80° C to 60° C in 5 minute. Then in what time temperature down from 60° C to 40° C? Given $T_{surrounding} = 20^{\circ}$ C :

(1)
$$\frac{20}{3}$$
 min. (2) $\frac{25}{3}$ min. (3) 10 min. (4) 5 min.

Sol.
$$\frac{\Delta T}{\Delta t} = K(T - T_s)$$

 $\frac{80 - 60}{5} = K(70 - 20)$
 $4 = K (50)$ (i)
 $\frac{60 - 40}{t} = K(50 - 20)$
 $t = \frac{2}{3K} = \frac{2 \times 50}{3 \times 4}$
 $t = \frac{25}{3}$ min.

12. In an NPN transistor for common emitter mode the value of current gain will be _____

(Given
$$\Delta I_C = 11 \text{ mA}$$
, $\Delta I_B = 100 \mu \text{A}$)

(2) 100

Ans. (3)

Sol. CE mode current given

$$\beta = \frac{\Delta I_{\rm C}}{\Delta I_{\rm B}} = 110$$

13. R.M.S. speed of chlorine molecule is 490 m/sec. Find R.M.S. speed of Argon molecule at same temperature.

(3) 110

(Molar mass of chlorine = 70.9μ ; Molar mass of argon = 39.9μ)

(1) 451.9(2) 551.9(3) 651.9(4) 751.9

Ans. (3)

Sol.
$$V_{\rm rms} \propto \sqrt{\frac{1}{M}}$$

$$\frac{v_{rms}}{490} = \sqrt{\frac{70.9}{39.9}}$$

$$V_{\rm rms} = 490 \times 1.3 = 651.9$$

Find efficiency of Carnot engine working between boiling point and melting point of water : 14.

(1) 100 %	(2) 26.81 %	(3) 36.63 %	(4) 73.19 %
-----------	-------------	-------------	-------------

- (2) Ans.
- $\eta = 1 \frac{T_L}{T_H} = i \frac{273}{373}$ Sol.

 $\eta = 26.81 \%$

The rate of change of radius of a coil is 0.1 mm/s. The magnetic field is 0.4 Tesla. The induced 15. Unleushing emf is $x\mu_0$ volt. Find value of x?

Sol.

$$A = \pi r^{2}$$

$$\phi = B\pi r^{2}$$

$$\frac{d\phi}{dt} = e = B\pi 2r \frac{dr}{dt}$$

$$e = 0.4 \times 2 \times \pi \times r \times 0.1$$

$$e = 8\pi \times 10^{-4} \times 2 \times 10^{-3}$$

$$e = 16\pi \times 10^{-7} \text{ volt}$$

 $imes 0.1 imes 10^{-2}$

 $e = 4\mu_0$ volt

- 16. If length of conducting wire of resistance 'R' is made double by elongating it ; its new resistance will be
- (3) $\frac{R}{4}$ (4) $\frac{R}{2}$ (1) 2 R (2) 4 R Ans. (2) Initially R = $\frac{\rho \ell}{\Lambda}$ Sol. After elongation R' = $\frac{\rho \times 2\ell}{\underline{A}}$ = 4 Rthe current a (4) 1.8 A (4 17. Current at 0°C is 2A. Current at 100°C is 1.2 A. Then what would be the current at 50°C. (1) 1.2 A (2) 1.4 A Ans. (3) $i = \ell_0 (1 - \infty \Delta T)$ Sol. $1.2 = 2(1 - \infty (100 - 0))$ $\infty = 4 \times 10^{-3}$
 - $i = 2 (1 4 \times 10^{-3} \times 50)$ i = 1.6 A
- 18. If light of photon energy 12.75 eV is incident on H-sample. Find out number of spectral lines emitted.
- 6 Ans.
- $12.75 = 13.6 \left(\frac{1}{1^2} \frac{1}{n^2}\right)$ Sol. n = 4

number of spectral lines = $\frac{n(n-1)}{2} = 6$

19. Statement-I:- In a series LCR circuit if frequency increases then current flowing through circuit first increases then attains maximum value and then decreases.

Statement-II:- At resonant frequency power factor of LCR circuit is one.

21. Two identical convex lenses are arranged as shown in figure. What will be the distance of final image from first lens.

Ans. (3)

Potential

for Ist lens Sol.

	$\frac{1}{V_1} - \frac{1}{\infty} = \frac{1}{20}$	
	$V_1 = 20 \text{ cm}$	
	For II nd lens	
	$\frac{1}{V_2} - \frac{1}{-40} = \frac{1}{20}$	
	$V_2 = +20 \text{ cm}$	
	Hence distance = 80 cm	.0
22.	Match the quantities in column-I with their	dimension in column-II.
	Column-I	Column-II
	(P) Angular speed	(a) $[ML^2T^{-1}]$
	(Q) Angular momentum	(b) [T ⁻¹]
	(R) Spring constant	(c) $[MT^{-2}]$
	(S) Moment of inertia	(d) [ML ²]
	(1) (P)-(b), (Q)-(a), (R) - (c), (S) - (d)	100 ^{S1}
	(2) (P)-(b), (Q)-(c), (R) – (a), (S) – (d)	nles
	(3) (P)-(a), (Q)-(b), (R) – (d), (S) – (c)	
	(4) (P)-(a), (Q)-(c), (R) - (b), (S) - (d)	
Ans.	(1)	
Sol.	$[T^{-1}] = \omega$	
	$\mathbf{L} = \mathbf{mvr} = [\mathbf{ML}^2 \mathbf{T}^{-1}]$	
	$k = \frac{F}{x} = [MT^{-2}]$	

 $I = MR^2 = [ML^2]$

9

23. Statement-I : If car and truck are having same speed and are provided same deceleration then they will cover same distance.

Statement-I : Car is moving towards east then turns north, speed remains constant and acceleration is zero.

- (1) Statement-I and Statement-II are true.
- (2) Statement-I and Statement-II are false.
- (3) Statement-I is true and Statement-II is false.
- (4) Statement-I is false and Statement-II is true.
- Ans. (3)
- Sol. Basic theory
- Aux i POISNING Assertion : If dipole is kept in an isolated box. The total flux through the box is zero. 24.

Reason : Dipole has equal and opposite charge

- (1) Statement-I and Statement-II are true.
- (2) Statement-I and Statement-II are false.
- (3) Statement-I is true and Statement-II is false
- (4) Statement-I is false and Statement-II is true.

(1) Ans.

- Basic theory Sol.
- 25. A small bubble is trapped inside a cube of edge length 24 cm. If apparent distance of bubble 12 cm and 4 cm from one and other side. Find out refractive index of ice.
- Ans. 1.5

A dipole having dipole moment \vec{M} is placed in two magnetic field of strength B_1 and B_2 26. respectively. If dipole oscillates 60 time in 20 seconds in B1 magnetic field and 60 oscillations in

 $30\ sec.\ in\ B_2$ magnetic field. Then find (1) $\frac{9}{4}$ (2) Ans. (1) $T = 2\pi \sqrt{\frac{I}{MP}}$ Sol. $\frac{T_1}{T_2} = \sqrt{\frac{B_2}{B_1}}$ $\frac{\mathbf{B}_1}{\mathbf{B}_2} = \left(\frac{\mathbf{T}_2}{\mathbf{T}_1}\right)^2$ $\frac{\mathbf{B}_1}{\mathbf{B}_2} = \left(\frac{30}{60}\right)^2 \times \left(\frac{60}{20}\right)^2$ $\frac{B_1}{B_2} = \frac{9}{4}$

27. Calculate energy released in MeV in following nuclear reaction :

 $\sum_{92}^{238} U \longrightarrow \sum_{90}^{234} Th + {}_{2}^{4} He + Q$ $[^{238} U = 238.05079 \text{ u}, \quad {}^{234} Th = 234.04363 \text{ u}, \quad {}_{2}^{4} \alpha = 4.00260 \text{ u}] \text{ (Take 1 u = 931.5 MeV/c^2)}$

- Ans. 4.25
- **Sol.** $Q = (M_U M_{Th} M_{He}) C^2$
 - $= 0.00456 \times 931.5 = 4.25 \text{ MeV}$

(Classroom) ··-→ selected for

ASIAN PACIFIC MATHEMATICS OLYMPIAD (APMO) 2023

IMOTC 2023 Camp (Conducted by HBCSE)

Success Delivered to the Deserving

RELIABLE INSTITUTE : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 | Website : www.reliablekota.com | E-mail : info@reliablekota.com f reliablekota reliablekota reliablekota reliablekota