JEE-Mains-13-04-2023 [Memory Based]
 [Morning Shift]

Physics

Question: Train A takes 3.5 seconds less time than train B. Find $\mathrm{L}=$?

Answer: 1800.00
Solution:
$\frac{64 l}{20}-\frac{61 l}{30}=35$
$\frac{l}{10}\left[32-\frac{61}{3}\right]=35$
$\frac{l}{10} \times\left[\frac{35}{3}\right]=35$
$l=30 \mathrm{~m}$
$L=60 l$
$L=1800 \mathrm{~m}$
Question: There is streamline flow of water in horizontal pipe find pressure difference at the cross sections $\Delta \mathrm{P}$.

Answer: 175.00
Solution:
$P_{1}+\frac{1}{2} \rho V_{1}^{2}=P_{2}+\frac{1}{2} \rho V_{2}^{2}$
$P_{1}-P_{2}=\frac{\rho}{2}\left[V_{2}^{2}-V_{1}^{2}\right]$
$A_{1} V_{1}=A_{2} V_{2}$
$\left(1.5 \times 10^{-4}\right) \times V_{1}=25 \times 10^{-6} \times \frac{60}{100}$

Question: A particle is performing SHM draw the graph of TE -PE vs position Options:
(a)

(b)

(c)

(d)

Answer: (a)

Question: If the height of the tower used for L.D.S. is increased by 21% then percentage change in range is

Options:

(a) 10%
(b) 21%
(c) 19%
(d) 42%

Answer: (a)
Solution:
$R=\sqrt{2 h_{T} R_{e}}$
$R^{\prime}=\sqrt{2(1.21) h_{T} R_{e}}$
$R^{\prime}=1.1 R$
$\frac{0.1}{1} \times 100=10 \%$
Question: A dipole of charge 0.01 C and separation 0.4 mm , is placed in an electric field of strength 10 dyne/C, Find the maximum torque exerted on the dipole in the field

Options:

(a) $4 \times 10^{-9} \mathrm{Nm}$
(b) $2 \times 10^{-10} \mathrm{Nm}$
(c) $4 \times 10^{-10} \mathrm{Nm}$
(d) $2 \times 10^{-9} \mathrm{Nm}$

Answer: (c)
Solution:
$\vec{\tau}=\vec{p} \times \vec{E}$
$\tau_{\text {max }}=p E=q l E$
$=0.01 \times 0.4 \times 10^{-3} \times 10 \times 10^{-5}$
$=4 \times 10^{-10} \mathrm{Nm}$
Question: Two bodies having same linear momentum have ratio of kinetic energy as $16: 9$. Find the ratio of masses of these bodies.

Options:

(a) $9 / 16$
(b) $4 / 3$
(c) $3 / 4$
(d) $16 / 9$

Answer: (a)

Solution:

$K=\frac{P^{2}}{2 m}$
$m \propto \frac{1}{K}$
Question: What is center of gravity of semi-circular disc of radius (R) ?
Options:
(a) $2 R / \pi$
(b) $4 R / 3 \pi$
(c) $\mathrm{R} / 2$
(d) $3 \mathrm{R} / 8$

Answer: (b)
Solution: $4 R / 3 \pi$
Question: Pressure for polytropic process P varies with volume V as $\mathrm{P}=a v^{-3}$, find out the bulk modulus.

Options:

(a) 3 V
(b) 3 P
(c) P
(d) V

Answer: (b)
Solution:
$B=\gamma P$
$v=\sqrt{\frac{\gamma P}{\rho}}=\sqrt{\frac{B}{\rho}}\left(P V^{\gamma}=h\right)$
$B=x P=3 P$
Question: The work function for two metals are 9 eV and 4.5 eV . Find the approx. difference between their threshold wavelength. (use $\mathrm{hc}=1240 \mathrm{eV}-\mathrm{nm}$)
Options:
(a) 138 nm
(b) 130 nm
(c) 112 nm
(d) 145 nm

Answer: (a)

Solution:

$\lambda_{0}=\frac{h c}{\phi}$
$\lambda_{2}-\lambda_{1}=\left[\frac{1240}{4.5}-\frac{1240}{9}\right] \mathrm{nm}$
$=138 \mathrm{~nm}$

Question: In the given figure, find the speed of bird as seen by fish

Options:
(a) $24 \mathrm{~m} / \mathrm{s}$
(b) $16 \mathrm{~m} / \mathrm{s}$
(c) $20 \mathrm{~m} / \mathrm{s}$
(d) $12 \mathrm{~m} / \mathrm{s}$

Answer: (b)

Solution:

$\frac{A D}{R D}=\frac{K_{2}}{K_{1}}$
$A D=\frac{K_{2}}{\mu_{1}} \times R D$
$v_{b}=\frac{4}{3} \times 12=16 \mathrm{~m} / \mathrm{s}$

Question: If a wire of resistance R is connected across V_{0}, then power is P_{0}. The wire is cut into two equal parts and connected with V_{0} individually, then sum of power dissipated is P_{1}, then $\mathrm{P}_{0} / \mathrm{P}_{1}$ is $1 / \mathrm{x}$. Find the value of x.
Answer: 4.00

Solution:

$P_{0}=\frac{V_{0}^{2}}{R}$
$P_{1}=\frac{V_{0}^{2}}{R / 2}+\frac{V_{0}^{2}}{R / 2}=\frac{V_{0}^{2}}{R / 2}=\frac{4 V_{0}^{2}}{R}$
$x=4$

Question: A particle is performing SHM having position $x=A \cos 30^{\circ}$, and $\mathrm{A}=40 \mathrm{~cm}$. If its kinetic energy at this position is 200 J , the value of force constant in $\left(\frac{k N}{m}\right)$ is
Answer: 10.00

Solution:

$\frac{1}{2} m u^{2}=\frac{1}{2} m w^{2}\left(A^{2}-x^{2}\right)=200$
$=\frac{1}{2} k\left[A^{2} \cdot x^{2}\right]=200$
$=\frac{1}{2} k\left[A^{2}-\frac{3 A^{2}}{4}\right]=400$
$=k \frac{A^{2}}{4}=400$
$l=\frac{400 \times 4}{0.16}$
Question: For the given radioactive decay ${ }_{94}^{298} X \rightarrow{ }_{92}^{294} Y+{ }_{2}^{4} \alpha+Q$ value binding energy per nucleon of X, Y and α are a, b and c . The Q value is equal to
Options:
(a) $294 b+4 c-298 a$
(b) $92 \mathrm{~b}+2 \mathrm{c}-94 \mathrm{a}$
(c) $294 \mathrm{~b}+4 \mathrm{c}+298 \mathrm{a}$
(d) $92 \mathrm{~b}+2 \mathrm{c}+94 \mathrm{a}$

Answer: (a)
Solution:
$Q=U_{i}-U_{f}$
$Q=(B E)_{f}-(B E)_{i}$
Question: The energy of He^{+}in $2^{\text {nd }}$ orbit is -13.6 eV than energy of Be^{+++}in $\mathrm{n}=4$ Options:
(a) -3.4 eV
(b) -27.2 eV
(c) -13.6 eV
(d) -54.4 eV

Answer: (c)

Solution:

$E=-13.6 \mathrm{eV} \frac{Z^{2}}{n^{2}}=13.6 \mathrm{eV} \times \frac{16}{16}$
Question: Which of the following shows time varying magnetic field.
Options:
(a) Constant electric field
(b) Antenna signal
(c) Permanent magnet
(d) Linearly varying electric field

Answer: (b)
Solution: Antenna signal

Question: Solid sphere rolls on a horizontal plane. Ratio of angular momentum about COM to total energy is $\pi / 22$. Find ω ?
Answer: 4.00

Solution:

$\frac{L_{\mathrm{com}}}{K}=I \mathrm{~cm} \omega=\frac{2}{5} m r^{2} \omega$
$K=\frac{1}{2} \times \frac{2}{5} m r^{2} \omega^{2}+\frac{1}{2} m v^{2}$
$=\frac{1}{2}\left[\frac{7}{5} m r^{2}\right] \omega^{2}$
$\frac{2}{7 \omega} \times 2=\frac{\pi}{22}$
$\omega=\frac{4 \times 22}{7 \times 22 / 7}=4$
Question: If $m=5 \pm 0.2$ and $v=20 \pm 0.4$, calculate percentage error in measurement of KE.
Solution:
$K=\frac{1}{2} m v^{2}$
$\Rightarrow\left[\frac{\Delta K}{v}\right] \times 100=\left[\left|\frac{\Delta m}{m}\right|+\left|2 \frac{\Delta v}{v}\right|\right] \times 100$
$=\left[\frac{0.2}{5}+2 \times \frac{0.4}{20}\right] \times 100$
Question: A bullet of mass 10 g is fixed with a velocity of $600 \mathrm{~m} / \mathrm{s}$ mass of gun is 3 kg and length if gun is 10 cm . The impulse on the gun is
Options:
(a) 6
(b) 12
(c) 36
(d) 8

Answer: (a)
Solution:
$I=\Delta p$
$M_{2} V_{2}=M_{1} V_{1}$
$=\frac{10}{1000} \times 600=6$
Question: Two bodies having same linear momentum and ratio of kinetic energy as $16: 9$. Find the ratio of masses of these bodies.

Options:

(a) $9 / 16$
(b) $4 / 3$
(c) $3 / 4$
(d) $16 / 9$

Answer: (a)
Solution: $K=\frac{p^{2}}{2 m} \propto \frac{1}{m}$
Question: In a polytropic process pressure of a gas varies with volume as $\mathrm{P}=\alpha \mathrm{V}^{-3}$ find bulk modulus.
Answer: 3.00
Solution: $V_{\text {sound }}=\sqrt{\frac{B}{\rho}}$

JEE-Mains-13-04-2023 [Memory Based]
 [Morning Shift]

Chemistry

Question: Which of the following is incorrect about Borazine?

Options:

(a) It reacts with water.
(b) It resembles with benzene.
(c) It contain banana bond.
(d) It has cyclic structure

Answer: (c)
Solution: $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$ is inorganic benzene

Question: $\mathrm{A}_{2}+\mathrm{B}_{2} \rightarrow 2 \mathrm{AB} ; \Delta \mathrm{H}=200 \mathrm{KJ} / \mathrm{mol}$
Ratio of Bond enthalpy of $\mathrm{A}_{2}: \mathrm{B}_{2}: \mathrm{AB}=1: 1.5: 1$
Find bond enthalpy of B_{2}.

Options:

(a) 400
(b) 200
(c) 100
(d) 250

Answer: (a)
Solution:
$\underset{1}{\mathrm{~A}_{2}}+\underset{1.5}{\mathrm{~B}_{2}} \rightarrow \underset{2}{\mathrm{AB}}$
$x+1.5 x-2 x=400$
$3.5 x-2 x=400$
$x=\frac{400}{1.5}=266.6$
$B_{2}=1.5 x=1.5 \times 266.6=400$

Question: Radius of $2^{\text {nd }}$ orbit of He^{+}is r_{0}. Radius of $4^{\text {th }}$ orbit of Be^{3+} is xr_{0}. Find x Options:
(a) 2
(b) 4
(c) 1
(d) 3

Answer: (a)
Solution: $\mathrm{r}_{\mathrm{He}^{+}}=2 \mathrm{r}_{0}, \mathrm{r}_{\mathrm{Be}^{+3}}=\mathrm{r}_{0} \times 4$

Question: Which of the following free radical helps in depletion of ozone layer?
Options:
(a) NO•
(b) $\mathrm{Cl} \cdot$
(c) $\mathrm{OH} \cdot$
(d) $\mathrm{CH}_{3} \cdot$

Answer: (b)
Solution: Fact based.

Question: Which if the following is incorrect match?

Options:

(a) Zinc- Liquation
(b) Cu -Electrolysis
(c) Ni-Mond Process
(d) Ti-Van Arkel method

Answer: (a)
Solution: Fact based.

Question: In which of the following options the species changes from paramagnetic to diamagnetic and bond order increases.
Options:
(a) $\mathrm{N}_{2} \rightarrow \mathrm{~N}_{2}{ }^{+}$
(b) $\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{-}$
(c) $\mathrm{NO} \rightarrow \mathrm{NO}^{+}$
(d) $\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{+}$

Answer: (c)
Solution: NO has B. $\mathrm{O}=2.5$ and $\mathrm{NO}^{+}=3$

Question: Match the following.

Column-I	Column-II
(A) Nylon-6	(P) Cross Linking
(B) Vulcanised Rubber	(Q) Caprolactum
(C) isoprene	(R) Synthetic Rubber
(D) Neoprene	(S) Chloroprene

Options:

(a) $\mathrm{A}-\mathrm{R} ; \mathrm{B}-\mathrm{P} ; \mathrm{C}-\mathrm{S} ; \mathrm{D}-\mathrm{Q}$
(b) $\mathrm{A}-\mathrm{Q} ; \mathrm{B}-\mathrm{P} ; \mathrm{C}-\mathrm{R} ; \mathrm{D}-\mathrm{S}$
(c) $\mathrm{A}-\mathrm{S} ; \mathrm{B}-\mathrm{P} ; \mathrm{C}-\mathrm{Q} ; \mathrm{D}-\mathrm{R}$
(d) $\mathrm{A}-\mathrm{Q}$; $\mathrm{B}-\mathrm{P} ; \mathrm{C}-\mathrm{S} ; \mathrm{D}-\mathrm{R}$

Answer: (b)
Solution: Fact based

Question: When lyophilic sol is added to the lyophobic sol then?

Options:

(a) Fixed layer of lyophobic sol is formed over lyophilic sol
(b) Fixed layer of lyophilic sol is formed over lyophobic sol
(c) Emulsion
(d) Electrophoresis

Answer: (b)
Solution: Fact based

Question: Statement-1: Permutit process is more efficient than synthetic resin method.
Statement-2: In synthetic resin method, soluble salt of sodium is formed.
Options:
(a) statement 1 is correct and statement 2 is incorrect
(b) statement 1 is incorrect and statement 2 is correct
(c) both statement 1 and statement 2 are incorrect
(d) both statement 1 and statement 2 are correct

Answer: (c)
Solution: Fact based.

Question:

Statement-1: Ionisation enthalpy decrease down the group.
Statement-2: Electron gain enthalpy of F is more negative than Cl .
Statement-3: $\mathrm{Al}_{2} \mathrm{O}_{3}$ and NO are amphoteric oxides.
Statement-4: Electronegativity depends upon the number of surrounding atoms.
Number of incorrect statements are:

Options:

(a) 1
(b) 2
(c) 3
(d) 4

Answer: (c)
Solution: Fact based.

Question: Which of the following is incorrect match?
A) $\mathrm{Ag}(\mathrm{CN})_{2}{ }^{-}$- Photography
B) EDTA- Hard water
C) Wilkinson catalyst- $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}\right]$
D) Chlorophyll-Co

Options:

(a) Both A and D
(b) A, B, and C
(c) B and C
(d) A and C

Answer: (a)
Solution: Fact based

Question: ClF_{5} at room temperature is Options:
(a) Gas and square pyramidal structure
(b) Liquid and square pyramidal structure
(c) Gas and trigonal bipyramidal
(d) Liquid and trigonal bipyramidal

Answer: (b)
Solution: hybridization is $\mathrm{sp}^{3} \mathrm{~d}^{2}$ and exists as liquid.

Question:

Options:

(a) Ring A is only 6 membered ring
(b) Two 5 membered rings are formed
(c) Two 6 membered rings or formed
(d) 7 member ring formation taken

Answer: (c)
Solution: Carbocation ring expansion occurs.

Question: What is the major product formed in the following reaction?
$\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CH}_{3} \xrightarrow[\text { HCl, heat }]{\text { Anhy. } \mathrm{AlCl}_{3}}$ Major product

Options:

(a)

(b)

(c)

(d)

Answer: (c)

Solution: Isomerization reaction occurs.

Question: An organic compound on combustion gives 0.22 g of CO_{2} and 0.126 g of $\mathrm{H}_{2} \mathrm{O}$. If the percentage of C in given organic compound is 40%, the percentage of H will be?

Options:

(a) 9.33%
(b) 14%
(c) 10%
(d) None

Answer: (a)

Solution: 5 milimoles of CO 2 and 7 milimoles of H 2 O is formed thus one mole has 5 carbon or 60 gm carbon , now since its 40% of organic compound therefore organic compound mass is 150 and this concludes mass $\%$ of H is 9.33

Question: For the 1st order reactions, the ratio of $\mathrm{t}_{50 \%}$ to $\mathrm{t}_{87.5 \%}$ will be Options:
(a) 2
(b) 3
(c) 4
(d) same

Answer: (b)
Solution: Fact based

Question: The pair of lanthanides with exceptionally high $3^{\text {rd }}$ ionisation enthalpy than neighbouring elements:

Options:

(a) Lu and Yb
(b) Eu and Gb
(c) Eu and Yb
(d) Dy and Yb

Answer: (c)
Solution: Fact based

Question: Identify the product formed in the following reaction

Options:
(a) $\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{CHO}$
(b) $\mathrm{H}_{3} \mathrm{C}-\mathrm{NH}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{CH}_{2} \mathrm{OH}$
(c) $\mathrm{H}_{3} \mathrm{C}-\mathrm{NH}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{COOH}$
(d)

Answer: (c)
Solution: nucleophilic addition reaction occurs

Question: Consider the given reaction:
$\mathrm{Be}(\mathrm{OH})_{2}+\mathrm{Sr}(\mathrm{OH})_{2} \rightarrow$ Product
Incorrect statement regarding the product is given as:

Options:

(a) Be is tetrahedrally bonded in the product
(b) Be forms cationic part
(c) It is an acid base reaction
(d) $\mathrm{Be}(\mathrm{OH})_{2}$ acts as a Lewis acid

Answer: (b)
Solution: Be forms complex which is anionic part

Question: Match the column.

Column I	Column II
(A) Troposphere	(P) From $10-50 \mathrm{~km}$ from sea level
(B) Stratosphere	(Q) Uto 10 km from sea level
(C) Mesosphere	(R) From 85 km to $\approx 700 \mathrm{~km}$ from sea level
(D) Thermosphere	(S) From 50 km to 85 km from sea level

Options:
(a) A-P; B-Q; C-R; D-S
(b) A-R; B-S; C-P; D-Q
(c) A-Q; B-P; C-S; D-R
(d) A-S; B-R; C-P; D-Q

Answer: (c)
Solution: Fact based

Question: A solution is isotonic with glucose having concentration 0.05 M at a certain temperature. If the volume of the solution is 1 L , find the molar mass of the solute in $\mathrm{g} / \mathrm{mol}$ if 12 g of solute is mixed to form the solution.

Options:
(a) 120
(b) 240
(c) 360
(d) None

Answer: (b)
Solution: $\pi_{1}=\pi_{2}$
$0.05=\frac{12}{\text { Mol. mass }}$ or mol. Mass $=240$

Question: Glyceraldehyde $\xrightarrow[\mathrm{IIH}_{3} \mathrm{O}^{+}, \mathrm{III} \mathrm{HNO}]{3} \mathrm{C}$
Then select the correct option about the product A and B.
Options:
(a) Both are optically active
(b) Both are optically inactive
(c) One is optically active and another is optically inactive
(d) None of these

Answer: (c)
Solution: Reaction based

JEE-Mains-13-04-2023 [Memory Based]
 [Morning Shift]

Mathematics

Question: For the differentiable function $f: R-\{0\} \rightarrow R$, let $3 f(x)+2 f\left(\frac{1}{x}\right)=\frac{1}{x}-10$, then $\left|f(3)+f^{\prime}\left(\frac{1}{4}\right)\right|$ is equal to

Answer: 13.00

Solution:

$$
\begin{aligned}
& {\left[3 f(x)+2 f\left(\frac{1}{x}\right)=\frac{1}{x}-10\right] \times 3} \\
& {\left[2 f(x)+3 f\left(\frac{1}{x}\right)=x-10\right] \times 2} \\
& 5 f(x)=\frac{3}{x}-2 x-10 \\
& \Rightarrow f(x)=\frac{1}{5}\left(\frac{3}{x}-2 x-10\right) \\
& \begin{aligned}
& f^{\prime}(x)=\frac{1}{5}\left(-\frac{3}{x^{2}}-2\right) \\
&\left|f(3)+f^{\prime}\left(\frac{1}{4}\right)\right|=\left|\frac{1}{5}(1-6-10)+\frac{1}{5}(-48-2)\right| \\
&=|-3-10| \\
&= 13
\end{aligned}
\end{aligned}
$$

Question: How many symmetric matrices of order 3×3 can we form $(0,1,2, \ldots, 9) 3 \times 3$.
Answer: 10^{6}

Solution:

$$
A=\left[\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right], a, b, c, d, e, f \in\{0,1,2, \ldots .9\}
$$

Number of matrices $=10^{6}$

Question: $S_{1}, S_{2}, \ldots, S_{10}$, be sum of 12 terms of 10 APs with $1^{\text {st }}$ terms: $1,2,3, \ldots ., 10 \&$ common differences: $1,3,5,7, \ldots, 19$. Find $S_{1}+S_{2}+\ldots+S_{10}$.

Answer: 7260.00

Solution:

$S_{k}=6(2 k+(11)(2 k-1))$
$S_{k}=6(2 k+22 k-11)$
$S_{k}=144 k-66$
$\sum_{1}^{10} S_{k}=144 \sum_{k=1}^{10} k-66 \times 10$
$=144 \times \frac{10 \times 11}{2}-660$
$=7920-660$
$=7260$

Question: A coin is biased so that the head is 3 times as likely to occur as tail. This coin is tossed until a head or three tails occurs. If X denotes the number of t are of the coin, then the mean of X is
Answer: $\frac{21}{16}$
Solution:
$P(H)=\frac{3}{4}$
$P(T)=\frac{1}{4}$

\mathbf{X}	1	2	3
$\mathbf{P}(\mathbf{X})$	$\frac{3}{4}$	$\frac{1}{4} \times \frac{3}{4}$	$\left(\frac{1}{4}\right)^{3}+\left(\frac{1}{4}\right)^{2} \times \frac{3}{4}$

Mean $\bar{X}=\frac{3}{4}+\frac{3}{8}+3\left(\frac{1}{64}+\frac{3}{64}\right)$
$=\frac{3}{4}+\frac{3}{8}+\frac{3}{16}$
$=3\left(\frac{7}{16}\right)$
$=\frac{21}{16}$

Question: Number of 7 digit numbers using $\{1,2,3,4\}$ such that sum of all digits is 12 is
Answer: 413.00

Solution:

$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}=12, x_{i} \in\{1,2,3,4\}$
No. of solutions $={ }^{5+7-1} C_{7-1}-\frac{7!}{6!}-\frac{7!}{5!}=413$

Question: $\int_{0}^{\infty} \frac{6}{e^{3 x}+6 e^{2 x}+11 e^{x}+6} d x=$
Answer: $\ln \left(\frac{32}{27}\right)$

Solution:

Given, $\int_{0}^{\infty} \frac{6}{e^{3 x}+6 e^{2 x}+11 e^{x}+6} d x$
Put $e^{x}=t \Rightarrow e^{x} d x=d t$
$\int_{1}^{\infty}\left(\frac{6}{t^{3}+6 t^{2}+11 t+6}\right) \frac{d t}{t}$
$=\int_{1}^{\infty} \frac{6}{t(t+1)(t+2)(t+2)} d t$
$=\int_{1}^{\infty} 3\left(\frac{1}{t(t+3)}-\frac{1}{(t+1)(t+2)}\right)$
$=\int_{1}^{\infty} \frac{1}{t}-\frac{1}{t+3}-\frac{3}{t+1}+\frac{3}{t+2}$
$\left.\ln \frac{t \times(t+2)^{3}}{(t+3)(t+1)^{3}}\right|_{1} ^{\infty}$
$\ln 1-\ln \frac{27}{32}=\ln \left(\frac{32}{27}\right)$

Question: Let the tangent and normal at the point $(3 \sqrt{3}, 1)$ on the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{4}=1$ meet the y-axis at the points A and B respectively. Let the circle C be drawn taking $A B$ as diameter and the line $x=2 \sqrt{5}$ intersect C at the points P and Q . If the tangent at the points P and Q on the circle intersects at the point (α, β), then $\alpha^{2}-\beta^{2}$ is equal to

Answer: 60.8

Solution:

Given ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{4}=1$
$\frac{x}{4 \sqrt{3}}+\frac{y}{4}=1$
$y=4$
$\frac{x}{4}-\frac{4}{4 \sqrt{3}}=\frac{2}{\sqrt{3}}$
$y=-8$
$x^{2}+(y-4)(y+8)=0$
$x^{2} y^{2}+4 y-32=0$
$h x+k y+2(y+k)-32=0$
$k=-2$
$h x+2 k-32=0$
$h x=36$
$\alpha=h=\frac{36}{2 \sqrt{5}}$
$\beta=k=-2$
$\alpha^{2}-\beta^{2}=60.8$

Question: If $\sin ^{-1}\left(\frac{x+1}{\sqrt{x^{2}+2 x+2}}\right)-\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+1}}\right)=\frac{\pi}{4}$ then
$\sin \left(x^{2}+x+5\right) \frac{\pi}{2}+\cos \left(x^{2}+x+5\right) \pi=$?
Answer: 0.00

Solution:

$\sin ^{-1}\left(\frac{x+1}{\sqrt{x^{2}+2 x+2}}\right)-\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+1}}\right)=\frac{\pi}{4}$
$\sin ^{-1}\left(\frac{x+1}{\sqrt{(x+1)^{2}+1}}\right)-\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+1}}\right)=\frac{\pi}{4}$
$\tan ^{-1}(x+1)-\tan ^{-1} x=\frac{\pi}{4}$
Apply tan on both sides
$\frac{(x+1)-x}{1+x^{2}+x}=1$
$\Rightarrow x^{2}+x=0$
$x=0,-1$
Now, $\sin \left(x^{2}+x+5\right) \frac{\pi}{2}+\cos \left(x^{2}+x+5\right) \pi=$
Put $x=0$
$\sin \frac{5 \pi}{2}+\cos (5 \pi)=1-1=0$

Question: $g(x)=\sqrt{x}+1$ and $g(f(x))=x+3-\sqrt{x}$, then find $f(0)$.
Answer: 4.00

Solution:

Given, $g(x)=\sqrt{x}+1$ and $g(f(x))=x+3-\sqrt{x}$
$\sqrt{f(x)}+1=x+3-\sqrt{x}$
Put $x=0$
$\sqrt{f(0)}=2$
$f(0)=4$

Question: $y=\max (\sin x, \cos x),-\pi \leq x \leq \pi$. Find area.
Answer: 4.00

Solution:

$\int_{-\pi}^{-\frac{3 \pi}{4}}-\sin x+\int_{-\frac{3 \pi}{4}}^{-\frac{\pi}{2}}-\cos x+\int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} \cos x+\int_{\frac{\pi}{4}}^{\pi} \sin x$
$\left.\cos x\right|_{-\pi} ^{-3 \pi / 4}+\left.(-\sin x)\right|_{-3 \pi / 4} ^{-\pi / 2}+\left.\sin x\right|_{-\pi / 2} ^{\pi / 4}+\left.(-\cos x)\right|_{\pi / 4} ^{\pi}$
$=\left(\frac{-1}{\sqrt{2}}+1\right)+\left(1-\frac{1}{\sqrt{2}}\right)+\left(\frac{1}{\sqrt{2}}+1\right)+\left(1+\frac{1}{\sqrt{2}}\right)$
$=4$

Question: $S_{1}: \lim _{n \rightarrow \infty} \frac{1}{n^{2}}(2+4+6+\ldots+2 n)=1$
$S_{2}: \lim _{n \rightarrow \infty} \frac{1}{n^{16}}\left(1^{15}+2^{15}+3^{15}+\ldots+n^{15}\right)=\frac{1}{16}$

Options:

(a) Both are correct
(b) Both are incorrect
(c) Only S_{1} is correct
(d) Only S_{2} is correct

Answer: (a)

Solution:

$S_{1}: \lim _{n \rightarrow \infty} \frac{n(n+1)}{n^{2}}=1 \Rightarrow$ True
$S_{2}: \lim _{n \rightarrow \infty} \frac{1}{n^{16}}\left(\sum r^{15}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum\left(\frac{r}{n}\right)^{15}$

$$
=\int_{0}^{1} x^{15} d x=\frac{1}{16} \Rightarrow \text { True }
$$

Question: Find fractional part of $\frac{4^{2022}}{15}$.
Answer: $\frac{1}{15}$

Solution:

$$
\begin{aligned}
\left\{\frac{4^{2022}}{15}\right\} & =\left\{\frac{2^{4044}}{15}\right\} \\
& =\left\{\frac{(1+15)^{1011}}{15}\right\} \\
& =\frac{1}{15}
\end{aligned}
$$

Question: If $y_{1}(x)$ and $y_{2}(x)$ are solutions of $\frac{d y}{d x}=y+7, y_{1}(0), y_{2}(0)=1$ then find number of points of intersection of $y_{1}(x)$ and $y_{2}(x)$.
Answer: 0.00

Solution:

$\frac{d y}{d x}=y+7 \Rightarrow \frac{d y}{d x}-y=7$
I.F. $=e^{-x}$
$y e^{-x}=\int 7 e^{-x} d x$
$\Rightarrow y e^{-x}=-7 e^{-x}+c$
$\Rightarrow y=-7+c e^{x}$
$y_{1}(x)=-7+7 e^{x}, y_{2}(x)=-7+8 e^{x}$
$-7+7 e^{x}=-7+8 e^{x}$
$\Rightarrow e^{x}=0$
No solution

Question: $2 \cdot 2^{2}-3^{2}+2 \cdot 4^{2}-5^{2}+\ldots$. Find sum till 20 terms.

Answer: 1310.00

Solution:

$\left(2^{3}-3^{2}+4^{2}-5^{2}+\ldots 20\right.$ terms $)+\left(2^{2}+4^{2}+\ldots+10\right.$ terms $)$
$-(2+3+4+5+\ldots .+11)+4\left[1+2^{2}+\ldots .+10^{2}\right]$
$-\left[\frac{21 \times 22}{2}-1\right]+4 \times \frac{10 \times 11 \times 21}{6}$
$=1-231+14 \times 11 \times 10$
$=1540+1-231$
$=1310$

Question: Let PQ be a focal chord of the parabola $y^{2}=36 x$ of length 100 , making an acute angle with the positive and M be the point on the line segment PQ such that $P M: P Q=3: 1$, then which of the following point does not lie on the line passing through M and perpendicular to the line PQ ?
Answer:

Solution:

$y^{2}=36 x \Rightarrow a=9$
$A \equiv\left(9 t^{2}, 18 t\right)$
$a\left(t+\frac{1}{t}\right)^{2}$
$9\left(t+\frac{1}{t}\right)^{2}=100$
$t+\frac{1}{t}= \pm \frac{10}{3}$
$t= \pm 3 \& \pm \frac{1}{3}$
$Q \equiv(81,54)$
$P \equiv(1,-6)$

$M=(61,39)$

Question: The negation of the statement $[(A \wedge(B \vee C)) \Rightarrow(A \vee B)] \Rightarrow A$ is
Answer: ~ A

Solution:

$$
\begin{aligned}
& {[(A \wedge(B \vee C)) \Rightarrow(A \vee B)] \Rightarrow A} \\
& {[\sim(A \wedge(B \vee C)) \vee(A \vee B)] \Rightarrow A} \\
& \Rightarrow(A \wedge(B \vee C)) \wedge(\sim A \wedge \sim B) \vee A \\
& \phi \vee A \\
& =\sim A
\end{aligned}
$$

Question: $w=z(\bar{z})+k_{1}(z)+k_{2}(i z)+\lambda$. If $\operatorname{Re}(w)=0$ is a circle C in $1^{\text {st }}$ quadrant with radius 1 touching line $y=1$ and y-axis. Then $\operatorname{Im}(w)=0$ intersects C at $\mathrm{A} \& \mathrm{~B}$, find $(A B)^{2}$.
Answer: 4.00

Solution:

$w=x^{2}+y^{2}+k_{1}(x+i y)+k_{2}(i x-y)+\lambda$
$\Rightarrow x^{2}+y^{2}+k_{1} x-k_{2} y+\lambda=0$
Centre $=\left(\frac{-k_{1}}{2}, \frac{k_{2}}{2}\right)$
$r=\sqrt{\frac{k_{1}{ }^{2}}{4}+\frac{k_{2}{ }^{2}}{4}}-\lambda=1$
$\operatorname{Re}(w)=0$
$k_{2}{ }^{2}=4 \lambda$
$\left|\frac{k_{2}}{2}-1\right|=1$
$\Rightarrow \frac{k_{2}}{2}-1= \pm 1$
$\Rightarrow \frac{k_{2}}{2}=2,0$
$\Rightarrow k_{2}=4,0$
$k_{2}=4, \lambda=4$
$\frac{k_{1}{ }^{2}}{4}=1$
$\Rightarrow k_{1}=-4$
Circle: $x^{2}+y^{2}-4 x-4 y+4=0$
$\operatorname{Im}(w)=0$
$k_{1} y+k_{2} x=0$
$x-y=0$
AB is diameter
$A B^{2}=4$

Question: $\operatorname{In}\left(\sqrt{x}-\frac{6}{x^{\frac{3}{2}}}\right)^{n}$, constant term is $A \&$ sum of coefficient other than $A=649$. If coefficient of x^{-n} is λA, then $\lambda=$?
Answer:

Solution:

$T_{k+1}={ }^{n} C_{k}(x)^{\frac{n-k}{2}}(-6)^{k}(x)^{\frac{-3}{2} k}$
$\frac{n-k}{2}-\frac{3}{2} k=0$
$n-4 k=0$
$(-5)^{n}-\left({ }^{n} C_{\frac{n}{4}}(-6)^{\frac{n}{4}}\right)=649$
$n=4$
$625+24=649$
$n=4 \& k=1$
Required is coefficient of x^{-4} is $\left(\sqrt{x}-\frac{6}{x^{\frac{3}{2}}}\right)^{4}$
${ }^{4} C_{1}(-6)^{3}$
By calculating we will get $\lambda=36$

Question: Find maximum value: $f(x)=x-2 \sin x \cos x+\frac{1}{3} \sin (3 x), x \in[0, \pi]$
Answer: $\frac{5 \pi}{6}+\frac{\sqrt{3}}{2}+\frac{1}{3}$

Solution:

$f(x)=x-2 \sin x \cos x+\frac{1}{3} \sin (3 x)$
$f(x)=x-\sin 2 x+\frac{1}{3} \sin 3 x$
$f^{\prime}(x)=1-2 \cos 2 x+\cos 3 x=0$
$0=1-2\left(2 \cos ^{2} x-1\right)+\left(4 \cos ^{3} x-3 \cos x\right)$
$0=1-4 \cos ^{2} x+2+4 \cos ^{3} x-3 \cos x$
$4 \cos ^{3} x-4 \cos ^{2} x-3 \cos x+3=0$
$4 \cos ^{2} x(\cos x-1)-3(\cos x-1)=0$
$(\cos x-1)\left(4 \cos ^{2} x-3\right)=0$
$\therefore x=0, \frac{5 \pi}{6}, \frac{\pi}{6}$
$f^{\prime}(x)=1-2 \cos 2 x+\cos 3 x=0$
$\therefore x=0, \frac{5 \pi}{6}, \frac{\pi}{6}$
$f^{\prime \prime}(x)=4 \sin 2 x-3 \sin 3 x$
$f^{\prime \prime}(0)=0$
$f^{\prime \prime}\left(\frac{\pi}{6}\right)>0$
$f^{\prime \prime}\left(\frac{5 \pi}{6}\right)>0 \Rightarrow\left(\frac{5 \pi}{6}\right)$ is point of maxima
$\therefore f\left(\frac{5 \pi}{6}\right)=\frac{5 \pi}{6}+\frac{\sqrt{3}}{2}+\frac{1}{3}$

Question: The set of all $a \in R$ for which the equation $x|x-1|+|x+2|+a=0$ has exactly one real root is
Answer: $a \in R$

Solution:

$f(x)=x|x-1|+|x+2|$
$x|x-1|+|x+2|+a=0$
$x|x-1|+|x+2|=-a$

All values are increasing.

Question: Let $B=\left[\begin{array}{ccc}1 & 3 & \alpha \\ 1 & 2 & 3 \\ \alpha & \alpha & 4\end{array}\right], \alpha>2$ be the adjoint of a matrix A and $|A|=2$, then
$\left[\begin{array}{ccc}\alpha & -2 \alpha & \alpha\end{array}\right] B\left[\begin{array}{c}\alpha \\ -2 \alpha \\ \alpha\end{array}\right]=$?
Answer: $[-16]_{1 \times 1}$

Solution:

Given, $B=\left[\begin{array}{lll}1 & 3 & \alpha \\ 1 & 2 & 3 \\ \alpha & \alpha & 4\end{array}\right]$
$|B|=4$
$1(8-3 \alpha)-3(4-3 \alpha)+\alpha(\alpha-2 \alpha)=4$
$-\alpha^{2}+6 \alpha-8=0$
$\alpha=2,4$
Given $\alpha>2$
So $\alpha=2$ is rejected
$\left[\begin{array}{lll}4 & -8 & 4\end{array}\right]\left[\begin{array}{lll}1 & 3 & 4 \\ 1 & 2 & 3 \\ 4 & 4 & 4\end{array}\right]\left[\begin{array}{c}4 \\ -8 \\ 4\end{array}\right]=[-16]_{\mid \times 1}$

