

JEE-Mains-13-04-2023 [Memory Based] [Morning Shift]

Physics

Question: Train A takes 3.5 seconds less time than train B. Find L = ?

Question: There is streamline flow of water in horizontal pipe find pressure difference at the cross sections ΔP .

Answer: 175.00 Solution:

L = 1800 m

$$P_{1} + \frac{1}{2}\rho V_{1}^{2} = P_{2} + \frac{1}{2}\rho V_{2}^{2}$$

$$P_{1} - P_{2} = \frac{\rho}{2} \left[V_{2}^{2} - V_{1}^{2} \right]$$

$$A_{1}V_{1} = A_{2}V_{2}$$

$$\left(1.5 \times 10^{-4} \right) \times V_{1} = 25 \times 10^{-6} \times \frac{60}{100}$$

Question: A particle is performing SHM draw the graph of TE -PE vs position **Options:**

Answer: (a)

Question: If the height of the tower used for L.D.S. is increased by 21% then percentage change in range is

Options: (a) 10% (b) 21% (c) 19% (d) 42% **Answer: (a) Solution:** $R = \sqrt{2h_T R_e}$ $R' = \sqrt{2(1.21)h_T R_e}$ R' = 1.1R $\frac{0.1}{1} \times 100 = 10\%$

Question: A dipole of charge 0.01 C and separation 0.4 mm, is placed in an electric field of strength 10 dyne/C, Find the maximum torque exerted on the dipole in the field

Options: (a) 4×10^{-9} Nm (b) 2×10^{-10} Nm (c) 4×10^{-10} Nm (d) 2×10^{-9} Nm **Answer:** (c) **Solution:**

 $\vec{\tau} = \vec{p} \times \vec{E}$ $\tau_{\text{max}} = pE = qlE$ $= 0.01 \times 0.4 \times 10^{-3} \times 10 \times 10^{-5}$ $= 4 \times 10^{-10} \text{ Nm}$

Question: Two bodies having same linear momentum have ratio of kinetic energy as 16 : 9. Find the ratio of masses of these bodies.

Options:

(a) 9/16 (b) 4/3 (c) 3/4 (d) 16/9 Answer: (a) Solution: $K = \frac{P^2}{P}$

$$K = \frac{1}{2m}$$
$$m \propto \frac{1}{K}$$

Question: What is center of gravity of semi-circular disc of radius (R)?

Options: (a) 2R/π (b) 4R/3π (c) R/2 (d) 3R/8 Answer: (b) Solution: 4R/3π

Question: Pressure for polytropic process P varies with volume V as $P = av^{-3}$, find out the bulk modulus.

Options: (a) 3V (b) 3P (c) P (d) V **Answer: (b) Solution:** $B = \gamma P$ $v = \sqrt{\frac{\gamma P}{\rho}} = \sqrt{\frac{B}{\rho}} (PV^{\gamma} = h)$

B = xP = 3P

Question: The work function for two metals are 9 eV and 4.5 eV. Find the approx. difference between their threshold wavelength. (use hc = 1240 eV - nm)

Options:

(a) 138 nm

(b) 130 nm

(c) 112 nm (d) 145 nm **Answer: (a) Solution:**

$$\lambda_0 = \frac{hc}{\phi}$$
$$\lambda_2 - \lambda_1 = \left[\frac{1240}{4.5} - \frac{1240}{9}\right] \text{nm}$$

=138 nm

Question: In the given figure, find the speed of bird as seen by fish

Question: If a wire of resistance R is connected across V₀, then power is P₀. The wire is cut into two equal parts and connected with V₀ individually, then sum of power dissipated is P₁, then P₀/P₁ is 1/x. Find the value of *x*.

Answer: 4.00 Solution:

$$P_{0} = \frac{V_{0}^{2}}{R}$$

$$P_{1} = \frac{V_{0}^{2}}{R/2} + \frac{V_{0}^{2}}{R/2} = \frac{V_{0}^{2}}{R/2} = \frac{4V_{0}^{2}}{R}$$

$$x = 4$$

Question: A particle is performing SHM having position $x = A \cos 30^\circ$, and A = 40 cm. If its kinetic energy at this position is 200 J, the value of force constant in $\left(\frac{kN}{m}\right)$ is

Answer: 10.00 Solution:

$$\frac{1}{2}mu^{2} = \frac{1}{2}mw^{2}(A^{2} - x^{2}) = 200$$
$$= \frac{1}{2}k\left[A^{2} \cdot x^{2}\right] = 200$$
$$= \frac{1}{2}k\left[A^{2} - \frac{3A^{2}}{4}\right] = 400$$
$$= k\frac{A^{2}}{4} = 400$$
$$l = \frac{400 \times 4}{0.16}$$

Question: For the given radioactive decay ${}^{298}_{94}X \rightarrow {}^{294}_{92}Y + {}^4_2\alpha + Q$ value binding energy per nucleon of X, Y and α are a, b and c. The Q value is equal to

Options: (a) 294b + 4c - 298a(b) 92b + 2c - 94a(c) 294b + 4c + 298a(d) 92b + 2c + 94a **Answer: (a) Solution:** $Q = U_i - U_f$ $Q = (BE)_f - (BE)_i$

Question: The energy of He^+ in 2^{nd} orbit is -13.6 eV than energy of Be^{+++} in n = 4**Options:**

(a) -3.4 eV (b) -27.2 eV (c) -13.6 eV (d) -54.4 eV Answer: (c) Solution:

$$E = -13.6eV \frac{Z^2}{n^2} = 13.6eV \times \frac{16}{16}$$

Question: Which of the following shows time varying magnetic field. **Options:**

(a) Constant electric field

- (b) Antenna signal
- (c) Permanent magnet
- (d) Linearly varying electric field

Answer: (b) Solution: Antenna signal

Question: Solid sphere rolls on a horizontal plane. Ratio of angular momentum about COM to total energy is $\pi/22$. Find ω ?

Answer: 4.00 Solution:

$$\frac{L_{\text{com}}}{K} = I \text{cm}\omega = \frac{2}{5}mr^2\omega$$

$$K = \frac{1}{2} \times \frac{2}{5}mr^2\omega^2 + \frac{1}{2}mv^2$$

$$= \frac{1}{2} \left[\frac{7}{5}mr^2\right]\omega^2$$

$$\frac{2}{7\omega} \times 2 = \frac{\pi}{22}$$

$$\omega = \frac{4 \times 22}{7 \times 22 / 7} = 4$$

Question: If $m = 5 \pm 0.2$ and $v = 20 \pm 0.4$, calculate percentage error in measurement of KE. Solution:

$$K = \frac{1}{2}mv^{2}$$

$$\Rightarrow \left[\frac{\Delta K}{v}\right] \times 100 = \left[\frac{\Delta m}{m} + 2\frac{\Delta v}{v}\right] \times 100$$

$$= \left[\frac{0.2}{5} + 2 \times \frac{0.4}{20}\right] \times 100$$

Question: A bullet of mass 10 g is fixed with a velocity of 600 m/s mass of gun is 3 kg and length if gun is 10 cm. The impulse on the gun is

Options: (a) 6 (b) 12 (c) 36 (d) 8 Answer: (a) Solution: $I = \Delta p$ $M_2V_2 = M_1V_1$ $= \frac{10}{1000} \times 600 = 6$

Question: Two bodies having same linear momentum and ratio of kinetic energy as 16 : 9. Find the ratio of masses of these bodies.

Options: (a) 9/16 (b) 4/3

(c) 3/4 (d) 16/9 **Answer:** (a)

Solution: $K = \frac{p^2}{2m} \propto \frac{1}{m}$

Question: In a polytropic process pressure of a gas varies with volume as $P = \alpha V^{-3}$ find bulk modulus. Answer: 3.00

Solution: $V_{sound} = \sqrt{\frac{B}{\rho}}$

JEE-Mains-13-04-2023 [Memory Based] [Morning Shift]

Chemistry

Question: Which of the following is incorrect about Borazine? **Options:**

- (a) It reacts with water.
- (b) It resembles with benzene.
- (c) It contain banana bond.
- (d) It has cyclic structure

Answer: (c)

Solution: B₃N₃H₆ is inorganic benzene

Question: $A_2 + B_2 \rightarrow 2AB$; $\Delta H = 200 \text{ KJ/mol}$ Ratio of Bond enthalpy of $A_2 : B_2 : AB = 1:1.5:1$ Find bond enthalpy of B_2 . Options: (a) 400 (b) 200 (c) 100 (d) 250 Answer: (a) Solution: $A_2 + B_2 \rightarrow 2AB_1$

$$x + 1.5x - 2x = 400$$

3.5 x - 2x = 400

 $x = \frac{400}{1.5} = 266.6$

 $B_2 = 1.5 x = 1.5 \times \text{266.6} = \text{400}$

Question: Radius of 2^{nd} orbit of He^+ is r_0 . Radius of 4^{th} orbit of Be^{3+} is xr_0 . Find x **Options:**

(a) 2 (b) 4 (c) 1 (d) 3 **Answer:** (a) **Solution:** $r_{He^+} = 2r_0$, $r_{Be^{+3}} = r_0 \times 4$

Question: Which of the following free radical helps in depletion of ozone layer? **Options:**

(a) NO•
(b) Cl•
(c) OH•
(d) CH₃•
Answer: (b)
Solution: Fact based.

Question: Which if the following is incorrect match? Options: (a) Zinc- Liquation (b) Cu-Electrolysis (c) Ni-Mond Process (d) Ti-Van Arkel method Answer: (a) Solution: Fact based.

Question: In which of the following options the species changes from paramagnetic to diamagnetic and bond order increases.

Options:

(a) $N_2 \rightarrow N_2^+$ (b) $O_2 \rightarrow O_2^-$ (c) $NO \rightarrow NO^+$ (d) $O_2 \rightarrow O_2^+$ Answer: (c) Solution: NO has B.O = 2.5 and $NO^+ = 3$

Column-I	Column-II
(A) Nylon-6	(P) Cross Linking
(B) Vulcanised Rubber	(Q) Caprolactum
(C) isoprene	(R) Synthetic Rubber
(D) Neoprene	(S) Chloroprene

Options:

(a) A - R; B - P; C - S; D - Q(b) A - Q; B - P; C - R; D - S(c) A - S; B - P; C - Q; D - R(d) A - Q; B - P; C - S; D - R**Answer:** (b) **Solution:** Fact based

Question: When lyophilic sol is added to the lyophobic sol then?

Options:

(a) Fixed layer of lyophobic sol is formed over lyophilic sol
(b) Fixed layer of lyophilic sol is formed over lyophobic sol
(c) Emulsion
(d) Electrophoresis
Answer: (b)
Solution: Fact based

Question: Statement-1: Permutit process is more efficient than synthetic resin method. Statement-2: In synthetic resin method, soluble salt of sodium is formed.

Options:

(a) statement 1 is correct and statement 2 is incorrect

(b) statement 1 is incorrect and statement 2 is correct

(c) both statement 1 and statement 2 are incorrect

(d) both statement 1 and statement 2 are correct

Answer: (c)

Solution: Fact based.

Question:

Statement-1: Ionisation enthalpy decrease down the group.

Statement-2: Electron gain enthalpy of F is more negative than Cl.

Statement-3: Al₂O₃ and NO are amphoteric oxides.

Statement-4: Electronegativity depends upon the number of surrounding atoms.

Number of incorrect statements are:

Options:

- (a) 1
- (b) 2
- (c) 3

(d) 4

Answer: (c) Solution: Fact based.

- **Question:** Which of the following is incorrect match?
- A) Ag(CN)₂⁻ Photography
 B) EDTA- Hard water
 C) Wilkinson catalyst- [(Ph₃P)₃RhCl]
 D) Chlorophyll-Co
 Options:
- (a) Both A and D
- (b) A, B, and C
- (c) B and C
- (d) A and C

Answer: (a)

Solution: Fact based

Question: ClF₅ at room temperature is **Options:**

(a) Gas and square pyramidal structure

(b) Liquid and square pyramidal structure

(c) Gas and trigonal bipyramidal

(d) Liquid and trigonal bipyramidal

Answer: (b)

Solution: hybridization is sp^3d^2 and exists as liquid.

Options:

(a) Ring A is only 6 membered ring

(b) Two 5 membered rings are formed

(c) Two 6 membered rings or formed

(d) 7 member ring formation taken

Answer: (c)

Solution: Carbocation ring expansion occurs.

Question: What is the major product formed in the following reaction? $CH_3 - (CH_2)_4 - CH_3 \xrightarrow{Anhy. AlCl_3} Major product$

Options:
(a)

$$CH_3$$

 $H_3C - CH_2 - CH_2 - CH_3$
 $|CH_3$
(b)
 CH_3
 $H_3C - CH - CH - CH_3$
 $|CH_3$
 CH_3
(c)
 $H_3C - CH - (CH_2)_2 - CH_3$
 $|CH_3$
(d)

$$\begin{array}{c} H_3C - CH - (CH_2)_2 - CH_3 \\ | \\ Cl \end{array}$$

Answer: (c) Solution: Isomerization reaction occurs.

Question: An organic compound on combustion gives 0.22 g of CO₂ and 0.126 g of H₂O. If the percentage of C in given organic compound is 40%, the percentage of H will be? **Options:**

(a) 9.33%

(b) 14%

(c) 10%

(d) None

Answer: (a)

Solution: 5 milimoles of CO2 and 7 milimoles of H2O is formed thus one mole has 5 carbon or 60 gm carbon, now since its 40% of organic compound therefore organic compound mass is 150 and this concludes mass % of H is 9.33

Question: For the 1st order reactions, the ratio of t_{50%} to t_{87.5%} will be Options: (a) 2 (b) 3 (c) 4

(d) same Answer: (b) Solution: Fact based

Question: The pair of lanthanides with exceptionally high 3rd ionisation enthalpy than neighbouring elements:

Options:

(a) Lu and Yb
(b) Eu and Gb
(c) Eu and Yb
(d) Dy and Yb
Answer: (c)
Solution: Fact based

Question: Identify the product formed in the following reaction

i.NaOH/Heat \rightarrow ? :0 ii. H **Options:** (a) H₂N — (CH₂)₃ — CHO

(b) $H_3C - NH - (CH_2)_3 - CH_2OH$ (c) $H_3C - NH - (CH_2)_3 - COOH$ (d) $H_2N - CH - (CH_2)_2 - COOH$ $|_{H_3C}$

Answer: (c)

Solution: nucleophilic addition reaction occurs

Question: Consider the given reaction:

 $Be(OH)_2 + Sr(OH)_2 \rightarrow Product$

Incorrect statement regarding the product is given as:

Options:

(a) Be is tetrahedrally bonded in the product

(b) Be forms cationic part

(c) It is an acid base reaction

(d) Be(OH)₂ acts as a Lewis acid

Answer: (b)

Solution: Be forms complex which is anionic part

Questioni intaten me est	
Column I	Column II
(A) Troposphere	(P) From 10 - 50 km from sea level
(B) Stratosphere	(Q) Uto 10 km from sea level
(C) Mesosphere	(R) From 85 km to \approx 700 km from sea level
(D) Thermosphere	(S) From 50 km to 85 km from sea level
Options:	
(a) A-P; B-Q; C-R; D-S	
(b) A-R; B-S; C-P; D-Q	
(c) A-Q; B-P; C-S; D-R	
(d) A-S; B-R; C-P; D-Q	
Answer: (c)	
Solution: Fact based	

Question: Match the column.

Question: A solution is isotonic with glucose having concentration 0.05 M at a certain temperature. If the volume of the solution is 1 L, find the molar mass of the solute in g/mol if 12 g of solute is mixed to form the solution.

Options:

(a) 120
(b) 240
(c) 360
(d) None
Answer: (b)

Solution: $\pi_1 = \pi_2$

 $0.05 = \frac{12}{Mol. mass}$ or mol. Mass = 240

Question: Glyceraldehyde $\xrightarrow{\text{I.HCN}}$ A + B

Then select the correct option about the product A and B.

Options:

(a) Both are optically active

(b) Both are optically inactive

(c) One is optically active and another is optically inactive

(d) None of these

Answer: (c)

Solution: Reaction based

JEE-Mains-13-04-2023 [Memory Based] [Morning Shift]

Mathematics

Question: For the differentiable function $f: R - \{0\} \rightarrow R$, let $3f(x) + 2f\left(\frac{1}{x}\right) = \frac{1}{x} - 10$, then

$$\left| f(3) + f'\left(\frac{1}{4}\right) \right|$$
 is equal to

Answer: 13.00 Solution:

$$\begin{bmatrix} 3f(x) + 2f\left(\frac{1}{x}\right) = \frac{1}{x} - 10 \end{bmatrix} \times 3$$

$$\begin{bmatrix} 2f(x) + 3f\left(\frac{1}{x}\right) = x - 10 \end{bmatrix} \times 2$$

$$5f(x) = \frac{3}{x} - 2x - 10$$

$$\Rightarrow f(x) = \frac{1}{5}\left(\frac{3}{x} - 2x - 10\right)$$

$$f'(x) = \frac{1}{5}\left(-\frac{3}{x^2} - 2\right)$$

$$\begin{vmatrix} f(3) + f'\left(\frac{1}{4}\right) \end{vmatrix} = \begin{vmatrix} \frac{1}{5}(1 - 6 - 10) + \frac{1}{5}(-48 - 2) \end{vmatrix}$$

$$= \begin{vmatrix} -3 - 10 \end{vmatrix}$$

$$= 13$$

Question: How many symmetric matrices of order 3×3 can we form (0,1,2,...,9) 3×3 .

Answer: 10⁶ **Solution:**

 $A = \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix}, a, b, c, d, e, f \in \{0, 1, 2, \dots, 9\}$

Number of matrices $=10^6$

Question: $S_1, S_2, ..., S_{10}$, be sum of 12 terms of 10 APs with 1st terms: 1, 2, 3,, 10 & common differences: 1, 3, 5, 7,, 19. Find $S_1 + S_2 + ... + S_{10}$.

Answer: 7260.00 Solution: $S_{k} = 6(2k + (11)(2k - 1))$ $S_{k} = 6(2k + 22k - 11)$ $S_{k} = 144k - 66$ $\sum_{1}^{10} S_{k} = 144\sum_{k=1}^{10} k - 66 \times 10$ $= 144 \times \frac{10 \times 11}{2} - 660$ = 7920 - 660= 7260

Question: A coin is biased so that the head is 3 times as likely to occur as tail. This coin is tossed until a head or three tails occurs. If X denotes the number of t are of the coin, then the mean of X is

Answer: $\frac{21}{16}$ Solution:

 $P(H) = \frac{3}{4}$ $P(T) = \frac{1}{4}$

Mean $\bar{X} = \frac{3}{4} + \frac{3}{8} + 3\left(\frac{1}{64} + \frac{3}{64}\right)$ = $\frac{3}{4} + \frac{3}{8} + \frac{3}{16}$ = $3\left(\frac{7}{16}\right)$ = $\frac{21}{16}$

Question: Number of 7 digit numbers using $\{1, 2, 3, 4\}$ such that sum of all digits is 12 is

Answer: 413.00 Solution:

 $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 = 12, x_i \in \{1, 2, 3, 4\}$ No. of solutions $= {}^{5+7-1}C_{7-1} - \frac{7!}{6!} - \frac{7!}{5!} = 413$

Question:
$$\int_{0}^{\infty} \frac{6}{e^{3x} + 6e^{2x} + 11e^{x} + 6} dx =$$

Answer: $\ln\left(\frac{32}{27}\right)$

Solution:

Given,
$$\int_{0}^{\infty} \frac{6}{e^{3x} + 6e^{2x} + 11e^{x} + 6} dx$$

Put $e^{x} = t \Rightarrow e^{x} dx = dt$

$$\int_{1}^{\infty} \left(\frac{6}{t^{3} + 6t^{2} + 11t + 6}\right) \frac{dt}{t}$$

$$= \int_{1}^{\infty} \frac{6}{t(t+1)(t+2)(t+2)} dt$$

$$= \int_{1}^{\infty} 3\left(\frac{1}{t(t+3)} - \frac{1}{(t+1)(t+2)}\right)$$

$$= \int_{1}^{\infty} \frac{1}{t} - \frac{1}{t+3} - \frac{3}{t+1} + \frac{3}{t+2}$$

$$\ln \frac{t \times (t+2)^{3}}{(t+3)(t+1)^{3}} \Big|_{1}^{\infty}$$

$$\ln 1 - \ln \frac{27}{32} = \ln \left(\frac{32}{27}\right)$$

Question: Let the tangent and normal at the point $(3\sqrt{3},1)$ on the ellipse $\frac{x^2}{36} + \frac{y^2}{4} = 1$ meet the y-axis at the points A and B respectively. Let the circle C be drawn taking AB as diameter and the line $x = 2\sqrt{5}$ intersect C at the points P and Q. If the tangent at the points P and Q on the circle intersects at the point (α, β) , then $\alpha^2 - \beta^2$ is equal to

Answer: 60.8 Solution:

Given ellipse $\frac{x^2}{36} + \frac{y^2}{4} = 1$ $\frac{x}{4\sqrt{3}} + \frac{y}{4} = 1$ y = 4

$$\frac{x}{4} - \frac{4}{4\sqrt{3}} = \frac{2}{\sqrt{3}}$$

$$y = -8$$

$$x^{2} + (y - 4)(y + 8) = 0$$

$$x^{2}y^{2} + 4y - 32 = 0$$

$$hx + ky + 2(y + k) - 32 = 0$$

$$hx + 2k - 32 = 0$$

$$hx = 36$$

$$\alpha = h = \frac{36}{2\sqrt{5}}$$

$$\beta = k = -2$$

$$\alpha^{2} - \beta^{2} = 60.8$$

Question: If
$$\sin^{-1}\left(\frac{x+1}{\sqrt{x^2+2x+2}}\right) - \sin^{-1}\left(\frac{x}{\sqrt{x^2+1}}\right) = \frac{\pi}{4}$$
 then
 $\sin\left(x^2+x+5\right)\frac{\pi}{2} + \cos\left(x^2+x+5\right)\pi = ?$

Answer: 0.00 Solution:

$$\sin^{-1}\left(\frac{x+1}{\sqrt{x^2+2x+2}}\right) - \sin^{-1}\left(\frac{x}{\sqrt{x^2+1}}\right) = \frac{\pi}{4}$$
$$\sin^{-1}\left(\frac{x+1}{\sqrt{(x+1)^2+1}}\right) - \sin^{-1}\left(\frac{x}{\sqrt{x^2+1}}\right) = \frac{\pi}{4}$$

$$\tan^{-1}(x+1) - \tan^{-1}x = \frac{\pi}{4}$$

Apply tan on both sides

 $\frac{(x+1)-x}{1+x^2+x} = 1$ $\Rightarrow x^2 + x = 0$ x = 0, -1Now, $\sin(x^2 + x + 5)\frac{\pi}{2} + \cos(x^2 + x + 5)\pi =$ Put x = 0 $\sin\frac{5\pi}{2} + \cos(5\pi) = 1 - 1 = 0$

Question: $g(x) = \sqrt{x} + 1$ and $g(f(x)) = x + 3 - \sqrt{x}$, then find f(0). Answer: 4.00 Solution:

Given,
$$g(x) = \sqrt{x} + 1$$
 and $g(f(x)) = x + 3 - \sqrt{x}$
 $\sqrt{f(x)} + 1 = x + 3 - \sqrt{x}$
Put $x = 0$
 $\sqrt{f(0)} = 2$
 $f(0) = 4$

Question: $y = \max(\sin x, \cos x), -\pi \le x \le \pi$. Find area.

Answer: 4.00 Solution:

Question:
$$S_1 : \lim_{n \to \infty} \frac{1}{n^2} (2 + 4 + 6 + ... + 2n) = 1$$

 $S_2 : \lim_{n \to \infty} \frac{1}{n^{16}} (1^{15} + 2^{15} + 3^{15} + ... + n^{15}) = \frac{1}{16}$

Options: (a) Both are correct (b) Both are incorrect (c) Only S₁ is correct (d) Only S₂ is correct Answer: (a) Solution:

$$S_{1} : \lim_{n \to \infty} \frac{n(n+1)}{n^{2}} = 1 \Rightarrow \text{True}$$

$$S_{2} : \lim_{n \to \infty} \frac{1}{n^{16}} \left(\sum r^{15} \right) = \lim_{n \to \infty} \frac{1}{n} \sum \left(\frac{r}{n} \right)^{15}$$

$$= \int_{0}^{1} x^{15} dx = \frac{1}{16} \Rightarrow \text{True}$$

Question: Find fractional part of $\frac{4^{2022}}{15}$.

Answer: $\frac{1}{15}$

Solution:

$$\left\{\frac{4^{2022}}{15}\right\} = \left\{\frac{2^{4044}}{15}\right\}$$
$$= \left\{\frac{(1+15)^{1011}}{15}\right\}$$
$$= \frac{1}{15}$$

Question: If $y_1(x)$ and $y_2(x)$ are solutions of $\frac{dy}{dx} = y + 7$, $y_1(0)$, $y_2(0) = 1$ then find number of points of intersection of $y_1(x)$ and $y_2(x)$.

Answer: 0.00 Solution:

$$\frac{dy}{dx} = y + 7 \Rightarrow \frac{dy}{dx} - y = 7$$

I.F. = e^{-x}
 $ye^{-x} = \int 7e^{-x} dx$
 $\Rightarrow ye^{-x} = -7e^{-x} + c$
 $\Rightarrow y = -7 + ce^{x}$
 $y_{1}(x) = -7 + 7e^{x}, y_{2}(x) = -7 + 8e^{x}$
 $-7 + 7e^{x} = -7 + 8e^{x}$
 $\Rightarrow e^{x} = 0$
No solution

Question: $2 \cdot 2^2 - 3^2 + 2 \cdot 4^2 - 5^2 + \dots$ Find sum till 20 terms.

Answer: 1310.00 Solution: $(2^{3}-3^{2}+4^{2}-5^{2}+...20 \text{ terms})+(2^{2}+4^{2}+...+10 \text{ terms})$ $-(2+3+4+5+....+11)+4[1+2^{2}+....+10^{2}]$ $-[\frac{21\times22}{2}-1]+4\times\frac{10\times11\times21}{6}$ $=1-231+14\times11\times10$ =1540+1-231=1310

Question: Let PQ be a focal chord of the parabola $y^2 = 36x$ of length 100, making an acute angle with the positive and M be the point on the line segment PQ such that PM : PQ = 3:1, then which of the following point does not lie on the line passing through M and perpendicular to the line PQ?

Answer: Solution:

Question: The negation of the statement $\left[\left(A \land (B \lor C) \right) \Rightarrow (A \lor B) \right] \Rightarrow A$ is

Answer: ~ A Solution: $\left[\left(A \land (B \lor C) \right) \Rightarrow (A \lor B) \right] \Rightarrow A$ $\left[\sim \left(A \land (B \lor C) \right) \lor (A \lor B) \right] \Rightarrow A$ $\Rightarrow \left(A \land (B \lor C) \right) \land (\sim A \land \sim B) \lor A$ $\phi \lor A$ $= \sim A$

Question: $w = z(\overline{z}) + k_1(z) + k_2(iz) + \lambda$. If $\operatorname{Re}(w) = 0$ is a circle C in 1st quadrant with radius 1 touching line y = 1 and y-axis. Then $\operatorname{Im}(w) = 0$ intersects C at A & B, find $(AB)^2$. Answer: 4.00 Solution:

 $\left|\frac{k_2}{2} - 1\right| = 1$ $\Rightarrow \frac{k_2}{2} - 1 = \pm 1$ $\Rightarrow \frac{k_2}{2} = 2,0$ $\Rightarrow k_2 = 4,0$ $k_2 = 4, \lambda = 4$ $\frac{k_1^2}{4} = 1$ $\Rightarrow k_1 = -4$ Circle: $x^2 + y^2 - 4x - 4y + 4 = 0$ Im(w) = 0 $k_1y + k_2x = 0$ x - y = 0AB is diameter $AB^2 = 4$

Question: In $\left(\sqrt{x} - \frac{6}{x^{\frac{3}{2}}}\right)^n$, constant term is A & sum of coefficient other than A = 649. If

coefficient of x^{-n} is λA , then $\lambda = ?$ Answer: Solution:

$$T_{k+1} = {}^{n}C_{k}(x)^{\frac{n-k}{2}}(-6)^{k}(x)^{\frac{-3}{2}k}$$
$$\frac{n-k}{2} - \frac{3}{2}k = 0$$
$$n-4k = 0$$
$$(-5)^{n} - \left({}^{n}C_{\frac{n}{4}}(-6)^{\frac{n}{4}}\right) = 649$$
$$n = 4$$
$$625 + 24 = 649$$
$$n = 4 \& k = 1$$

Required is coefficient of x^{-4} is $\left(\sqrt{x} - \frac{6}{x^{\frac{3}{2}}}\right)^4$

 ${}^{4}C_{1}(-6)^{3}$

By calculating we will get $\lambda = 36$

Question: Find maximum value: $f(x) = x - 2\sin x \cos x + \frac{1}{3}\sin(3x), x \in [0, \pi]$

Answer:
$$\frac{5\pi}{6} + \frac{\sqrt{3}}{2} + \frac{1}{3}$$

Solution:
 $f(x) = x - 2\sin x \cos x + \frac{1}{3}\sin(3x)$
 $f(x) = x - \sin 2x + \frac{1}{3}\sin 3x$
 $f'(x) = 1 - 2\cos 2x + \cos 3x = 0$
 $0 = 1 - 2(2\cos^2 x - 1) + (4\cos^3 x - 3\cos x)$
 $0 = 1 - 4\cos^2 x + 2 + 4\cos^3 x - 3\cos x$
 $4\cos^3 x - 4\cos^2 x - 3\cos x + 3 = 0$
 $4\cos^2 x(\cos x - 1) - 3(\cos x - 1) = 0$
 $(\cos x - 1)(4\cos^2 x - 3) = 0$
 $\therefore x = 0, \frac{5\pi}{6}, \frac{\pi}{6}$
 $f'(x) = 1 - 2\cos 2x + \cos 3x = 0$
 $\therefore x = 0, \frac{5\pi}{6}, \frac{\pi}{6}$
 $f''(x) = 4\sin 2x - 3\sin 3x$
 $f''(0) = 0$
 $f''(\frac{\pi}{6}) > 0 \Rightarrow (\frac{5\pi}{6})$ is point of maxima
 $\therefore f(\frac{5\pi}{6}) = \frac{5\pi}{6} + \frac{\sqrt{3}}{2} + \frac{1}{3}$

Question: The set of all $a \in R$ for which the equation x|x-1|+|x+2|+a=0 has exactly one real root is **Answer:** $a \in R$ **Solution:** f(x) = x|x-1|+|x+2|

x|x-1|+|x+2|+a=0x|x-1|+|x+2|=-a

All values are increasing.

Question: Let $B = \begin{bmatrix} 1 & 3 & \alpha \\ 1 & 2 & 3 \\ \alpha & \alpha & 4 \end{bmatrix}$, $\alpha > 2$ be the adjoint of a matrix A and |A| = 2, then $\begin{bmatrix} \alpha & -2\alpha & \alpha \end{bmatrix} B \begin{bmatrix} \alpha \\ -2\alpha \\ \alpha \end{bmatrix} = ?$ Answer: $\begin{bmatrix} -16 \end{bmatrix}_{I\times I}$ Solution: Given, $B = \begin{bmatrix} 1 & 3 & \alpha \\ 1 & 2 & 3 \\ \alpha & \alpha & 4 \end{bmatrix}$ |B| = 4 $1(8-3\alpha)-3(4-3\alpha)+\alpha(\alpha-2\alpha)=4$ $-\alpha^2 + 6\alpha - 8 = 0$ $\alpha = 2, 4$ Given $\alpha > 2$ So $\alpha = 2$ is rejected $\begin{bmatrix} 4 & -8 & 4 \end{bmatrix} \begin{bmatrix} 1 & 3 & 4 \\ 1 & 2 & 3 \\ 4 & 4 & 4 \end{bmatrix} \begin{bmatrix} 4 \\ -8 \end{bmatrix} = \begin{bmatrix} -16 \end{bmatrix}_{I\times I}$