JEE MAIN 2023

APRIL ATTEMPT

PAPER-1 (B.Tech / B.E.)

Maximum Marks : 300

SUBJECT - CHEMISTRY

LEAGUE OF TOPPERS (Since 2020) TOP 100 AIRs IN JEE ADVANCED

Admission Announcement for JEE Advanced (For Session 2023-24)

Starting From : 12 \& 19 APRIL'23
Avail Scholarship up to $\mathbf{9 0 \%}$ through R-NET on EVERY SUNDAY

CHEMISTRY

1. 12 g of non-electrolyte ' A ' dissolved in 1000 ml of solution. It is isotonic with 0.05 molar glucose solution. Find molar mass of ' A '.
Ans. $\quad 240$ g
Sol. $\quad \Pi_{\mathrm{A}}=\Pi_{\text {glucose }}$

$$
\frac{12}{\mathrm{M}} \times \frac{1}{1}=0.05
$$

$\mathrm{M}=\frac{12}{0.05}=240 \mathrm{~g}$
2. For a real gas at $P=100 \mathrm{~atm}, \mathrm{~T}=500 \mathrm{~K}$, volume is found to be $0.15 \mathrm{dm}^{3}$. At this condition compressibility factor of gas is 1.07 . For the same sample at $\mathrm{P}=300 \mathrm{~atm}, \mathrm{~T}=300 \mathrm{~K}$ compressibility factor is 1.7 . If volume at this condition is $\mathrm{x} \times 10^{-4} \mathrm{dm}^{3}$. Determine ' x '.

Ans. 476
Sol. $\quad \mathrm{PV}=\mathrm{ZnRT}$
$\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{ZRT}}$
$\mathrm{n}=\mathrm{n}$
$\frac{\mathrm{PV}}{\mathrm{ZRT}}=\frac{\mathrm{PV}}{\mathrm{ZRT}}$
$\frac{100 \times 0.15}{1.07 \times 500}=\frac{300 \times \mathrm{V}}{1.7 \times 300}$
$\mathrm{V}=\frac{0.15 \times 1.7}{1.07 \times 5}=0.0476 \mathrm{dm}^{3}=476 \times 10^{-4} \mathrm{dm}^{3}$
$x=476$
3. In which of the following options the species changes from paramagnetic to diamagnetic \& bond order increases?
(1) $\mathrm{N}_{2} \rightarrow \mathrm{~N}_{2}^{+}$
(2) $\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{-}$
(3) $\mathrm{NO} \rightarrow \mathrm{NO}^{+}$
(4) $\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{+}$

Ans. (3)

Sol. $\mathrm{N}_{2} \longrightarrow \mathrm{~N}_{2}^{+}$

diamagnetic	paramagnetic
B.O. $=3$	B.O. $=2.5$

$\mathrm{O}_{2} \quad \longrightarrow \mathrm{O}_{2}^{-}$
paramagnetic paramagnetic
B.O. $=2$
B.O. $=1.5$
$\mathrm{NO} \longrightarrow \mathrm{NO}^{+}$
paramagnetic diamagnetic
B.O. $=2.5$
B.O. $=3$
$\mathrm{O}_{2} \quad \longrightarrow \mathrm{O}_{2}^{+}$
paramagnetic paramagnetic
B.O. $=2$
B.O. $=2.5$
4. What happens when lyophilic sol is added to lyophobic sol.
(1) Prevention form coagulation
(2) Precipitation
(3) Electrophoresis
(4) Coagulation

Ans. (1)
Sol. Lyophilic sol protect lyophobic sol from coagulation.
5. Radius of $2^{\text {nd }}$ orbit of He^{+}is r_{0}, radius of 4 ${ }^{\text {th }}$ orbit of Be^{3+} is $\mathrm{x} \mathrm{r}_{0}$. Find x .

Ans. $x=2$
Sol. $\quad\left(r_{2}\right)_{\mathrm{He}^{+}}=\mathrm{r}_{0}=0.529 \times \frac{2^{2}}{2} \AA$
$\left(\mathrm{r}_{4}\right)_{\mathrm{Be}^{3+}}=0.529 \times \frac{4^{2}}{4}=2 \mathrm{r}_{0}$
6. Which of the following are incorrectly matched ?
(i) Chlorophyll : Complex of Co
(ii) EDTA : Used for removal of hardness
(iii) $\mathrm{Au}\left(\mathrm{CN}_{2}\right)^{-}$: Used in photography
(iv) D-phenicillamine : Chelating ligand
(v) $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}\right]$: Wilkinson's catalyst
(1) (i) \& (iii)
(2) (i), (ii) \& (iii)
(3) (ii) \& (iv)
(4) (iii), (iv) \& (v)

Ans. (1)
Sol. Chlorophyll is a coordination compound of magnesium.
$\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-}$ is used in photography.
7. The bond enthalpy of A_{2} bond is :

Given : $\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{AB}(\mathrm{g}), \Delta \mathrm{H}_{\mathrm{f}}(\mathrm{AB})=-200 \mathrm{~kJ} / \mathrm{mol}$
The ratio of bond enthalpy of $\mathrm{A}_{2}, \mathrm{~B}_{2}, \mathrm{AB}$ are in $1: 05: 1$ ratio.
Ans. 800 kJ/mol
Sol. Let B.E.A-A $=x$

$$
\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{AB}(\mathrm{~g})
$$

$\Delta \mathrm{H}=-400=$ B.E.A-A + B.E.B-B -2 B.E.A-B
$\Rightarrow-400=x+\frac{x}{2}-2 \mathrm{x}$
$\Rightarrow \frac{\mathrm{x}}{2}=400 \Rightarrow \mathrm{x}=800 \mathrm{~kJ} / \mathrm{mol}$
8. $\mathrm{Be}(\mathrm{OH})_{2}+\mathrm{Sr}(\mathrm{OH})_{2} \longrightarrow$ Product

For above reaction which of the following are correct?
(A) Be is tetrahedrally co-ordinated in anionic part
(B) Sr and Be are present in anionic part
(C) It is acid base neutralisation
(D) Sr and Be are present in cationic part
(1) (A) and (C)
(2) (A) Only
(3) (C) Only
(4) (B), (C)

Ans. (1)
Sol. $\mathrm{Be}(\mathrm{OH})_{2}+\mathrm{Sr}(\mathrm{OH})_{2} \longrightarrow \mathrm{Sr}\left[\mathrm{Be}(\mathrm{OH})_{4}\right]$
Amphoteric

Unleashing Potential
9. Select correct option
(1) ClF_{5} is square pyramidal, colourless gas
(2) ClF_{5} is square pyramidal, colourless liquid
(3) ClF_{5} is trigonal bipyramidal, colourless gas
(4) ClF_{5} is trigonal bipyramidal, colourless liquid

Ans. (2)

Sol.

10. Which of following pair has high third ionisation energy ?
(1) Eu, Gd
(2) Eu, Yb
(3) Gd, Lu
(4) Gd, Yb

Ans. (2)
Sol. $\quad{ }_{63} \mathrm{Eu}:[\mathrm{Xe}] 4 \mathrm{f}^{7} 6 \mathrm{~s}^{2}$
${ }_{70} \mathrm{Yb}:[\mathrm{Xe}] 4 \mathrm{f}^{14} 6 \mathrm{~s}^{2}$
11. For a $I^{\text {st }}$ order reaction, determine the ratio $\mathrm{t}_{87.5 \%} \& \mathrm{t}_{50 \%}$.

Ans. 3
Sol. $\quad \mathrm{t}_{87.5}=\frac{1}{\mathrm{k}} \ln \left(\frac{100}{100-87.5}\right)=\frac{1}{\mathrm{k}} \ln (8)=\frac{3 \ln 2}{\mathrm{k}}$
$\mathrm{t}_{50 \%}=\frac{\ln 2}{\mathrm{k}}$
$\therefore \quad \frac{\mathrm{t}_{87.5 \%}}{\mathrm{t}_{50 \%}}=\frac{\frac{3 \ln 2}{\mathrm{k}}}{\frac{\ln 2}{\mathrm{k}}}=3$
12. Which of the following is incorrect matched ?
(1) Zn - Liquation
(2) Cu - Electrolysis
(3) Ni - Mond's process
(4) Ti - Van arkel method

Ans. (1)
Sol. Zn - Distillation
13. (A) Electron gain enthalpy of F is more negative than Cl
(B) Ionisation energy decreases down the group in P.T.
(C) Electronegativity depends on the surrounding atoms
(D) NO and $\mathrm{Al}_{2} \mathrm{O}_{3}$ are amphoteric oxides

Incorrect statement is :
(1) B, C
(2) A, C, D
(3) A, B, D
(4) A, B, C, D

Ans. (3)
14. 2 molecules of KMnO_{4} are titrated with ferrous ammonium sulphate hexahydrate in presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$. Determine the number of molecules of $\mathrm{H}_{2} \mathrm{O}$ produced.
Ans. 68
Sol. $2 \mathrm{KMnO}_{4}+10 \mathrm{FeSO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+8 \mathrm{H}_{2} \mathrm{O}$
Corresponding to 2 molecules of $\mathrm{KMnO}_{4}, 8$ molecules of $\mathrm{H}_{2} \mathrm{O}$ are released.
Also corresponding to 10 molecule of $\mathrm{FeSO}_{4}, 60$ molecules of $\mathrm{H}_{2} \mathrm{O}$ will also be produced.
15. An aqueous solution of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ is electrolysed. How long would it take to form $10^{-3} \mathrm{~mm}$ thick layer on a $100 \mathrm{~cm}^{2}$ area with 2 amp . current. (Density of $\mathrm{Ni}=10 \mathrm{gm} / \mathrm{mi}, \mathrm{Ni}=60$)
Sol. Volume of Ni deposited $=\left(10^{-4}\right)(100) \mathrm{cm}^{2}=10^{-2} \mathrm{~cm}^{3}$
\therefore Weight of Ni deposited $=\left(10^{-2}\right)(10)=0.1$ gram
\therefore Moles of N deposited $=\frac{10^{-3}}{60}=\frac{1}{6} \times 10^{-2}$
$\mathrm{Ni}^{+2}+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}$
\Rightarrow Charge used $=\frac{1}{6} \times 10^{-2} \times 2 \mathrm{~F}=(\mathrm{i})(\mathrm{t})$

$$
\mathrm{t}=\frac{1}{6} \times 10^{-2} \times \frac{2 \times 6500}{2} \approx 161 \mathrm{sec}
$$

16. $\quad \mathrm{Be}(\mathrm{OH})_{2}+\mathrm{Sr}(\mathrm{OH})_{2} \longrightarrow \mathrm{Sr}\left[\mathrm{Be}(\mathrm{OH})_{4}\right]^{2-}$

Which of the following statement is correct?
(1) Be is tetrahedrally coordinated in anionic part of salt.
(2) $\mathrm{Sr} \& \mathrm{Be}$ present in anionic part.
(3) Acid-base neutralisation reaction.
(4) Be is present in the cationic part.

Ans. (1)
17. An organic compound on combustion gives 0.022 g of CO_{2} and $0.126 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$. Compound contains $24 \% \mathrm{C}$, if the percentage of hydrogen is $\mathrm{x} \times 10^{-1}$. Determine x .
Ans. 560
Sol. Mass of $\mathrm{C}=\frac{0.022}{44} \times 12 \mathrm{~g}$
Mass of $\mathrm{H}=\frac{0.126}{18} \times 2 \mathrm{~g}$

$$
\begin{aligned}
\text { Mass\% of } \mathrm{H} & =\frac{\frac{0.126}{18} \times 2}{\frac{0.022}{44} \times 12} \times 24 \\
& =56 \%
\end{aligned}
$$

18. Which of the following deplete ozone layer?
(1) $\dot{\mathrm{C}} \mathrm{l}$
(2) $\stackrel{\dot{N}}{ } \mathrm{O}$
(3) $\dot{\mathrm{O}} \mathrm{H}$
(4) $\dot{\mathrm{C}} \mathrm{H}_{3}$

Ans. (1)
19.

D(+)Glyceraldehyde
(1) Products obtained are optically active
(2) Products mixture is racemic
(3) One product is optically active and the other is meso
(4) Products obtained are optically inactive

Ans. (3)
20.

(1) Both rings will be 5 -membered in product
(2) One ring will be 6 membered \& other will be 4 membered in product
(3) Both rings will be 6 membered in product
(4) One ring four and other ring five membered in product

Ans. (3)

21.

Total number of products obtained by tertiary carbocation in the above reactions.
Ans. 5

Sol.

List II (Polymer)

(p) Neoprene
(q) Dacron
(r) Nylon-6
(s) Natural rubber

Ans. (a) $\rightarrow(\mathbf{r}),(\mathrm{b}) \rightarrow(\mathrm{s}),(\mathrm{c}) \rightarrow(\mathrm{p}),(\mathrm{d}) \rightarrow(\mathrm{q})$
23. n-hexane $\xrightarrow[\Delta]{\mathrm{AlCl}_{3}+\mathrm{HCl}}$ Product is
(1)

(2)

(3)

(4)

Ans. (1)
24.

Product (P) and (Q) is :
(1)

(2)

(3) (P) is

(4) (P) is

Ans. (3)

Sol.

Unleashing Potential

-

25.

(1)

(2)

(3)

(4)

Ans. (2)

Sol.

RELIABLE INSTITUTE : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com
© reliablekota O reliablekota © reliableinstitutekota © reliable_kota if reliablekota

