JEE MAIN 2023

APRIL ATTEMPT

PAPER-1 (B.Tech / B.E.)

Duration : 3 Hours
Maximum Marks : 300

SUBJECT - PHYSICS

LEAGUE OF TOPPERS (Since 2020) TOP 100 AIRs IN JEE ADVANCED

Admission Announcement for JEE Advanced (For Session 2023-24)

Starting From : 12 \& 19 APRIL'23
Avail Scholarship up to $\mathbf{9 0 \%}$ through R-NET on EVERY SUNDAY

Unleashing Potential

PHYSICS

1. Train A takes 35 sec less than train B. Find length of tunnel.

Ans. 1800
Sol. $\quad \frac{60 \ell+4 \ell}{20}-\frac{61 \ell}{30}=35$

$$
\begin{aligned}
& \Rightarrow \quad \ell=\frac{1050}{35} \\
& \Rightarrow \quad L=60 \ell=\frac{1050}{35} \times 60=1800 \mathrm{~m}
\end{aligned}
$$

2. Find $\mathrm{P}_{1}-\mathrm{P}_{2}$.

Ans. 175
Sol. $\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}$

$$
1.5 \times V_{1}=25 \times 10^{-2} \times 60
$$

$\mathrm{V}_{1}=\frac{25 \times 60 \times 10^{-2} \times 10}{1.5}$
$\mathrm{V}_{1}=10 \mathrm{~cm} / \mathrm{s}$
By Bernoulli's
$\mathrm{P}_{1}+\frac{1}{2} \times 1000 \times(0.1)^{2}=\mathrm{P}_{2}+\frac{1}{2} \times 1000 \times(0.6)^{2}$

$$
\mathrm{P}_{1}+5=\mathrm{P}_{2}+\frac{1}{2} \times 1000 \times 36 \times 10^{-2}
$$

$$
\mathrm{P}_{1}+5=\mathrm{P}_{2}+180
$$

$$
\mathrm{P}_{1}-\mathrm{P}_{2}=175 \text { Pas. }
$$

3. For a polytropic process $\mathrm{P}=\mathrm{av}^{-3}$. Find Bulk Modulus :
(1) $2 P$
(2) P
(3) 3 P
(4) 0

Ans. (3)
Sol. $\quad B=-\frac{d P}{d v / v}$
$\mathrm{Pv}^{3}=\mathrm{a}$
difference wrt to pressure
$v^{3}+P 3 v^{2} \frac{d v}{d P}=0$
$v=-3 \frac{P d v}{d P}=0$
$v=-3 \frac{P d v}{d P}$
$\frac{\mathrm{dP} \cdot \mathrm{v}}{\mathrm{dv}}=-3 \mathrm{P}$
$B=-\left(\frac{d P v}{d v}\right)=-(-3 P)=3 P$
4. In an SHM draw the graph of T.E. - P.E, $\operatorname{ss} \mathrm{x}$.
T.E. - P.E.
(1)

(2)

(3)

(4)

Ans. (3)

Unleashing Potential
Sol. T.E. - P.E. $=$ K.E.

$$
\text { K.E. }=\frac{1}{2} m \omega^{2}\left(\mathrm{~A}^{2}-\mathrm{x}^{2}\right)
$$

5. Increasing order of power dissipation?
(i)

(ii)

(iii)

(1) iv $>$ i $>$ ii $>$ iii
(2) iv $>$ i $>$ iii $>$ ii
(3) i $>$ ii $>$ iii $>$ iv
(4) iv $>$ iii $>$ ii $>$ i

Ans. (1)
Sol. $P=i^{2} R$
$\mathrm{R}_{1}=\frac{3 \mathrm{R}}{2}, \mathrm{R}_{2}=\frac{2 \mathrm{R}}{3}, \mathrm{R}_{3}=\frac{\mathrm{R}}{3}, \mathrm{R}_{4}=3 \mathrm{R} ; \mathrm{R}_{4}>\mathrm{R}_{1}>\mathrm{R}_{2}>\mathrm{R}_{3}$
6. Which of the following Maxwell equation is time dependant?
(1) $\oint \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{s}}=\frac{\mathrm{q}_{\text {in }}}{\varepsilon_{0}}$
(2) $\oint \overrightarrow{\mathrm{B}} \cdot \mathrm{d} \overrightarrow{\mathrm{s}}=0$
(3) $\oint \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \vec{\ell}=\frac{-\mathrm{dQ}_{\mathrm{B}}}{\mathrm{dt}}$
(4) $\oint \overrightarrow{\mathrm{B}} . \mathrm{d} \vec{\ell}=\mu_{0} \mathrm{I}_{\mathrm{en}}$

Ans. (4)
Sol. $\quad \mathrm{n}^{\mathrm{n}}: \rightarrow$ Ampere's Circuital law charges in time varying condition. Ans. (4)
7. If ratio of kinetic energy of two particle is $\frac{16}{9}$. If linear momentum of two particle are same then ratio of mass $\frac{m_{1}}{m_{2}}$ is:
(1) $\frac{9}{16}$
(2) $\frac{16}{9}$
(3) $\frac{4}{3}$
(4) $\frac{3}{4}$

Ans. (1)

Unleashing Potential
Sol. $\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\frac{\mathrm{p}_{1}^{2}}{2 \mathrm{~m}_{1}} \times \frac{2 \mathrm{~m}_{2}}{\mathrm{p}_{2}^{2}}=\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}=\frac{16}{9}$

$$
\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}=\frac{9}{16}
$$

8. Mass of a planet is equal to 9 times of mass of earth and radius is 4 times the radius of earth. Find escape velocity (in $\mathrm{km} / \mathrm{sec}$.) of the planet. [Given; escape velocity of earth $\mathrm{V}_{\mathrm{e}}=11.2 \mathrm{~km} / \mathrm{sec}$]
Ans. 16.8
Sol. $\mathrm{V}_{\mathrm{P}}=\sqrt{\frac{2 \mathrm{GM}_{\mathrm{P}}}{\mathrm{R}_{\mathrm{P}}}} \quad \mathrm{V}_{\mathrm{E}}=\sqrt{\frac{2 \mathrm{GM}_{\mathrm{E}}}{\mathrm{R}_{\mathrm{E}}}}$
$\frac{V_{P}}{V_{E}}=\frac{\sqrt{\frac{2 \mathrm{GM}_{\mathrm{P}}}{\mathrm{R}_{\mathrm{P}}}}}{\sqrt{\frac{2 \mathrm{GM}_{\mathrm{E}}}{\mathrm{R}_{\mathrm{E}}}}}=\sqrt{\frac{\mathrm{R}_{\mathrm{E}}}{\mathrm{R}_{\mathrm{P}}} \times \frac{\mathrm{M}_{\mathrm{P}}}{\mathrm{M}_{\mathrm{E}}}}$
$\mathrm{V}_{\mathrm{P}}=\sqrt{\frac{1}{4} \times 9} \times \mathrm{V}_{\mathrm{E}}=\frac{3}{2} \mathrm{~V}_{\mathrm{E}}$
$\mathrm{V}_{\mathrm{P}}=\frac{3}{2} \times 11.2 \mathrm{~km} / \mathrm{sec}$.
$=16.8 \mathrm{~km} / \mathrm{sec}$
9. Find the value of x , if elastic potential energy per unit volume is $\mathrm{x} \times 10^{9} \mathrm{~J}$ stored in the wire of length $L=50 \mathrm{~mm}$. Young's modulus $\mathrm{Y}=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ and change in length $\Delta \mathrm{L}$ is the wire is 10 mm .

Ans. $4 \times 10^{9} \mathrm{~J} / \mathrm{m}^{3}$
Sol. $\frac{\text { Energy }}{\text { Volume }}=\frac{1}{2} \times$ stress \times strain

$$
\begin{aligned}
& =\frac{1}{2} \times \mathrm{Y} \times(\text { strain })^{2} \\
& =\frac{1}{2} \times 2 \times 10^{11} \times\left[\frac{10 \times 10^{-3}}{50 \times 10^{-3}}\right]^{2} \\
& =10^{11} \times\left[\frac{1}{5}\right]^{2}=4 \times 10^{9} \mathrm{~J} / \mathrm{m}^{3}
\end{aligned}
$$

Unleashing Potential
10. Find the ratio of radius of $2^{\text {nd }}$ orbit of He^{+}and $4^{\text {th }}$ orbit of Be^{3+}
(1) $\frac{1}{2}$
(2) $\frac{2}{1}$
(3) $\frac{4}{1}$
(4) $\frac{1}{4}$

Ans. (1)
Sol. $\mathrm{r} \propto \frac{\mathrm{n}^{2}}{\mathrm{z}}$
$\frac{\mathrm{r}_{\mathrm{He}^{+}}}{\mathrm{r}_{\mathrm{Be}^{3+}}}=\frac{2^{2} \times 4}{2 \times 4 \times 4}=\frac{1}{2}$
11. If the height of the tower used for L.D.S. is increased by 21% then percentage change in range is :
(1) 10%
(2) 21%
(3) 19%
(4) 42%

Ans. (1)
Sol. $\mathrm{R}_{1}=\sqrt{2 \mathrm{HRe}}$

$$
\begin{equation*}
\mathrm{R}_{2}=\sqrt{2\left(\frac{\mathrm{H} 121}{100}\right) \mathrm{Re}} \tag{1}
\end{equation*}
$$

$\%$ change $=\frac{\left(\mathrm{R}_{2}-\mathrm{R}_{1}\right)}{\mathrm{R}_{1}} \times 100=\frac{\sqrt{\frac{121}{100}}-1}{1} \times 100=\frac{\frac{11}{10}-1}{1} \times 1.00$
$=10 \%$
12.

Given $R_{B}=10 \mathrm{k} \Omega, R_{C}=1 \mathrm{k} \Omega$, power gain is 10^{x}. Find x
(1) 1
(2) 2
(3) 0
(4) 3

Ans. (1)
Sol. Power gain $=A_{v} \cdot A_{I}=B \frac{R_{C}}{R_{B}} \cdot B=B^{2} \frac{R_{C}}{R_{B}}=\left(\frac{(20-10) \times 10^{3}}{(200-100) \times 10^{-6}}\right)^{2} \times \frac{1 \times 10^{3}}{10 \times 10^{3}}=10$
Hence $\mathrm{x}=1$

Unleashing Potential
13. Mass $(\mathrm{m})=(5 \pm 0.5) \mathrm{kg}$, speed $(\mathrm{v})=(20 \pm 0.4) \mathrm{m} / \mathrm{s}$. Find the kinetic energy.
(1) $(1000+70) \mathrm{J}$
(2) $(1000 \pm 140) \mathrm{J}$
(3) $(500 \pm 140) \mathrm{J}$
(4) $(500 \pm 70) \mathrm{J}$

Ans. (2)
Sol. $\mathrm{k}=\mathrm{mv}^{2}$
$\mathrm{k}=\frac{1}{2} \times 5 \times 400=5 \times 200=1000 \mathrm{~J}$
$\frac{\Delta \mathrm{k}}{2 \mathrm{k}}=\frac{\Delta \mathrm{m}}{\mathrm{m}}+\frac{2 \Delta \mathrm{v}}{\mathrm{v}}=\frac{0.5}{5}+\frac{2 \times 0.4}{20}$
$\Delta \mathrm{k}=1000\left(\frac{1}{10}+\frac{4}{100}\right)=1000\left(\frac{10+4}{100}\right)=140 \mathrm{~J}$
14. Radius of the cylinder is R find displacement of point B in half rotation. [Cylinder performs pure rolling]

(1) $2 R$
(2) $\mathrm{R} \sqrt{4+\pi^{2}}$
(3) R
(4) $R \sqrt{1+\pi^{2}}$

Ans. (2)

Sol.

Displacement $=\sqrt{(2 \mathrm{R})^{2}+(\pi \mathrm{R})^{2}}=\mathrm{R} \sqrt{4+\pi^{2}}$
15. Find the apparent depth of the bottom surface of the tank, when seen from above (in air)?

(1) $\frac{d}{2}\left[\frac{n_{1}+n_{2}}{n_{1} n_{2}}\right]$
(2) $\frac{d}{2}\left[\frac{n_{2}-n_{1}}{n_{2} n_{1}}\right]$
(3) $d\left[\frac{n_{1}+n_{2}}{n_{1} n_{2}}\right]$
(4) $d\left[\frac{n_{2}-n_{1}}{n_{2} n_{1}}\right]$

Ans. (1)

Unleashing Potential

Sol.

Formula used : $\mathrm{d}_{\text {app }}=\frac{\mathrm{d}_{1}}{\mathrm{n}_{1}}+\frac{\mathrm{d}_{2}}{\mathrm{n}_{2}}$

$$
\mathrm{d}_{\text {app }}=\frac{\mathrm{d}}{2}\left[\frac{\mathrm{n}_{1}+\mathrm{n}_{2}}{\mathrm{n}_{1} \mathrm{n}_{2}}\right]
$$

16. Find out apparent speed of bird as seen by fish :

(1) $16 \mathrm{~m} / \mathrm{s}$
(2) $25 \mathrm{~m} / \mathrm{s}$
(3) $21 \mathrm{~m} / \mathrm{s}$
(4) $24 \mathrm{~m} / \mathrm{s}$

Ans. (2)
Sol. $\quad \mathbf{v}=\mathrm{v}_{\text {fish }}+\frac{\mathrm{v}_{\text {Bird }} \times 4 / 3}{1}$
$=9+12 \times \frac{4}{3}$
$=9+16=25 \mathrm{~m} / \mathrm{s}$
17. If a wire of resistance R is connected across V_{0}, then power is P. The wire is cut into two equal parts $2^{\text {nd }}$ connected with V_{0} individually then sum of power P_{2}. Find out $\frac{P}{P_{2}}$ is $\frac{1}{x}$ find out x ?

Ans. 4
Sol. $\quad \mathrm{P}=\frac{\mathrm{V}_{0}^{2}}{\mathrm{R}}$
$\mathrm{P}_{2}=\frac{\mathrm{V}_{0}^{2}}{\mathrm{R} / 2}+\frac{\mathrm{V}_{0}^{2}}{\mathrm{R} / 2}=\frac{4 \mathrm{~V}_{0}^{2}}{\mathrm{R}}=4 \mathrm{P}$
$\frac{\mathrm{P}}{\mathrm{P}_{2}}=\frac{1}{4}$

Unleashing Potential
18. A particle is performing SHM having position $x=A \cos 30^{\circ}$, and $A=40 \mathrm{~cm}$. If its kinetic energy at this position is 200 J , the value of force constant (in kilo-N/m) is

Ans. 10
Sol. $\frac{1}{2} k\left(\mathrm{~A}^{2}-\mathrm{x}^{2}\right)=200 \quad\left[\mathrm{x}=\frac{\sqrt{3} \mathrm{~A}}{2}\right]$
$\frac{1}{2} k\left(\mathrm{~A}^{2}-\frac{3 \mathrm{~A}^{2}}{4}\right)=200 \quad\left[\omega=\sqrt{\frac{\mathrm{k}}{\mathrm{m}}}\right]$
$\frac{1}{2} \mathrm{k} \frac{\mathrm{A}^{2}}{4}=200$
$\mathrm{k}=\frac{200 \times 2 \times 4 \times 100 \times 100}{40 \times 40}=10^{4}$
$=10 \times 10^{3}$
$=10 \mathrm{k} \mathrm{N} / \mathrm{m}$
19. For a ideal gas relation between its average speed $\left(V_{\text {avg }}\right)$ and r.m.s. speed $\left(V_{r m s}\right)$ is (Use : $\pi=\frac{22}{7}$]

$$
\mathrm{V}_{\mathrm{rms}}=\left(1+\frac{5}{\mathrm{x}}\right)^{\frac{1}{2}} \mathrm{~V}_{\mathrm{avg}}
$$

Then value of ' x ' is :
Ans. 28
Sol. $\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}=\left(1+\frac{5}{\mathrm{x}}\right)^{\frac{1}{2}} \sqrt{\frac{8 \mathrm{RT}}{\pi \mathrm{M}}} \Rightarrow \frac{3 \times 22}{7 \times 8}=1+\frac{5}{\mathrm{x}} \Rightarrow \mathrm{x}=28$
20. An electric dipole is placed in an external electric field $4 \times 10^{-4} \mathrm{~N} / \mathrm{c}$ at angle 30°. Magnitude of charge of dipole is $10^{-2} \mathrm{C}$ and separation between them is 0.2 mm . Find torque acting on dipole.
(1) $6 \times 10^{-10} \mathrm{~N}-\mathrm{m}$
(2) $14 \times 10^{-8} \mathrm{~N}-\mathrm{m}$
(3) $4 \times 10^{-10} \mathrm{~N}-\mathrm{m}$
(4) $8 \times 10^{-10} \mathrm{~N}-\mathrm{m}$

Ans. (3)
Sol. $\vec{\tau}=\overrightarrow{\mathrm{P}} \times \overrightarrow{\boldsymbol{\varepsilon}}$
$\mathrm{P}=\mathrm{qd}=10^{-2} \times 0.2 \times 10^{-3}$
$\tau=\mathrm{P} \varepsilon \sin 30$
$=2 \times 10^{-6} \times 4 \times 10^{-4} \times \frac{1}{2}$
$=4 \times 10^{-10} \mathrm{~N}-\mathrm{m}$

Unleashing Potential
21. A solid sphere is Rolling on a flat horizontal surface. If the ratio of angular momentum to total kinetic energy is $\frac{\pi}{22}$, then find the angular speed (in rad/sec) with which sphere is moving?

Ans. 14
Sol. $\frac{\text { Angular momentum }}{\text { Total kinetic energy }}=\frac{\left(\frac{2}{5} \mathrm{mR}^{2}+\mathrm{mR}^{2}\right) \omega}{\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \mathrm{I} \omega^{2}}=\frac{\pi}{22}$
(Taking $\mathrm{v}=\omega \mathrm{R}$)
$\frac{\frac{7}{5} \mathrm{mR}^{2} \cdot \omega}{\frac{7}{10} \mathrm{mv}^{2}}=\frac{\pi}{22} \quad \Rightarrow \quad \omega=14 \mathrm{rad} / \mathrm{sec}$
22. Match the following lists.
(A) Troposphere
(P) 300 km
(B) E part of stratosphere
(Q) 80 km
(C) F_{2} part of thermosphere
(R) 20 km
(D) D-part of stratosphere
(S) 100 km
(1) $(\mathrm{A}) \rightarrow \mathrm{R}$; (B) $\rightarrow \mathrm{S}$; (C) $\rightarrow \mathrm{P}$; (D) $\rightarrow \mathrm{Q}$
(2) $(\mathrm{A}) \rightarrow \mathrm{S} ;(\mathrm{B}) \rightarrow \mathrm{R} ;(\mathrm{C}) \rightarrow \mathrm{Q} ;(\mathrm{D}) \rightarrow \mathrm{P}$
(3) (A) $\rightarrow \mathrm{Q}$; (B) $\rightarrow \mathrm{S}$; (C) $\rightarrow \mathrm{P}$; (D) $\rightarrow \mathrm{R}$
(4) (A) $\rightarrow \mathrm{R}$; (B) $\rightarrow \mathrm{P}$; (C) $\rightarrow \mathrm{Q}$; (D) $\rightarrow \mathrm{S}$

Ans. (1)
23. Two metals A and B having work function $\phi_{A}=9 \mathrm{eV}$ and $\phi_{B}=4.5 \mathrm{eV}$. Find difference of threshold wavelength.
(1) $1378 \AA$
(2) $2100 \AA$
(3) $1500 \AA$
(4) $1100 \AA$

Ans. (1)
Sol. $\lambda_{\mathrm{A}}=\left(\frac{12400}{9}\right) \AA=1377.77 \AA$
$\lambda_{\mathrm{B}}=\left(\frac{12400}{4.5}\right) \AA=2755.55 \AA$
$\lambda_{B}-\lambda_{A}=1377.78 \AA$

Unleashing Potential
24. A bullet of mass 10 gm is fired with muzzle speed $600 \mathrm{~m} / \mathrm{s}$ from 3 kg gun of barrel length 30 cm . Find impulse on gun :

(1) 60 Ns
(2) 3 Ns
(3) 8 Ns
(4) 6 Ns

Ans. (4)
Sol. By momentum conservation
$0=3(-\mathrm{v})+0.01(600-\mathrm{v})$
$\mathrm{v} \simeq 2 \mathrm{~m} / \mathrm{s}$
Impulse on gun $=3 \times 2=6 \mathrm{Ns}$
25. For the given radioactive decay
${ }_{94}^{298} \mathrm{X} \rightarrow{ }_{92}^{294} \mathrm{Y}+{ }_{2}^{4} \alpha+\mathrm{Q}$, binding energy per nucleon of x, y and α are a, b and c .
The Q -value is equal to:
(1) $294 \mathrm{~b}+4 \mathrm{c}-298 \mathrm{a}$
(2) $92 \mathrm{~b}+2 \mathrm{c}-94 \mathrm{a}$
(3) $294 b+4 c+298 a$
(4) $92 b+2 c+94 a$

Ans. (1)
Sol. $\quad Q=u_{i}-u_{f}$
$\mathrm{Q}=(\mathrm{B} \cdot \mathrm{E})_{\mathrm{f}}-(\mathrm{B} \cdot \mathrm{E})_{\mathrm{i}}$
$=294 \mathrm{~b}+4 \mathrm{c}-298 \mathrm{a}$
25. For the given radioactive decay
${ }_{94}^{298} \mathrm{X} \rightarrow{ }_{92}^{294} \mathrm{Y}+{ }_{2}^{4} \alpha+\mathrm{Q}$, binding energy per nucleon of x, y and α are a, b and c .
The Q -value is equal to:
(1) $294 \mathrm{~b}+4 \mathrm{c}-298 \mathrm{a}$
(2) $92 \mathrm{~b}+2 \mathrm{c}-94 \mathrm{a}$
(3) $294 \mathrm{~b}+4 \mathrm{c}+298 \mathrm{a}$
(4) $92 \mathrm{~b}+2 \mathrm{c}+94 \mathrm{a}$

Ans. (1)
Sol. $\quad \mathrm{Q}=\mathrm{u}_{\mathrm{i}}-\mathrm{u}_{\mathrm{f}}$
$\mathrm{Q}=(\mathrm{B} . \mathrm{E})_{\mathrm{f}}-(\mathrm{B} . \mathrm{E})_{\mathrm{i}}$
$=294 b+4 c-298 a$

Unleashing Potential
26. Which of the following represents wave form of output.
A

B

(1)

(3)

(2)

(4)

Ans. (3)
Sol. $\mathrm{Y}=\overline{\mathrm{A}} \overline{\mathrm{B}}=\overline{\mathrm{A}}+\mathrm{B}$

RELIABLE INSTITUTE : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com
© reliablekota O reliablekota © reliableinstitutekota © reliable_kota if reliablekota

