

JEE MAIN 2023

APRIL ATTEMPT

PAPER-1 (B.Tech / B.E.)

QUESTIONS & SOLUTIONS Reproduced from Memory Retention

13 APRIL, 2023
9:00 AM to 12:00 Noon

Duration : 3 Hours

Maximum Marks : 300

SUBJECT - PHYSICS

LEAGUE OF TOPPERS (Since 2020) TOP 100 AIRs IN JEE ADVANCED

Admission Announcement for JEE Advanced (For Session 2023-24)

Reliable Institute : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com

PHYSICS

Train A takes 35 sec less than train B. Find length of tunnel. 1.

Ans. 175

Sol.
$$A_1V_1 = A_2V_2$$

 $1.5 \times V_1 = 25 \times 10^{-2} \times 60$
 $V_1 = \frac{25 \times 60 \times 10^{-2} \times 10}{1.5}$
 $V_1 = 10 \text{ cm/s}$
By Bernoulli's
 $P_1 + \frac{1}{2} \times 1000 \times (0.1)^2 = P_2 + \frac{1}{2} \times 1000 \times (0.6)^2$

Sol. T.E. - P.E. = K.E.

5. Increasing order of power dissipation?

Ans. (1)

Sol. $P = i^2 R$

$$R_1 = \frac{3R}{2}, R_2 = \frac{2R}{3}, R_3 = \frac{R}{3}, R_4 = 3R : R_4 > R_1 > R_2 > R_3$$

6. Which of the following Maxwell equation is time dependant?

(1)
$$\oint \vec{E}.d\vec{s} = \frac{q_{in}}{\varepsilon_0}$$
 (2) $\oint \vec{B}.d\vec{s} = 0$ (3) $\oint \vec{E}.d\vec{\ell} = \frac{-dQ_B}{dt}$ (4) $\oint \vec{B}.d\vec{\ell} = \mu_0 I_{er}$

Ans. (4)

Sol. $n^n : \rightarrow$ Ampere's Circuital law charges in time varying condition. Ans. (4)

7. If ratio of kinetic energy of two particle is $\frac{16}{9}$. If linear momentum of two particle are same then ratio of mass $\frac{m_1}{m_2}$ is: (1) $\frac{9}{16}$ (2) $\frac{16}{9}$ (3) $\frac{4}{3}$ (4) $\frac{3}{4}$

Ans. (1)

- Sol. $\frac{K_1}{K_2} = \frac{p_1^2}{2m_1} \times \frac{2m_2}{p_2^2} = \frac{m_2}{m_1} = \frac{16}{9}$ $\frac{m_1}{m_2} = \frac{9}{16}$
- 8. Mass of a planet is equal to 9 times of mass of earth and radius is 4 times the radius of earth. Find escape velocity (in km/sec.) of the planet. [Given; escape velocity of earth $V_e = 11.2 \text{ km/sec}$]

Ans. 16.8

Sol.
$$V_P = \sqrt{\frac{2GM_P}{R_P}}$$
 $V_E = \sqrt{\frac{2GM_E}{R_E}}$
 $\frac{V_P}{V_E} = \frac{\sqrt{\frac{2GM_P}{R_P}}}{\sqrt{\frac{2GM_E}{R_E}}} = \sqrt{\frac{R_E}{R_P} \times \frac{M_P}{M_E}}$
 $V_P = \sqrt{\frac{1}{4} \times 9} \times V_E = \frac{3}{2} V_E$
 $V_P = \frac{3}{2} \times 11.2 \text{ km/sec.}$
 $= 16.8 \text{ km/sec}$

- 9. Find the value of x, if elastic potential energy per unit volume is $x \times 10^9$ J stored in the wire of length L = 50 mm. Young's modulus $Y = 2 \times 10^{11}$ N/m² and change in length ΔL is the wire is 10 mm.
- Ans. $4 \times 10^9 \text{ J/m}^3$

Sol.
$$\frac{\text{Energy}}{\text{Volume}} = \frac{1}{2} \times \text{stress} \times \text{strain}$$
$$= \frac{1}{2} \times Y \times (\text{strain})^2$$
$$= \frac{1}{2} \times 2 \times 10^{11} \times \left[\frac{10 \times 10^{-3}}{50 \times 10^{-3}}\right]^2$$
$$= 10^{11} \times \left[\frac{1}{5}\right]^2 = 4 \times 10^9 \text{ J/m}^3$$

10. Find the ratio of radius of 2^{nd} orbit of He⁺ and 4^{th} orbit of Be³⁺

(1) $\frac{1}{2}$ (2) $\frac{2}{1}$ (3) $\frac{4}{1}$ (4) $\frac{1}{4}$ Ans. (1)

Sol.
$$r \propto \frac{n^2}{z}$$
$$\frac{r_{He^+}}{r_{Be^{3+}}} = \frac{2^2 \times 4}{2 \times 4 \times 4} = \frac{1}{2}$$

11. If the height of the tower used for L.D.S. is increased by 21% then percentage change in range is :

Sol. Power gain = $A_v A_I = B \frac{R_C}{R_B} B = B^2 \frac{R_C}{R_B} = \left(\frac{(20-10) \times 10^3}{(200-100) \times 10^{-6}}\right)^2 \times \frac{1 \times 10^3}{10 \times 10^3} = 10$ Hence x = 1

13. Mass (m) = (5 ± 0.5) kg, speed (v) = (20 ± 0.4) m/s. Find the kinetic energy.

- (1) (1000 + 70) J (2) (1000 ± 140) J (3) (500 ± 140) J (4) (500 ± 70) J
- Ans. (2)
- **Sol.** $k = mv^2$

$$k = \frac{1}{2} \times 5 \times 400 = 5 \times 200 = 1000 \text{ J}$$

$$\frac{\Delta k}{2k} = \frac{\Delta m}{m} + \frac{2\Delta v}{v} = \frac{0.5}{5} + \frac{2 \times 0.4}{20}$$
$$\Delta k = 1000 \left(\frac{1}{10} + \frac{4}{100}\right) = 1000 \left(\frac{10+4}{100}\right) = 140 \text{ J}$$

14. Radius of the cylinder is R find displacement of point B in half rotation. [Cylinder performs pure rolling]

15. Find the apparent depth of the bottom surface of the tank, when seen from above (in air)?

Formula used : $d_{app} = \frac{d_1}{n_1} + \frac{d_2}{n_2}$ $d_{app} = \frac{d}{2} \left[\frac{n_1 + n_2}{n_1 n_2} \right]$

16. Find out apparent speed of bird as seen by fish :

17. If a wire of resistance R is connected across V₀, then power is P. The wire is cut into two equal parts 2^{nd} connected with V₀ individually then sum of power P₂. Find out $\frac{P}{P_2}$ is $\frac{1}{x}$ find out x?

Ans. 4

Sol.
$$P = \frac{V_0^2}{R}$$

 $P_2 = \frac{V_0^2}{R/2} + \frac{V_0^2}{R/2} = \frac{4V_0^2}{R} = 4P$
 $\frac{P}{P_2} = \frac{1}{4}$

- A particle is performing SHM having position $x = A \cos 30^\circ$, and A = 40 cm. If its kinetic energy at 18. this position is 200 J, the value of force constant (in kilo-N/m) is
- Ans. 10

Sol.
$$\frac{1}{2}k(A^2 - x^2) = 200$$
 $[x = \frac{\sqrt{3}A}{2}]$
 $\frac{1}{2}k\left(A^2 - \frac{3A^2}{4}\right) = 200$ $[\omega = \sqrt{\frac{k}{m}}]$
 $\frac{1}{2}k\frac{A^2}{4} = 200$
 $k = \frac{200 \times 2 \times 4 \times 100 \times 100}{40 \times 40} = 10^4$
 $= 10 \times 10^3$
 $= 10 \text{ k N/m}$

UTE otentil For a ideal gas relation between its average speed (V_{avg}) and r.m.s. speed (V_{rms}) is 19.

$$(\mathbf{Use}: \pi = \frac{22}{7}]$$
$$\mathbf{V}_{\mathrm{rms}} = \left(1 + \frac{5}{x}\right)^{\frac{1}{2}} \mathbf{V}_{\mathrm{avg}}$$

Then value of 'x' is :

28 Ans.

Sol.
$$\sqrt{\frac{3RT}{M}} = \left(1 + \frac{5}{x}\right)^{\frac{1}{2}} \sqrt{\frac{8RT}{\pi M}} \implies \frac{3 \times 22}{7 \times 8} = 1 + \frac{5}{x} \implies x = 28$$

An electric dipole is placed in an external electric field 4×10^{-4} N/c at angle 30°. Magnitude of 20. charge of dipole is 10^{-2} C and separation between them is 0.2 mm. Find torque acting on dipole.

(1)
$$6 \times 10^{-10}$$
 N-m (2) 14×10^{-8} N-m (3) 4×10^{-10} N-m (4) 8×10^{-10} N-m

Ans. (3)

Sol.
$$\vec{\tau} = \vec{P} \times \vec{\epsilon}$$

$$P = qd = 10^{-2} \times 0.2 \times 10^{-3}$$
$$\tau = P\varepsilon \sin 30$$
$$= 2 \times 10^{-6} \times 4 \times 10^{-4} \times \frac{1}{2}$$
$$= 4 \times 10^{-10} \text{ N-m}$$

A solid sphere is Rolling on a flat horizontal surface. If the ratio of angular momentum to total 21.

kinetic energy is $\frac{\pi}{22}$, then find the angular speed (in rad/sec) with which sphere is moving?

(P) 300 km

(Q) 80 km

Ans. 14

Sol.
$$\frac{\text{Angular momentum}}{\text{Total kinetic energy}} = \frac{\left(\frac{2}{5}\text{mR}^2 + \text{mR}^2\right)\omega}{\frac{1}{2}\text{mv}^2 + \frac{1}{2}\text{I}\omega^2} = \frac{\pi}{22}$$

(Taking $v = \omega R$)

$$\frac{\frac{7}{5}\text{mR}^2.\omega}{\frac{7}{10}\text{mv}^2} = \frac{\pi}{22} \qquad \Rightarrow \qquad \omega = 14 \text{ rad/sec}$$

- 22. Match the following lists.
 - (A) Troposphere
 - (B) E part of stratosphere
 - (C) F_2 part of thermosphere (R) 20 km
 - (D) D-part of stratosphere (S) 100 km
 - $(1) (A) \rightarrow R; (B) \rightarrow S; (C) \rightarrow P; (D) \rightarrow Q$ (2) (A) \rightarrow S; (B) \rightarrow R; (C) \rightarrow Q; (D) \rightarrow P $(3) (A) \rightarrow Q; (B) \rightarrow S; (C) \rightarrow P; (D) \rightarrow R$ $(4) (A) \rightarrow R; (B) \rightarrow P; (C) \rightarrow Q; (D) \rightarrow S$

Ans. (1)

- I PORTUSATION POTENTIAL Two metals A and B having work function $\phi_A = 9$ eV and $\phi_B = 4.5$ eV. Find difference of threshold 23. wavelength.
 - (1) 1378 Å (2) 2100 Å (3) 1500 Å (4) 1100 Å

Ans. (1)

Sol.
$$\lambda_{A} = \left(\frac{12400}{9}\right) \text{\AA} = 1377.77 \text{\AA}$$

 $\lambda_{B} = \left(\frac{12400}{4.5}\right) \text{\AA} = 2755.55 \text{\AA}$
 $\lambda_{B} - \lambda_{A} = 1377.78 \text{\AA}$

24. A bullet of mass 10 gm is fired with muzzle speed 600 m/s from 3 kg gun of barrel length 30 cm. Find impulse on gun :

26. Which of the following represents wave form of output.

(Classroom) ··-→ selected for

ASIAN PACIFIC MATHEMATICS OLYMPIAD (APMO) 2023

IMOTC 2023 Camp (Conducted by HBCSE)

Success Delivered to the Deserving

RELIABLE INSTITUTE : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 | Website : www.reliablekota.com | E-mail : info@reliablekota.com f reliablekota reliablekota reliablekota reliablekota