PART : CHEMISTRY

| JEE(Main) 2023 | DATE : 13-04-2023 (SHIFT-1) | PAPER-1 | MEMORY BASED | CHEMISTRY

The CIF₅ at room temperature

- (1) Colourless liquid, Square pyramidal
- (2) Colourless gas, Bent T-shaped
- (3) Colourless gas, Pentagonal bipyramidal
- (4) Yellow green liquid, Bent T-shaped (1)

Ans.

Resonance

Sol. CIF5 colourless liquid Square pyramidal

2. In which of the following process, the bond order has increased and paramagnetic character has changed to diamagnetic ? $\begin{array}{ccc} (2) & O_2 \longrightarrow O_2^+ \\ (4) & O_2 \longrightarrow O_2^{2-} \end{array}$

(1) NO \longrightarrow NO⁺

(3) $N_2 \longrightarrow N_2^+$

(1) Ans.

Molecule /lon	Electronic configuration	Bond order	Magnetic behaviour
N ₂	$(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\pi 2p^2_x = \pi 2p^2_y) (\sigma 2p_z)^2$	1/2(10-4) = 3	Diamagnetic
N_2^+	$(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\pi 2p^2_x = \pi 2p^2_y) (\sigma 2p_z)^1$	1/2(9-4) = 2.5	Paramagnetic
O ₂	$(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_z)^2 (\pi 2p_x^2 = \pi 2p_y^2) (\pi^* 2p_x^1 = \pi^* 2p_y^1)$	1/2(10 - 6) = 2	Paramagnetic
O2 ⁺	$(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_z)^2 (\pi 2p_x^2 = \pi 2p_y^2) (\pi^* 2p_x^1 = \pi^* 2p_y^0)$	1/2(10 - 5) = 2.5	Paramagnetic
O ₂ ²⁻	$(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_z)^2 (\pi 2p_x^2 = \pi 2p_y^2) (\pi^* 2p_x^2 = \pi^* 2p_y^2)$	1/2(10 - 8) = 1.0	Diamagnetic
NO	$(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_z)^2 (\pi 2p_x^2 = \pi 2p_y^2) (\pi^* 2p_x^1 = \pi^* 2p_y^0)$	1/2(10 - 5) = 2.5	Paramagnetic
NO ⁺	$(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\pi 2p^2_x = \pi 2p^2_y) (\sigma 2p_z)^2$	1/2(10-4) = 3	Diamagnetic

3. What happens when lyophilic sol is added to lyophobic sol ?

(1) Coagulation

- (2) Lyophilic sol surrounded by lyophobic sol
- (3) Dispersion of Lyophilic sol
- (4) Lyophobic sol surrounded by Lyophilic sol

Ans. (4)

Sol. Lyophilic colloids have a unique property of protecting lyophobic colloids. When a lyophilic sol is added to the lyophobic sol, the lyophilic particles form a layer around lyophobic particles and thus protect the latter from electrolytes.

4	In a first order reaction the ratio of $T_{87.5\%}$ to $T_{50\%}$ is :
Ans.	(3)
Sol.	$T_{87.5\%} = 3 \times T_{50\%}$
5.	Which is incorrect about borazine
	(1) It is cyclic (2)

- (1) It is cyclic (3) Delocalisation possible
- Ans. (2)

(2) It has banana bond (4) It reacts with water

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔯 7340010333 🌃 fecebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🛅 kwww.youtube.com/resowatch 🕒 blog.resonance.ac.in

This solution was download from Resonance JEE (Main) 2023 Solution portal

	Ĥ	23 DATE : 13-04-2023 (SHIFT-1) PAPER-1		
	-N-			
	н-в- в-н			
Sol.				
	B B			
		bond is formed between B & N.		
	$B_3N_3H_6 + 9H_2O \longrightarrow 3NF$	$H_3 + 3H_3BO_3 + 3H_2O_3$		
5.		olved in 1000 mL solution has same osmotic		
Ans.	The compound has empi (8)	rical formula as CH2O and if molecular formu	ula is (CH2O)n. Fin	dn:
Sol.	$\pi_1 = \pi_2$			
	$C_1 = C_2$			
	$\frac{12}{M} \times \frac{1000}{1000} = 0.05$			
	$M = \frac{12}{0.05} = 240$			
	Molar mass of compound			
	Empirical formula mass =	: 30		
	$n = \frac{240}{30} = 8$			
Ans.	Radius of 2 nd orbit of He ⁺ (2)	is r_0 radius of 4^{th} orbit of $Be^{\ast 3}$ is xr_0 find x :		
Sol.	$r \propto \frac{n^2}{Z}$			
	$\frac{r_{He^+}}{1} = \frac{n_1^2/Z_1}{2} = \frac{2^2/2}{2}$	= 2		
	$\frac{r_{\rm He^{\cdot}}}{r_{\rm Be^{+3}}} = \frac{n_1^2/Z_1}{n_2^2/Z_2} = \frac{2^2/2}{4^2/4}$	4		
	$r_{Be^{+3}} = 2r_{He^{+}} = 2r_{0}$			
	x = 2			
	Which Lanthanide eleme	nt has more value of 3 rd ionisation energy		
3.		2) Eu & Gd (3) Eu & Yb	(4) Dy & Yb	
3.	(1) Lu & Yb ((4) 0 9 0 10	
		2) 20 4 64 (3) 24 4 15	(4) by a 15	
8. Ans. Sol.	(1) Lu & Yb (Electronic configuration	(4) by a 10	
	(1) Lu & Yb ((3)		(4) 2) 4 15	
	(1) Lu & Yb ((3) Element	Electronic configuration		
	(1) Lu & Yb ((3) Element Europium (Eu)	Electronic configuration [Xe] 4f ⁷ 6s ²		
	(1) Lu & Yb ((3) Element Europium (Eu) Gadolinium (Gd)	Electronic configuration [Xe] 4f ⁷ 6s ² [Xe] 4f ⁷ 5d ¹ 6s ²		

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

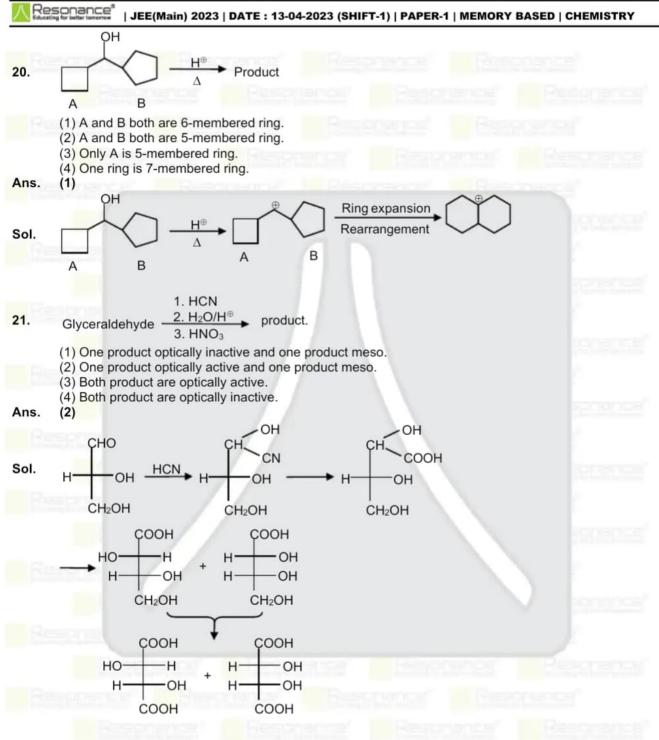
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 🔯 7340010333 🚹 fscebeek.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🔂 www.youtube.com/ResonanceEdu

This solution was download from Resonance JEE (Main) 2023 Solution portal

9.	An organic compound is burnt in excess of air then CO ₂ obtained is 0.220 g & water	
	if mass percentage of carbon is 24%, find percentage of hydrogen ?	obtained is 0.120 g
Ans.	(6)	
Sol.	$nCO_2 \Rightarrow \frac{0.220}{44} = 0.005 \longrightarrow nC = 0.005$	
	$nH_2O \Rightarrow \frac{0.126}{18} = 0.007 \longrightarrow nH = 0.014$	
	$m_c = 0.06$ $\frac{mC}{mH} = \frac{0.06}{0.014} = \frac{24}{x\%}$	
	x% = 5.6%	
	percentage of hydrogen = 5.6 % \approx 6 %	
10. Ans.	If in acidic medium 2 molecule of KMnO ₄ is titrated with hexahydrated ferrous ammo how many water molecules will be required ? (8)	nium sulphate then
Sol.	$MnO_{4}^{-} + 5Fe^{+2} + 8H^{+} \longrightarrow Mn^{+2} + 5Fe^{+3} + 4H_{2}O$	
11.	A ₂ + B ₂ \longrightarrow 2AB; $\Delta H = -200 \text{ J}$ A ₂ , B ₂ & AB has bond enthalpy in the ratio as 1 : $\frac{1}{2}$: 1. Find Bond enthalpy of A ₂	
Ans.	400	
Sol.	$A_2 + B_2 \longrightarrow 2AB$	
	x x/2x	
	2A 2B	
	$\Delta H = x + x/2 - 2x = -200$	
	= -x/2 = -200	
	x = 400 J	
12.	Statement-I : Permutit method is better than synthetic resin method.	
	Statement-II : In Synthetic resin method Na ⁺ is soluble. (1) Statement-I is correct and Statement – II is incorrect.	
	 (2) Statement-I is incorrect and Statement-II is correct. (2) Both statement I and statement II are correct. 	
	(3) Both statement-I and statement-II are correct.	
Ans.	(4) Both statement-I and statement-II are incorrect.	
Sol.	Theory Based.	
13.	Which is mismatched about purification ?	
	(1) Ni – Mond process	
	(2) Zn - Liquation	
	(3) Ti - Van Arkel process (4) Cu - Electrolysis	
Ans.	(2)	

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 55555


This solution was download from Resonance JEE (Main) 2023 Solution portal

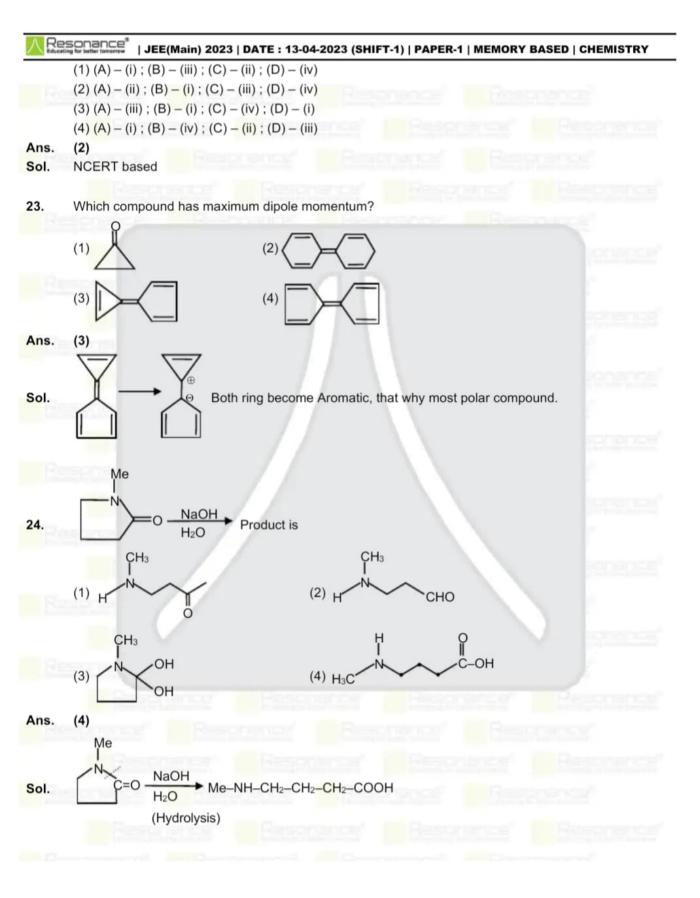
人品	ding for baffer tomorrow JEE(Main) 2023 DATE : 13-04	4-2023 (SHIFT-1) PAPER-1	MEMORY BASED	CHEMISTRY
14.	Select incorrect match : (1) Wilkinson catalyst : [Rh(Ph ₃ P) ₃ Cl]	(2) Chlorophyll : Co		
	(3) Photography : [Ag(S ₂ O ₃) ₂] ³⁻	(4) Vitamin B ₁₂ : Co		
Ans. Sol.	(2) Chlorophyll is complex of Mg			
15.	When Be(OH) ₂ is added in Sr(OH) ₂ then	select incorrect statement :		
B	 They will exhibit acid base reaction. In the complex formed both Be & Sr a Be is present in cationic part of completion (4) Sr is present (4	ex.		
Ans.	(3)			
Sol.	$\frac{Sr(OH)_2}{\text{base}} \xrightarrow{+} \frac{Be(OH)_2}{\text{acid}} \xrightarrow{\longrightarrow} Sr[Be(CH)_2]{} \xrightarrow{\text{acid}} Sr[Be(CH)_2]{} \xrightarrow{\text{aci}} Sr[Be(CH)_2]{} \xrightarrow{\text{acid}} Sr[Be(CH)_2]{} $	DH)4] or SrBeO2		
16.	Equal volume of 0.1M BaCl ₂ & 0.2M NaF find value of $[Ba^{+2}]$ $[F^{-}]^2/K_{SP}$? $(K_{SP} \text{ of } BaF_2 = 10^{-6})$	are mixed.		
Ans.	1			
Sol.	If equal volume are mixed concentration if $[BaCl_{2}] = 0.5M = [Ba^{+2}]$ $[NaF] = 0.1M = [F^{-}]$ $Q = [Ba^{+2}] [F^{-}]^{2} \Rightarrow 5 \times 10^{-3} > K_{SP}$ so precipitation takes place & remaining s $\frac{[Ba^{+2}][F^{-}]^{2}}{K_{SP}} = 1$			
17. Ans. Sol.	Select incorrect statement : (1) Ionisation enthalpy decreases down th (2) NO & Al ₂ O ₃ are amphoteric oxide. (3) Magnitude of electron gain enthalpy o (4) Electronegativity depends on how atom (2) NO is neutral oxide.	f CI is more than F.		
18.	Which of the following free Radical helps	in depletion of ozone laver	2	
Ans.	(1) NO* (2) CI* (2)	(3) OH•	(4) CH ₃ •	
Ana.				
Sol.	$CF_2 CI_2 \xrightarrow{UV} CI(g) + CIF_2 CI_2(g)$ (g) The chlorine radicals are continuously Re	egenerated and cause of bre	akdown of ozone	layer.
19.	CH ₃ (CH ₂)₄CH ₃ Anhydrous AlCl ₃ Ma	ajor product.		
	(1)	(2)		
	(3) CH ₃ -(CH ₂) ₄ -CH ₂ -CI	(4) CH2–(CH2)₄–CH I CI CI CI	12 C S	
Ans. Sol.	(2) This is Isomerisation reaction of alkane.	Ci Ci		

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 55555

This solution was download from Resonance JEE (Main) 2023 Solution portal

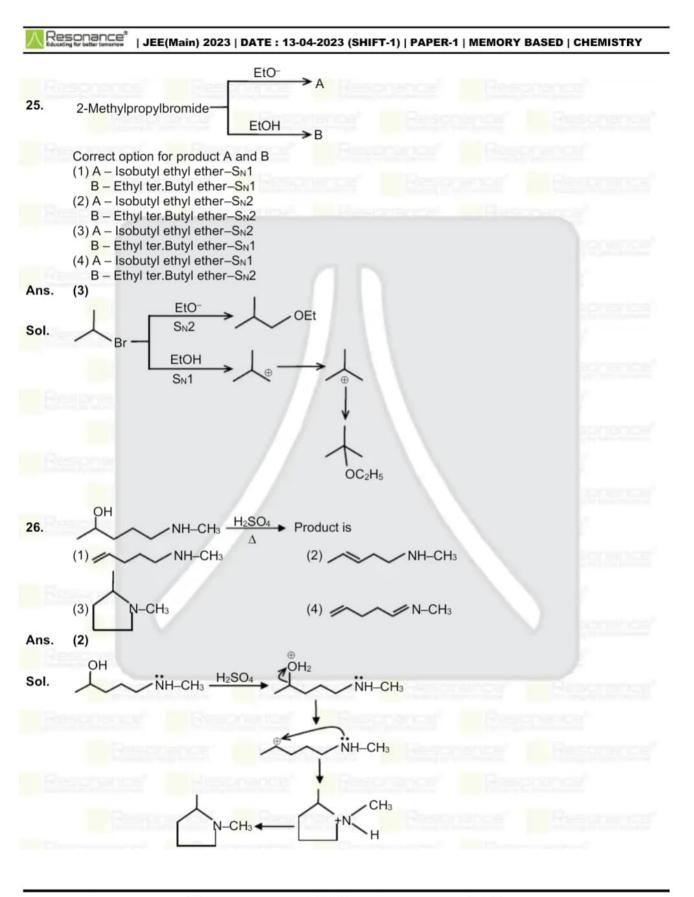
22. The correct match of the polymer and their code.


	List-I		List-II
A)	Nylon-6	(i)	Natural rubber
B)	Cis-1-4-poly isoprene	(ii)	Caprolactums
C)	Vulcunaised Rubber	(iii)	Cross linkage
D)	Polychloroprene	(iv)	Neoprene.

Resonance Eduventures Ltd.

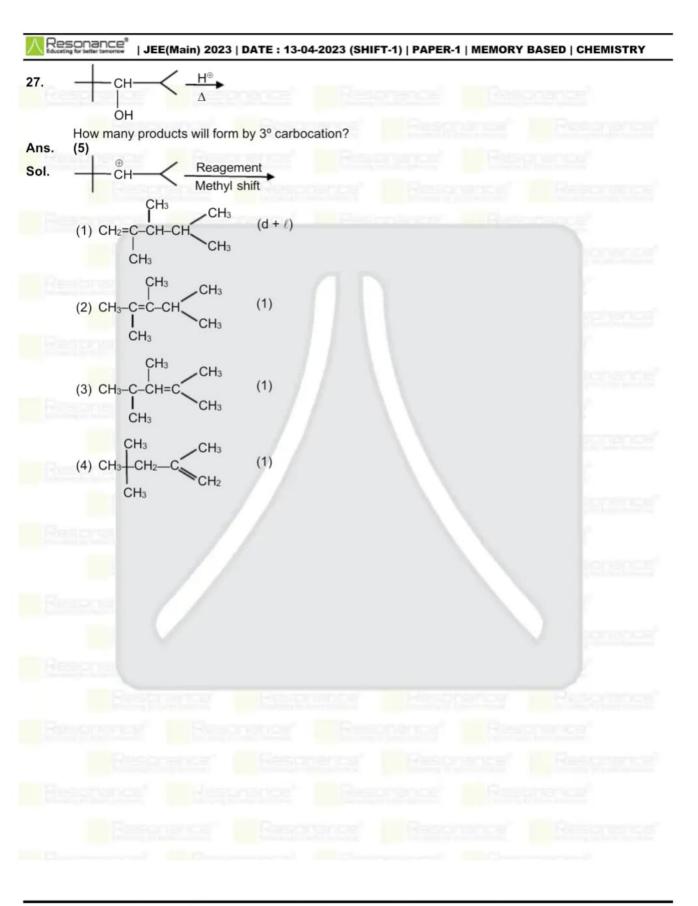
Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 Image: Table 258 55555 Image: Table 258 55555 Image: Table 258 55555 Image: Table 258


This solution was download from Resonance JEE (Main) 2023 Solution portal

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 55555


This solution was download from Resonance JEE (Main) 2023 Solution portal

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 55555

This solution was download from Resonance JEE (Main) 2023 Solution portal

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555 Toll 7340010333
Toll State com/ResonanceEdu
www.youtube.com/ResonanceEdu

This solution was download from Resonance JEE (Main) 2023 Solution portal