PART : PHYSICS

1. A disc having radius R is performing pure rolling on horizontal surface. Find displacement of point A after half revolution.

(1) $2 R$
(2) πR
(3) $(\pi+2) \mathrm{R}$
(4) $R \sqrt{\pi^{2}+4}$

Ans. (4)
Sol.

Displacement $=\mathrm{R} \sqrt{\pi^{2}+4}$
2. Find velocity of Bird observed by Fish w.r.t. itself ($n_{\text {water }}=4 / 3$)

(1) $4 \mathrm{~m} / \mathrm{s}$
(2) $20 \mathrm{~m} / \mathrm{s}$
(3) $16 \mathrm{~m} / \mathrm{s}$
(4) $24 \mathrm{~m} / \mathrm{s}$

Ans. (4)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail :contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Sol. $\quad v_{1}=\frac{v_{0}}{n_{\text {rel }}}=\frac{12}{1} \times \frac{4}{3}=16 \mathrm{~m} / \mathrm{s}$

Velocity of Bird observed by Fish $=16+8=24 \mathrm{~m} / \mathrm{s}$
3. If mass of earth change from M to $9 M$ and radius changes from R to $9 R$ then how many times will be the escape speed?
(1) $3 / 2$
(2) 2
(3) $5 / 2$
(4) 3

Ans. (1)
Sol. $v_{e}=\sqrt{\frac{2 G M}{R}}$
$v_{e}^{\prime} \sqrt{\frac{2 G \times 9 m}{4 R}}=\frac{3}{2} v_{e}$
4. If a wire of resistance R is connected with a source of voltage V_{0}, then the power consumed is P_{0}. The wire is cut into two equal parts and each part is connected with the source V_{0} individually, then total power consumed by them is P, if $\frac{P_{0}}{P}$ is $\frac{1}{x}$ find the value of x.
(1) 4
(2) 2
(3) 3
(4) 1

Ans. (1)
Sol. $\quad P_{0}=\frac{V_{0}{ }^{2}}{R} P=\frac{V_{0}{ }^{2}}{R / 2}+\frac{V_{0}{ }^{2}}{R / 2}=\frac{4 V_{0}{ }^{2}}{R}$
and $\frac{P_{0}}{P}=\frac{1}{4}$
5. Ratio of $K . E$ of particles having equal momentum is $\frac{16}{9}$. Find the ratio of their masses.
(1) $4: 3$
(2) $9: 16$
(3) $5: 4$
(4) $5: 9$

Ans. (2)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 18002585555

Sol. $k=\frac{p^{2}}{2 m}$
$\frac{k_{2}}{k_{1}}=\frac{m_{1}}{m_{2}}$

$$
\frac{9}{16}=\frac{m_{1}}{m_{2}} \Rightarrow \frac{m_{1}}{m_{2}}=\frac{9}{16}
$$

6. In SHM displacement of particle at an instant $y=A \cos 30^{\circ}$. Where $A=40 \mathrm{~cm}$ \& kinetic energy is 200 J . If force constant $1 \times 10^{\times} \mathrm{N} / \mathrm{m}$, then x will be
(1) 1
(2) 2
(3) 3
(4) 4

Ans. (4)
Sol. $\quad \frac{1}{2} k\left(A^{2}-y^{2}\right)=200$
$\frac{1}{2}(k)\left[(.4)^{2}-(.4)^{2}\left(\frac{3}{4}\right)\right]=200$
$\frac{1}{2} k\left[(.4)^{2}\left(1-\frac{3}{4}\right)\right]=200$
$k(.4)^{2} \frac{1}{8}=200$
$k=\frac{200 \times 8}{.4 \times .4}=100 \times 100=1 \times 10^{4}$
7. A partial is executing SHM. Choose the correct graph of TE-PE verses position.
(1)

(2)

(3)

(4)

Ans. (2)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Resonance

Sol. TE-P.E $=$ K.E

$$
K \cdot E=K=\frac{1}{2} m v^{2}=\frac{1}{2} m \cdot \omega^{2}\left(A^{2}-x^{2}\right)
$$

8. In which circuit power dissipation is maximum :

(4)

Ans. (1)
Sol. $\quad P=\frac{v^{2}}{R_{\text {eq }}}$
In parallel combination $\mathrm{R}_{\text {eq }}$ is minimum so power dissipation will be maximum :
9. Find apparent depth of vessel :

(1) $d\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)$
(2) $\frac{d}{2}\left(\frac{1}{n_{1}}-\frac{1}{n_{2}}\right)$
(3) $\frac{d}{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)$
(4) $\frac{d}{2\left(n_{1}+n_{2}\right)}$

Ans. (3)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

$$
\text { Ph. No.: +91-744-2777777, } 2777700 \text { | FAX No.: +91-022-39167222 }
$$

Sol.

$\mathrm{Al}_{1}=\frac{\mathrm{d} / 2}{\mathrm{n}_{1}}+\frac{\mathrm{d} / 2}{\mathrm{n}_{2}}=\frac{\mathrm{d}}{2}\left(\frac{1}{\mathrm{n}_{1}}+\frac{1}{\mathrm{n}_{2}}\right)$
10. Find ratio of radius of $2^{\text {nd }}$ orbit of $\mathrm{He}^{+} \& 4^{\text {th }}$ orbit of Be^{+3}.
(1) $\frac{1}{2}$
(2) $\frac{1}{3}$
(3) $\frac{2}{3}$
(4) $\frac{3}{5}$

Ans. (1)
Sol. $\quad r=a_{0} \frac{n^{2}}{z}$
$\frac{r_{\mathrm{He}^{+}}}{\mathrm{r}_{\mathrm{Be}^{+3}}}=\left(\frac{2}{4}\right)^{2} \times \frac{4}{2}=\frac{4}{16} \times \frac{4}{2}=\frac{1}{2}$
11. Two metals $A \& B$ have work functions $\phi_{A}=9 \mathrm{ev} \& \phi_{B}=4.5 \mathrm{eV}$. Find difference between their threshold wavelength. $(\mathrm{hc}=1242 \mathrm{eV} . \mathrm{nm})$
(1) 250 nm
(2) 138 nm
(3) 100 nm
(4) 50 nm

Ans. (2)
Sol. $\phi=\frac{\mathrm{hc}}{\lambda_{\mathrm{th}}}$
$\Rightarrow \lambda_{\mathrm{th}}=\frac{\mathrm{hc}}{\phi}$
So difference of $\lambda_{\text {th }}$ is
$=\frac{1242}{4.5}-\frac{1242}{9}=1242\left[\frac{1}{4.5}-\frac{1}{9}\right]=1242\left[\frac{2}{9}-\frac{1}{9}\right]=\frac{1242}{9}=138$
12. Length of a tunnel is $L=60 \ell$. Two trains $A \& B$ of length ℓ and 4ℓ respectively are moving with speed $108 \mathrm{Km} / \mathrm{h}$ and $72 \mathrm{Km} / \mathrm{h}$ respectively in opposite directions. If train A takes 35 sec . less than the train B to cross the tunnel then find value of L.
(1) 2000 m
(2) 1800 m
(3) 2500 m
(4) 3000 m

Ans. (2)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

$$
\text { Ph. No.: +91-744-2777777, } 2777700 \text { | FAX No. : +91-022-39167222 }
$$

Sol. According to question

$$
\frac{64 \ell}{20}-\frac{61 \ell}{30}=35
$$

$\Rightarrow \ell=30 \mathrm{~m}$
So, $L=60 \ell=60 \times 30=1800 \mathrm{~m}$
13. A solid sphere is in pure rotational motion about a fixed axis. The ratio of its angular momentum \& kinetic energy is $\frac{\pi}{22}$. Find angular velocity of the sphere. $\left(\pi=\frac{22}{7}\right)$
(1) $10 \mathrm{rad} / \mathrm{s}$
(2) $7 \mathrm{rad} / \mathrm{s}$
(3) $14 \mathrm{rad} / \mathrm{s}$
(4) $21 \mathrm{rad} / \mathrm{s}$

Ans. (3)
Sol.

$$
\begin{aligned}
& L=I \omega=\frac{2}{5} m R^{2} \omega \& K=\frac{1}{2}\left(\frac{2}{5} m R^{2}\right) \omega^{2} \\
& \frac{L}{K}=\frac{2}{\omega}=\frac{\pi}{22} \Rightarrow \omega=\frac{2 \times 22}{\pi} \\
& \Rightarrow \omega=14 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

14. If the digital inputs A and B are as shown, then find the output as a function of time.

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

(2)

(3)

(4)

Ans. (1)
Sol.

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

15. A dipole made of charge 0.01 C which are separated by a distance of 0.4 mm , is placed at an angle of 30° with the external electric field of strength 10 dyne /C. Find the torque exerted on the dipole in the field
(1) $2 \times 10^{-9} \mathrm{~N}-\mathrm{m}$
(2) $1 \times 10^{-10} \mathrm{~N}-\mathrm{m}$
(3) $2 \times 10^{-10} \mathrm{~N}-\mathrm{m}$
(4) $1 \times 10^{-9} \mathrm{~N}-\mathrm{m}$

Ans. (3)
Sol. $\quad \tau=P E \sin \theta \quad \mathrm{P}=0.01 \times 0.4 \times 10^{-3}$

$$
\begin{aligned}
& =0.4 \times 10^{-5} \\
& \tau=0.4 \times 10^{-5} \times 10 \times 10^{-5} \times \frac{1}{2} \\
& =\tau=2 \times 10^{-10} \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

16. In H -atom, the energy of electron in $1^{\text {st }}$ and $3^{\text {rd }}$ orbit are respectively E_{1} and E_{3}, and $\mathrm{E}_{3}=\mathrm{x} \mathrm{E}_{1}$, then the value of x will be:-
[Modern Physics]
(1) $\frac{1}{8}$
(2) $\frac{1}{27}$
(3) $\frac{1}{64}$
(4*) $\frac{1}{9}$

Ans. (4)
Sol. $\quad E_{n}=-13.6 e V \frac{z^{2}}{n^{2}} \Rightarrow E_{n} \propto \frac{1}{n^{2}}$
$\frac{\mathrm{E}_{3}}{\mathrm{E}_{1}}=\left(\frac{1}{3}\right)^{2}=\frac{1}{9}$
17. An ideal gas is undergone through a process whose equation is given by $P=K V^{-3}$. Find bulk modulus for this process.
(1*) $3 P$
(2) $-3 P$
(3) $\frac{P}{3}$
(4) $-\frac{P}{3}$

Ans. (1)
Sol. $\mathrm{pv}^{3}=$ Constant $\Rightarrow \frac{\mathrm{dp}}{\mathrm{p}}+3 \frac{\mathrm{dv}}{\mathrm{v}}=0 \Rightarrow \frac{\mathrm{dp}}{\mathrm{dv}}=-3 \frac{\mathrm{p}}{\mathrm{v}}$
$B=-v \frac{d P}{d v}=-(v)\left(-3 \frac{p}{v}\right)$
$B=3 P$
18. For an ideal gas $\left(1+\frac{1}{\mathrm{x}}\right)^{1 / 2} \mathrm{~V}_{\text {Average. }}=\mathrm{V}_{\text {rms }}$
find value of x.
(1) $\frac{8}{3 \pi-8}$
(2) $\frac{3}{3 \pi-8}$
(3) $\frac{8}{\pi+8}$
(4) $\frac{4}{3 \pi-8}$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Ans. (1)
Sol. $\sqrt{1+\frac{1}{x}} \sqrt{\frac{8 R t}{\pi M}}=\sqrt{\frac{3 R T}{M}}$
$\Rightarrow \sqrt{1+\frac{1}{x}} \sqrt{\frac{8}{\pi}}=\sqrt{3}$
$\Rightarrow\left(1+\frac{1}{x}\right) \frac{8}{\pi}=3$
$\Rightarrow 1+\frac{1}{x}=\frac{3 \pi}{8}$
$\Rightarrow \frac{1}{x}=\frac{3 \pi}{8}-1 \Rightarrow x=\frac{8}{3 \pi-8}$
19. ${ }_{92} \mathrm{U}^{238} \rightarrow{ }_{90} \mathrm{Th}^{234}+{ }_{2} \mathrm{He}^{4}+\mathrm{Q}$

In the given nuclear reaction, the atomic mass of U, Th and He are respectively $238.029 \mathrm{amu}, 234.021$ amu and 4.003 amu . Find the Q -value (Energy released) for this reaction.
[Nuclear Physics]
(1) 3.28 MeV
(2) 2.28 MeV
(3*) 4.65 MeV
(4) 8.28 MeV

Ans. (3)
Sol. $\Delta m_{\text {loss }}=(238.029)-(234.021+4.003)$
$\Delta m_{\text {loss }}=0.005 \mathrm{amu}$
Energy released $=(931 \times \Delta \mathrm{m}) \mathrm{MeV}$
$=931 \times 0.005=4.65 \mathrm{MeV}$
20. Mass of a block is $(5 \pm 0.2) \mathrm{Kg}$ and its speed is $(20 \pm 0.4) \mathrm{m} / \mathrm{sec}$. Find the maximum possible error in the measurement \& its Kinetic Energy.
[Measurement and Error]
(1) 100 J
(2*) 80 J
(3) 180 J
(4) 60 J

Ans. (2)
Sol. K.E. $=\frac{1}{2} m v^{2}=\frac{1}{2} \times 5 \times(20)^{2}=1000 \mathrm{~J}$
K.E. $=\frac{1}{2} m v^{2}$
$\frac{d(K E)}{K E}=\frac{d m}{m}+2 \frac{d v}{v}$
$\frac{\mathrm{d}(\mathrm{KE})}{\mathrm{KE}}=\frac{0.2}{5}+2 \frac{0.4}{20}$
$\frac{d(K E)}{1000}=0.08$
$\Rightarrow \mathrm{d}(\mathrm{KE})=80 \mathrm{~J}$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

21. A line charge of linear large density λ and a large non conducting sheet of surface charge density σ are placed parallel to each other as shown in figure. Find ratio of resultant electric field at A \& B.

(1) $\frac{4}{3}\left(\frac{\lambda-3 \sigma}{\lambda-4 \sigma}\right)$
(2) $\frac{4}{3}\left(\frac{\lambda-2 \sigma}{\lambda-4 \sigma}\right)$
(3) $\frac{3}{8}\left(\frac{\lambda-3 \sigma}{\lambda-4 \sigma}\right)$
(4) $\frac{3}{8}\left(\frac{\lambda-2 \sigma}{\lambda-4 \sigma}\right)$

Ans. (1)
Sol. $\quad \mathrm{E}_{\mathrm{A}}=\frac{\lambda}{2 \pi \varepsilon_{0} \mathrm{r}_{\mathrm{A}}}-\frac{\sigma}{2 \varepsilon_{0}}\left\{\mathrm{r}_{\mathrm{A}}=\frac{3}{\pi}\right\}$
$=\frac{1}{2 \varepsilon_{0}}\left[\frac{\lambda}{3}-\sigma\right]$
$E_{B}=\frac{\lambda}{2 \pi \varepsilon_{0} r_{A}}-\frac{\sigma}{2 \varepsilon_{0}}\left\{r_{B}=\frac{4}{\pi}\right\}$
$=\frac{1}{2 \varepsilon_{0}}\left[\frac{\lambda}{4}-\sigma\right]$
$\frac{E_{A}}{E_{B}}=\frac{4}{3}\left(\frac{\lambda-3 \sigma}{\lambda-4 \sigma}\right)$
22. A water is flowing in a conical tube as shown in figure.

Velocity of water at area A_{2} is given as $60 \mathrm{~cm} / \mathrm{s}$. The value of A_{1} and A_{2} is $10 \mathrm{~cm}^{2} \& 5 \mathrm{~cm}^{2}$ respectively. Find the pressure difference at both the cross-sections.
(1) $135 \mathrm{~N} / \mathrm{m}^{2}$
(2) $230 \mathrm{~N} / \mathrm{m}^{2}$
(3) $200 \mathrm{~N} / \mathrm{m}^{2}$
(4) $105 \mathrm{~N} / \mathrm{M}^{2}$

Ans. (1)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Sol.

$\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}$
$\Rightarrow 10 \mathrm{~V}_{1}=5 \mathrm{~V}_{2}$
$\Rightarrow \mathrm{V}_{2}=2 \mathrm{~V}_{1}$
$P_{1}+\frac{1}{2} \rho V_{1}^{2}=P_{2}+\frac{1}{2} \rho v_{2}^{2} \Rightarrow P_{1}-P_{2}=\frac{1}{2} \rho\left(V_{2}^{2}-V_{1}^{2}\right)$
$=\frac{1}{2} \rho 3 \mathrm{~V}_{1}{ }^{2}$
$\Rightarrow P_{1}-P_{2}=\frac{1}{2} \times 1000 \times 3 \times 30 \times 30 \times 10^{-4}$
$=13.5 \times 10=135 \mathrm{~N} / \mathrm{m}^{2}$

$$
\begin{aligned}
& V_{1}=\frac{V_{2}}{z} \\
& \frac{60}{2} \\
& =30 \mathrm{~cm}
\end{aligned}
$$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

