

NARAYANA GRABS THE LION'S SHARE IN JEE-ADV.2022

JEE MAIN (APRIL) 2023 (13-04-2023-FN) Memory Based Juestion Paper MATHEMATICS

Toll Free: 1800 102 3344

() 🕜 🗇 💵 SUBSCRIBE / The Narayana Group

MATHEMATICS

1.	The value of $\int_{0}^{\infty} \frac{6dx}{e^{3x} + 6e^{2x} + 11e^{x} + 6}$ equal to
	(1) $\ln\left(\frac{32}{9}\right)$ (2) $\ln\left(\frac{9}{8}\right)$ (3) $\ln\left(\frac{8}{27}\right)$ (4) $\ln\left(\frac{32}{27}\right)$
Ans. Sol.	(4) Let $e^x = t$ $e^x dx = dt$
	$I = \int_{1}^{\infty} \frac{\frac{6}{t} dt}{t^3 + 6t^2 + 11t + 6} = \int_{1}^{\infty} \frac{6}{t(t+1)(t+2)(t+3)} dt$
	$= \int_{1}^{\infty} \left(\frac{1}{t} - \frac{3}{t+1} + \frac{3}{t+2} - \frac{1}{t+3} \right) dt$
	$= \left\{ \ell n t - 3\ell n (t+1) + 3\ell n (t+2) - \ell n (t+3) \right\}_{1}^{\infty}$
	$= \left\{ \ell n \left\{ \frac{t(t+2)^3}{(t+1)^3(t+3)} \right\} \right\}_1^{\infty} = \ell n (1) - \ell n \frac{27}{32} = -\ell n \frac{27}{32}$
2.	Consider the functional equation $3f(x) + 2f\left(\frac{1}{x}\right) = \frac{1}{x} - 10$ then $\left f\left(3\right) - f'\left(\frac{1}{4}\right) \right $ is equal to
Ans.	$\begin{array}{cccc} (1) 5 & (2) -3 & (3) 0 & (4) 7 \\ (4) & \end{array}$
	$x \rightarrow \frac{1}{2}$
	$x = 3f(x) + 2f\left(\frac{1}{x}\right) = \frac{1}{x} - 10$
	$3f\left(\frac{1}{x}\right) + 2f(x) = x - 10$
	$\frac{3}{2} \left[\frac{1}{x} - 10 - 3f(x) \right] + 2f(x) = x - 10$
	$\Rightarrow \frac{3}{2x} - 15 - \frac{9}{2}f(x) + 2f(x) = x - 10 \Rightarrow \frac{-5}{2}f(x) = x - \frac{3}{2x} + 5$
	$f(x) = -\frac{2}{5}x + \frac{3}{5x} - 2$
	$f(3) = \frac{-6}{5} + \frac{1}{5} - 2 = -3$
	$f'(x) = \frac{-2}{5} - \frac{3}{5x^2} \Longrightarrow f'\left(\frac{1}{4}\right) = \frac{-2}{5} - \frac{-48}{5} = -10$
	$\left f(3) - f'(\frac{1}{4}) \right = \left -3 + 10 \right = 7$

					-		
3.	Let $y_1(x)$ and $y_2(x)$	() satisfy the differe	ential equation $\frac{dy}{dx} = y$	+ 7. If $y_1(0) = 0$ & $y_2(0) = 1$, find	l the		
	number of intersection of $y_1(x) \& y_2(x)$						
	(1) 1	(2) 0	(3) 2	(4) 3			
Ans.	(2)						
Sol.	$\int \frac{\mathrm{d}y}{\mathrm{y}+7} = \int \mathrm{d}x \implies$	$ \mathbf{y} + 7 = \mathbf{k}\mathbf{e}^{\mathbf{x}}$					
	\Rightarrow	$y_1 + 7 = k_1 e^x \& y_2 +$	$rac{7}{7} = k_2 e^x$				
	y ₁ ($0) = 0 \Longrightarrow k_1 = 7 \text{ and}$	$1 y_2(0) = 1 \Longrightarrow k_2 = 8$				
		$y_1(x) = 7(e^x - 1) \& y_1(x)$	$y_2(x) = 8e^x - 7$				
	Intersection 7e ^x –	$7 = 8e^{x} - 7$					
	$\Rightarrow e^x = 0 \Rightarrow x \in \phi$)					
	∴ No point of inte	ersection					
4.	If PQ is a focal ch	nord of $y^2 = 36x$ with	th $PQ = 100$ and M div	ides PQ in the ratio 3 : 1, then the	line		
	through M perpen	dicular to PQ pass t	through -				
	(1) (1, 0)	(2) (2, 3)	(3) (3, 33)	(4) (4, 4)			
Ans.	(3)						
Sol.	$9\left(t+\frac{1}{t}\right)^2 = 100$						
	t = 3						
	\Rightarrow P(81, 54) & Q((1, -6)					
	M(21,9)						
	\Rightarrow L is (y - 9) = -	$\frac{-4}{3}(x-21)$					
	3y - 27 = -4x + 84	4					
	$4\mathbf{x} + 3\mathbf{y} = 111$						
5.	Number of symn	netric matrices of	order 3×3 which ca	in be constructed from the elem	ents		
	{0, 1, 2, 3,, 9]						
~	(1) 10^5	(2) 10^9	$(3) 10^4$	$(4) \ 10^6$			
Ans.	(4)						
	x a b						
Sol.	a x c						
	$\begin{bmatrix} \mathbf{b} & \mathbf{c} & \mathbf{x} \end{bmatrix}$						
	a can be filled in 1	10 ways					
	b can be filled in 1	-					
	c can be filled in 1		2				
		nal can be filled in					
	total no of matrice	$es = 10^3 \times 10^3 = 10^6$					

6.	Let	the f	requei	ncy di	stribu	ition	is					
	Xi	1	3	5	7	9						
	$\mathbf{f}_{\mathbf{i}}$	4	24	28	α	8						
	If mean of observation is 5 then find $\frac{3\alpha}{\text{Mean deviation about mean + variant}}$											
									an + variance			
	(1)	8			(2)	7			(3) 4		(4) 6	
Ans.	(1)											
Sol.	$5 = \overline{x} = \frac{\sum x_i f_i}{\sum f_i} = \frac{4 + 72 + 140 + 7\alpha + 72}{64 + \alpha}$											
	$\Rightarrow 3$	820 +	-5α =	288 +	-7α =	⇒ 2o	2 = 32 =	⇒α=	16			
	M.E	$\mathbf{D}.(\overline{\mathbf{x}})$	$= \sum_{i=1}^{n}$	$\frac{\mathbf{f_i} \mathbf{x_i}}{\sum \mathbf{f_i}}$	$-\overline{\mathbf{x}}$	when	te $\sum f_i$	= 64 ·	+ 16 = 80)		
	M.I	$\mathbf{D}.(\overline{\mathbf{x}})$	$=\frac{4\times}{2}$	4+24	4×2-	+ 28>	(0+16)	×2+8	$\times 4$			
		$\frac{28}{50} =$	2		2							
	vari	ance	= <u></u>	$\frac{f_i(x_i - x_i)}{\sum f_i}$	$(\overline{\mathbf{x}})^2$							
	= -	×16-	$+24\times$	$\frac{4+0}{80}$	+16×	4+8	8×16=	$\frac{352}{80}$				
	·			30					3×16	$-\frac{3\times16\times10}{3\times16\times10}$	$\frac{80}{3} = \frac{3 \times 8}{3} = 8$	
	Me	an de	eviatio	n abo	ut me	ean +	varian c	$e^{-\frac{12}{8}}$		480	3 3	
7.	Let	S	$h_1: \lim_{n \to \infty} h_1$	$n_{\infty} \frac{2+1}{2}$	4+6n	5 + 2	$\frac{2n}{2} = \frac{1}{2}$	2				
		S	$h_2: \lim_{n \to \infty}$	$n_{\infty} = \frac{1^{15}}{1}$	$+2^{15}$	$\frac{+}{n^{16}}$	$\frac{+n^{15}}{$	$=\frac{1}{16}$				
	(1)	S_1 is:	false,	S ₂ is t	rue				(2) S ₁ is	s true, S_2 is	false	
		Both	are tru	le					(4) Bot	h are false		
Ans.	(1)			(1)								
Sol.	S_1 :	$\lim_{n \to \infty}$	$2 \cdot \frac{n}{2}$	$\frac{(n+1)}{2 \cdot n^2}$	- = 1							
	S_2 :	$\lim_{n\to\infty}$	$\left(\frac{n^{16}}{16}\right)$	+)	<u>1</u> 16						

 $2.2^2 - 3^2 + 2.4^2 - 5^2 + \dots$ (upto 20 terms) is equal to 8. Ans. (1310) $(2^{2} + 4^{2} + \dots + 20^{2}) + (2^{2} - 3^{2} + 4^{2} - 5^{2} + \dots + 20^{2} - 21^{2})$ Sol. $= 2^{2} (1^{2} + 2^{2} + \dots + 10^{2}) - (2 + 3 + 4 + \dots + 21)$ $=4 \cdot \frac{10.11.21}{6} - \left(\frac{21.22}{2} - 1\right)$ = 1310Let $g(x) = \sqrt{x+1}$ and $f(g(x)) = 3 - \sqrt{x+1}$, then find f(0)9. (1) 3(2) 2(3) - 1(4) 0(1) Ans. $g(x) = 0 \Rightarrow x = -1$ Sol. $f(g(-1)) = 3 - \sqrt{-1+1} = 3$ $\Rightarrow f(0) = 3$ 10. The number of seven digit numbers formed using 1, 2, 3, 4 whose sum of digits is 12, is (1) 402(2) 413(3) 421 (4) 409(2)Ans. Sol. digits used (4, 3, 1, 1, 1, 1, 1) digits used (4, 2, 2, 1, 1, 1,1) digits used (3, 3, 2, 1, 1, 1,1) digits used (3, 2, 2, 2, 1, 1,1) digits used (2, 2, 2, 2, 2, 1,1) Total ways = $\frac{7!}{5!} + \frac{7!}{2!4!} + \frac{7!}{2!4!} + \frac{7!}{3!3!} + \frac{7!}{5!2!}$ = 42 + 105 + 105 + 140 + 21 = 413Alter $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 = 12$ $x_i \in \{1, 2, 3, 4\}$ coeff. of x^{12} in $(x + x^2 + x^3 + x^4)^7 = x^7(1 - x^4)^7(1 - x)^{-7}$ coeff. of x^5 in $(1 - x^4)^7 (1 - x)^{-7}$ $= {}^{7}C_{0}{}^{11}C_{5} - {}^{7}C_{1}{}^{7}C_{1} = 413$ Let 1, 2, 3, 10 are first terms of 10 A.P.s respectively. If the common difference 11. of these 10 AP is are 1, 3, 5, 7, respectively then find $\sum_{i=1}^{10} S_i$ where S_i represents the sum of first 12 terms of ith A.P. (1)7260(2)7240(3)7230(4)7220Ans. (1)

	JEE-MAIN-MATHEMATICS-15-07-2025-MEMORT DASED[51117-1]FN
Sol.	$S_{i} = \frac{12}{2} \left[2i + 11 \times (2i - 1) \right] = 6 \left[24i - 11 \right]$
	$\sum_{i=1}^{10} S_i = 6 \sum_{i=1}^{10} (24i - 11 =) 6 \left[\frac{24 \times 10 \times 11}{2} - 110 \right]$
	$= 6[1320 - 110] = 1210 \times 6 = 7260$
12.	Find $\left\{\frac{4^{2022}}{15}\right\}$ {.} is fraction part function
	(1) $\frac{1}{15}$ (2) $\frac{4}{15}$ (3) $\frac{7}{15}$ (4) $\frac{1}{15}$
Ans.	(1)
Sol.	$4^{2022} = 16^{1011} = (15+1)^{1011} = 15\lambda + 1$
	$\Rightarrow \left\{\frac{4^{2022}}{15}\right\} = \frac{1}{15}$
13.	Consider the binomial expansion $\left(\sqrt{x} - \frac{6}{x^{3/2}}\right)^n$ where $n \le 15$. If the coefficient of term
	independent of x is α and sum of coefficients of all terms except the coefficient of independent
	term is 649 then find λ where coefficient of x^{-n} is 24 λ
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Ans.	(1)
Sol.	$T_{r+1} = {}^{n}C_{r}(x)^{\frac{n-r}{2}} (-6)^{r} x^{-3r/2}$
501	
	$= {}^{n}C_{r}(x)^{\frac{n-4r}{2}}(-6)^{r}$
	$\mathbf{n} - 4\mathbf{r}$ \mathbf{n}
	$\frac{n-4r}{2} = 0 \implies r = \frac{n}{4}$
	$2 \rightarrow (5)^n$
	$\mathbf{x} = 1 \Longrightarrow (-5)^{n}$
	So $(-5)^n - {}^nC_{n/4}(-6)^{n/4} = 649 \implies n = 4$
	Now $\frac{n-4r}{2} = -n \Rightarrow 3n = 4r \Rightarrow r = 3$
	so coefficient of x^{-n} is ${}^{4}C_{3}(-6)^{3} = 4 \times -216 = 24\lambda$
	$\lambda = -36$
14.	Let $f(x) = x - \sin 2x + \frac{\sin 3x}{3}$ defined on $[0, \pi]$ then the maximum value of $f(x)$ is.
	$(1)\frac{\pi}{6} - \frac{\sqrt{3}}{2} + \frac{1}{3} \qquad (2)\frac{5\pi}{6} + \frac{\sqrt{3}}{2} + \frac{2}{3}$
	$(3)\frac{5\pi}{6} + \frac{\sqrt{3}}{2} + \frac{1}{3} \tag{4} \pi + \frac{\sqrt{3}}{2} + \frac{1}{3}$
Ans.	(3)

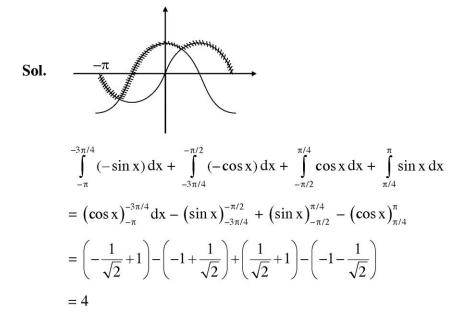
Sol.
$$f'(x) = 1 - 2\cos(2x) + \cos(3x) = 0$$

 $\cos x = t \Rightarrow 4t^3 - 3t - 2(2t^2 - 1) + 1 = 0$
 $4t^3 - 4t^2 - 3t + 3 = 0$
 $4t^2(t - 1) - 3(t - 1) = 0 \Rightarrow t = 1, t = \pm \frac{\sqrt{3}}{2}$
 $\cos x = 1 \Rightarrow x = 0, \cos x = \pm \frac{\sqrt{3}}{2} \Rightarrow x = \frac{\pi}{6}, \frac{5\pi}{6}$
 $f''(x) = 4\sin(2x) - 3\sin(3x)$
 $f''(\frac{\pi}{6}) = 4 \times \frac{\sqrt{3}}{2} - 3 = 2\sqrt{3} - 3 > 0$
 $f''(\frac{5\pi}{6}) = 4 \times (-\frac{\sqrt{3}}{2}) - 3 = -2\sqrt{3} - 3 < 0$
 $f(0) = 0, f(\pi) = \pi, f(\frac{\pi}{6}) = \frac{\pi}{6} - \frac{\sqrt{3}}{2} + \frac{1}{3}$
 $f(\frac{5\pi}{6}) = \frac{5\pi}{6} + \frac{\sqrt{3}}{2} + \frac{1}{3} \rightarrow \text{Maximum as } f''(\frac{5\pi}{6}) < 0$

15. Let $y = f(x) = \max\{\sin x, \cos x\}, -\pi \le x \le \pi$ find the area bounded by y = f(x) and the x-axis

(1) 8 (2) 6 (3) 4 (4)
$$\frac{4}{3}$$

Ans. (3)



16.	Find the distance of			z = 6 measured along the line of
	shortest distance for	the lines $\frac{x-1}{1} = \frac{y}{2}$	$=\frac{z}{1}$ and $\frac{x}{-1}=\frac{y}{2}=\frac{z}{3}$	
	(1) $4\sqrt{3}$		$(3) 3\sqrt{2}$	
Ans.	(2)			
Sol.	$\vec{c} \times \vec{d} = <4, -4, 4>$			
	L is $\frac{x-1}{1} = \frac{y-2}{-1} =$	$=\frac{z-1}{1}$		
	$\mathbf{P}(1,2,1)$			
	P ₂			
	$P_{2}\left(\lambda +1,-\lambda +2,\lambda \right. \\$	+ 1)		
	$x + y + z = 6 \Longrightarrow \lambda =$	- 2		
	$\therefore P_2(3, 0, 3)$ $\Rightarrow PP_2 = \sqrt{4+4}$	1 1 2 5		
17.		1. C	$ \mathbf{x} = 2 \mathbf{x} = 0$ here a	waatly and solution
17.	(1) $(-\infty, \infty)$		+ $ x + 2 + \alpha = 0$ have e (3) (3, ∞)	$(4) (-\infty, -6)$
Ans.	(1)			
Sol.	x x-1 + x+2 = -			
	let $y = x x - 1 + x - 1 $			
	$y = \begin{cases} x^2 + 2\\ -x^2 + 2x + 2 \end{cases}$; $x \ge 1$		
	$\left(-x^2-2\right)$; $x < -2$		
	3	y 		
	-2	-1 -1 	κ.	
		ļ		
	as $y \in \mathbf{R}$			
	hence	$-\alpha \in (-\infty, \infty)$		

JEE-MAIN-MATHEMATICS-13-04-2023-MEMORY BASED[SHIFT-1]FN

18.	Let probability of getting head is thrice of probability of getting tail. A coin is tossed until one head or 3 tails are obtained. If number of trials is 24 then the mean of experiment is (1) 28.5 (2) 31.5 (3) 25 (4) 26.5
Ans.	(2)
Sol.	Case-I $H \to 1 \times \frac{3}{4}$
	Case-II $TH \rightarrow 2 \times \frac{1}{4} \times \frac{3}{4}$
	Case-III TTH $\rightarrow 3 \times \frac{1}{4} \times \frac{1}{4} \times \frac{3}{4}$
	Case-IV $TTT \rightarrow 3 \times \left(\frac{1}{4}\right)^3$
	$\mathbf{Mean} = \left(\frac{3}{4} + \frac{6}{16} + \frac{9}{64} + \frac{3}{64}\right) \times 24$
	= 31.5
19.	Let $\vec{a} = 2\hat{i} + 3\hat{j} + 5\hat{k}$, $\vec{b} = 3\hat{i} + 3\hat{j} + 7\hat{k}$, $\vec{c} = 7\hat{i} + 8\hat{j} + 9\hat{k}$. If $\vec{a} \times \vec{b} = \vec{c} + \vec{d}$ then $ \vec{d} $ is
	(1) $\sqrt{194}$ (2) $\sqrt{190}$ (3) $\sqrt{187}$ (4) $\sqrt{185}$
Ans.	(1)
Sol.	$\vec{\mathbf{d}} = \vec{\mathbf{a}} \times \vec{\mathbf{b}} - \vec{\mathbf{c}}$
	$\hat{\mathbf{i}}$ $\hat{\mathbf{j}}$ $\hat{\mathbf{k}}$
	$\vec{a} \times \vec{b} = \begin{vmatrix} 2 & 3 & 5 \end{vmatrix} = 6\hat{i} + \hat{j} - 3\hat{k}$
	$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 5 \\ 3 & 3 & 7 \end{vmatrix} = 6\hat{i} + \hat{j} - 3\hat{k}$
	$\vec{d} = (6\hat{i} + \hat{j} - 3\hat{k}) - (7\hat{i} + 8\hat{j} + 9\hat{k}) = -\hat{i} - 7\hat{j} - 12\hat{k}$
	$\left \vec{\mathrm{d}} \right = \sqrt{1 + 49 + 144} = \sqrt{194}$
20.	If $\sin^{-1}\left(\frac{x+1}{\sqrt{x^2+2x+2}}\right) - \sin^{-1}\left(\frac{x}{\sqrt{x^2+1}}\right) = \frac{\pi}{4}$ (for $x \ge 0$) then $\sin\left((x^2+x+5)\frac{\pi}{2}\right) - \cos((x^2+x+5)\pi)$
	is (1) 1 (2) 2 (2) 2 (4) 4
Ans.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Sol.	$\sin^{-1}\left(\frac{x+1}{\sqrt{x^2+2x+2}}\right) = \tan^{-1}(x+1)$
	$\sin^{-1}\left(\frac{x}{\sqrt{x^2+1}}\right) = \tan^{-1}x$
	$\Rightarrow \tan^{-1}(x+1) - \tan^{-1}x = \frac{\pi}{4} \Rightarrow \tan^{-1}\left(\frac{1}{1+x(x+1)}\right) = \frac{\pi}{4}$
	\Rightarrow 1 + x(x + 1) = 1 \Rightarrow x = 0, x = -1
	so $\sin\left(\frac{5\pi}{2}\right) - \cos(5\pi) = 1 - (-1) = 2$

21.	If $\frac{dy}{dx} = 6e^x + e^{2x} + e^{3x}$, then $y(2) - y(0)$ is
	(1) $e^2 + \frac{6e^4}{4} - \frac{e^6}{3} + \frac{15}{6}$ (2) $6e^2 + \frac{e^4}{3} + \frac{e^6}{2} - \frac{15}{6}$
	(3) $6e^2 + \frac{e^4}{2} + \frac{e^6}{3} - \frac{41}{6}$ (4) $e^2 + \frac{6e^4}{2} + \frac{e^6}{3} - \frac{15}{6}$
Ans.	(3)
Sol.	$y = 6 \int e^x dx + \int e^{2x} dx + \int e^{3x} dx$
	$y = 6e^{x} + \frac{e^{2x}}{2} + \frac{e^{3x}}{3} + c$
	$y(2) = 6e^{2} + \frac{e^{4}}{2} + \frac{e^{6}}{3}, y(0) = 6 + \frac{1}{2} + \frac{1}{3} = \frac{41}{6}$
	$y(2) - y(0) = 6e^2 + \frac{e^4}{2} + \frac{e^6}{3} - \frac{41}{6}$
22.	Plane P_3 is passing through the point $(1, 1, 1)$ and line of intersection of P_1 and P_2 where
	$P_1: 2x - y + z = 5$ and $P_2: x + 3y + 2z + 2 = 0$, then distance of (1, 1, 10) from P_3 is
	(1) $\frac{126}{\sqrt{558}}$ (2) $\frac{63}{\sqrt{558}}$ (3) $\frac{252}{\sqrt{558}}$ (4) None of these
Ans.	(1)
Sol.	$P_3 \text{ is } P_1 + \lambda P_2 = 0$
	$(2x - y + z - 5) + \lambda(x + 3y + 2z + 2) = 0$
	$-3 + \lambda(8) = 0 \implies \lambda = 3/8$
	$\therefore P_3: 19x + y + 14z = 34$
	distance = $\left \frac{19 + 1 + 140 - 34}{\sqrt{361 + 1 + 196}} \right = \frac{126}{\sqrt{558}}$
23.	The negation of $((A \land (B \lor C)) \rightarrow (B \land C)) \rightarrow A$ is equivalent to
	(1) $\sim B$ (2) $\sim (A \land B)$ (3) $\sim A$ (4) $\sim (A \lor B)$
Ans.	(3)
Sol.	$\left(\left(A \land (B \lor C) \right) \rightarrow (B \land C) \right) \equiv \sim \left(A \land (B \lor C) \right) \lor (B \land C)$
	So $((A \land (B \lor C)) \rightarrow (B \land C)) \rightarrow A$
	$\equiv \left(\sim \left(A \land (B \lor C) \right) \lor (B \land C) \right) \rightarrow A$
	$\equiv \sim \left(\sim \left(A \land (B \lor C) \right) \lor (B \land C) \right) \to A \right)$
	$\equiv \sim \left(\sim \left(\sim \left(A \land \left(B \lor C \right) \right) \right) \left(B \land C \right) \right) \land A \right)$
	$\equiv \sim (A \land (B \lor C)) \land \sim (B \land C)) \lor A)$
	$\equiv \sim A$

24. Consider the system of linear equations

2x + 4y + bz = 2ax + y + z = 6x - y - z = 8

then the correct option are -

(1) If a = 5 and b = 4 then system has unique solution

(2) If $b \neq 4$ then system has unique solution only for a = 1

(3) If a = 5 and b = 4 then system has infinite solution

(4) If a = 5 and b = 4 then system has no solution

Ans. (3)

Sol.
$$D = \begin{vmatrix} 2 & 4 & 6 \\ 1 & 1 & 1 \\ 1 & -1 & -1 \end{vmatrix} = \begin{vmatrix} 2 & 4 & b \\ 1 & 1 & 1 \\ 2 & 0 & 0 \end{vmatrix} = 2(4 - b)$$
$$D_{1} = \begin{vmatrix} 2a & 4 & b \\ 6 & 1 & 1 \\ 8 & -1 & -1 \end{vmatrix} = \begin{vmatrix} 2a & 4 & b \\ 6 & 1 & 1 \\ 14 & 0 & 0 \end{vmatrix} = 14(4 - b)$$
$$D_{2} = \begin{vmatrix} 2 & 2a & b \\ 1 & 6 & 1 \\ 1 & 8 & -1 \end{vmatrix}$$
$$2[-14]-2a(-2) + b(2) = 4a + 2b - 28$$
$$D_{3} = \begin{vmatrix} 2 & 4 & 2a \\ 1 & 1 & 6 \\ 1 & -1 & 8 \end{vmatrix} = 2[14]-4(2) + 2a(-2)$$
$$= 28 - 8 - 4a = 20 - 4a$$