JEE MAIN 2023

APRIL ATTEMPT

PAPER-1 (B.Tech / B.E.)

Duration : 3 Hours
Maximum Marks : 300

SUBJECT - PHYSICS

LEAGUE OF TOPPERS (Since 2020) TOP 100 AIRs IN JEE ADVANCED

Admission Announcement for JEE Advanced (For Session 2023-24)

Starting From : 12 \& 19 APRIL'23
Avail Scholarship up to $\mathbf{9 0 \%}$ through R-NET on EVERY SUNDAY

Unleashing Potential

PHYSICS

1. Two point objects of mass ' m ' performing circular motion due to each other's gravitational pull. Find the angular velocity of each object.
(1) $\frac{1}{R} \sqrt{\frac{G m}{4 R}}$
(2) $\frac{1}{R} \sqrt{\frac{G m}{R}}$
(3) $\frac{1}{R} \sqrt{\frac{\mathrm{Gm}}{2 \mathrm{R}}}$
(4) $\frac{1}{R} \sqrt{\frac{G m}{6 R}}$

Ans. (1) Sol.

$\mathrm{m} \omega^{2} \mathrm{R}=\frac{\mathrm{Gm}^{2}}{(2 \mathrm{R})^{2}}$
$\omega^{2}=\frac{\mathrm{Gm}}{4 \mathrm{R}^{3}}$
$\omega=\frac{1}{\mathrm{R}} \sqrt{\frac{\mathrm{Gm}}{4 \mathrm{R}}}$
2. A string is vibrating in fundamental mode whose both end is fixed.

Given :
$\mathrm{f}=50 \mathrm{~Hz} ; \mathrm{f}_{0} \rightarrow$ fundamental frequency
$\mu=\frac{1}{50} \mathrm{Kg} / \mathrm{m}$
$\mathrm{m}=\frac{18}{1000} \mathrm{Kg}$
$\mu \rightarrow$ mass per unit length of string
$\mathrm{m} \rightarrow$ mass of string
Find speed of wave.
(1) $90 \mathrm{~m} / \mathrm{s}$
(2) $60 \mathrm{~m} / \mathrm{s}$
(3) $40 \mathrm{~m} / \mathrm{s}$
(4) $100 \mathrm{~m} / \mathrm{s}$

Ans. (1)
Sol. $\quad \mu=\frac{\mathrm{m}}{\ell}$
$\ell=\frac{\mathrm{m}}{\mu}$

Unleashing Potential

$$
\begin{aligned}
& \mathrm{f}_{0}=\frac{\mathrm{v}}{2 \ell} \\
& \mathrm{v}=(2 \ell) \mathrm{f}_{0} \\
& \mathrm{v}=\frac{2 \mathrm{~m}}{\mu} \mathrm{f}_{0} \\
& \mathrm{v}=2 \times \frac{18}{1000} \times \frac{50 \times 50}{1} \\
& \mathrm{v}=90 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

3. For a particle performing SHM, mark correct options :
(i) Minimum acceleration is at extreme position.
(ii) Maximum velocity at mean position.
(iii) Restoring force is proportional to displacement.
(iv) Direction of acceleration and displacement are opposite.
(1) (ii), (iii), (iv)
(2) (i), (ii), (iii)
(3) (ii), (iii)
(4) (iii), (iv)

Ans. (1)
Sol. Basic theory.
4. A particle experience a force $\mathrm{F}=5 \mathrm{x} \mathrm{N}$, find work done when particle moves from $\mathrm{x}=2 \mathrm{~m}$ to $\mathrm{x}=4 \mathrm{~m}$.

Ans. 30
Sol. $\mathrm{w}=\int_{2}^{4} 5 \mathrm{xdx}$
$\mathrm{w}=\frac{5}{2}\left[\mathrm{x}^{2}\right]_{2}^{4}$
$\mathrm{w}=\frac{5}{2}[16-4]=\frac{5 \times 12}{2}=30 \mathrm{~J}$
5. The position vector of a particle is $\overrightarrow{\mathbf{r}}=\left(10 t \hat{i}+15 t^{2} \hat{j}+7 \hat{k}\right) \mathrm{m}$. Direction of force.
(1) $+x$
(2) $+y$
(3) $-y$
(4) $+z$

Ans. (2)
Sol. $\quad \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=\mathrm{v}(\mathrm{t})=10 \hat{\mathrm{i}}+30 \hat{\mathrm{t}}$
$\frac{d^{2} \vec{r}}{\mathrm{dt}^{2}}=\frac{\mathrm{dv}}{\mathrm{dt}}=30 \hat{\mathrm{j}} \mathrm{m} / \mathrm{s}^{2}$

Unleashing Potential
6. The half life of a substance is 5 yr . Find the amount of substance left after 15 yr :
(1) $\frac{1}{8}{ }^{\text {th }}$
(2) $\frac{1}{10}^{\text {th }}$
(3) $\frac{1}{4}{ }^{\text {th }}$
(4) $\frac{1}{20}^{\text {th }}$

Ans. (1)
Sol. $\quad \mathrm{N}_{\mathrm{t}}=\frac{\mathrm{N}_{0}}{2^{3}}$
$\mathrm{N}_{\mathrm{t}}=\frac{\mathrm{N}_{0}}{8}$
7. $\mathrm{x}(\mathrm{t})=\mathrm{t}^{2}-2 \mathrm{t}$, find speed of the particle at $\mathrm{t}=2 \mathrm{sec}$.?
(1) $1 \mathrm{~m} / \mathrm{s}$
(2) $2 \mathrm{~m} / \mathrm{s}$
(3) $4 \mathrm{~m} / \mathrm{s}$
(4) $6 \mathrm{~m} / \mathrm{s}$

Ans. (2)
Sol. $\quad \mathrm{x}(\mathrm{t})=\mathrm{t}^{2}-2 \mathrm{t}$
$\mathrm{v}(\mathrm{t})=2 \mathrm{t}-2$
$v(t=2)=4-2=2 \mathrm{~m} / \mathrm{s}$
8. Total charged stored in capacitor is $100 \mu \mathrm{C}$. Find x ?

(1) $2 \mu \mathrm{~F}$
(2) $3 \mu \mathrm{~F}$
(3) $4 \mu \mathrm{~F}$
(4) $5 \mu \mathrm{~F}$

Ans. (4)
Sol. $\mathrm{Q}_{1}+\mathrm{Q}_{2}+\mathrm{Q}_{3}=100 \mu \mathrm{C}$
$20+30+10 \mathrm{x}=100 \mu \mathrm{C}$
$\mathrm{x}=5 \mu \mathrm{~F}$
9. The de-broglie wavelength ' λ ' when kinetic energy E, the de-broglie wavelength when kinetic energy $\frac{\mathrm{E}}{4}$.
(1) 2λ
(2) 3λ
(3) 4λ
(4) 6λ

Ans. (1)

Unleashing Potential
Sol. $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mK}}}$
$\lambda=\frac{1}{\sqrt{\mathrm{k}}}$
$\frac{\lambda_{1}}{\lambda_{2}}=\sqrt{\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}}$
$\frac{\lambda}{\lambda_{2}}=\sqrt{\frac{\mathrm{E} / 4}{\mathrm{E}}}=\frac{1}{2}$
$\lambda_{2}=2 \lambda$
10. Find the ratio of radius of gyration of solid sphere to solid cylinder, if mass and radius of both objects are same. Axis is passing through centre of mass:
(1) $\sqrt{\frac{4}{5}}$
(2) $\sqrt{\frac{6}{5}}$
(3) $\sqrt{\frac{7}{5}}$
(4) $\sqrt{\frac{5}{6}}$

Ans. (1)
Sol. $\frac{\mathrm{K}_{\mathrm{S}}}{\mathrm{K}_{\mathrm{C}}}=\sqrt{\frac{\mathrm{I}_{\mathrm{S}}}{\mathrm{I}_{\mathrm{C}}}}=\sqrt{\frac{4}{5} \frac{\mathrm{mR}^{2}}{\mathrm{mR}^{2}}}$

$$
\frac{\mathrm{K}_{\mathrm{S}}}{\mathrm{~K}_{\mathrm{C}}}=\sqrt{\frac{4}{5}}
$$

11. Height of receiving and transmitting antenna in communication of a signal are 245 m and 180 m . Find the maximum distance between the two antenna for proper communication:
(1) 104 km
(2) 106 km
(3) 110 km
(4) 112 km

Ans. (1)
Sol. $\mathrm{d}=\sqrt{2 \mathrm{Rh}_{\mathrm{t}}}+\sqrt{2 \mathrm{Rh}_{\mathrm{R}}}$
$\mathrm{d}=\sqrt{2 \mathrm{R}}\left[\sqrt{\mathrm{R}_{\mathrm{t}}}+\sqrt{\mathrm{h}_{\mathrm{R}}}\right]$
$\mathrm{d}=\sqrt{2 \times 6400 \times 10^{3}}[\sqrt{180}+\sqrt{245}]$
$\mathrm{d}=800[60+70]$
$d=104000$ meter
$\mathrm{d}=104 \mathrm{~km}$

Unleashing Potential
12. Find the potential difference between A and B ?

(1) 3 V
(2) 5 V
(3) 7 V
(4) 9 V

Ans. (1)

Sol.

$\mathrm{i}_{1}=\mathrm{i}_{2}=\frac{9}{6}=1.5$
$\mathrm{V}_{\mathrm{CA}}=\mathrm{i}_{1} 4=6$ volt
$\mathrm{V}_{\mathrm{CB}}=\mathrm{i}_{2} 2=3$ volt
$\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=6-3=3$ volt
13. Electric field due to small dipole at large distance is proportional to :
(1) r^{-2}
(2) r^{-3}
(3) r^{-4}
(4) r^{3}

Ans. (2)
Sol. $\quad \mathrm{E}_{\mathrm{r}}=\frac{\mathrm{kP}}{\mathrm{r}^{3}} \sqrt{1+3 \cos ^{2} \theta}$
14. A soap bubble of radius R with surface tension T is placed in water at depth ' h '. Find $P_{2}-P_{1}$.

Given :

$\mathrm{P}_{1}=$ Atmospheric pressure
$\mathrm{P}_{2}=$ Pressure inside the bubble
(1) $\rho g h+\frac{4 T}{R}$
(2) $\rho g h-\frac{4 T}{R}$
(3) $\rho g h$
(4) $\frac{4 \mathrm{~T}}{\mathrm{R}}$

Ans. (1)

Unleashing Potential
Sol. $\quad P_{1}+\rho g h+\frac{4 T}{R}=P_{2}$

$$
P_{2}-P_{1}=\rho g h+\frac{4 T}{R}
$$

15. Find out the ratio of average translational kinetic energy of H_{2} and Argon at temp $30^{\circ} \mathrm{C}$.
(1) $1: 4$
(2) $1: 1$
(3) $3: 5$
(4) $5: 3$

Ans. (2)
Sol. $\frac{\text { K.E. }}{\text { molecule }}=\frac{3}{2} \mathrm{KT}$
So ratio is $1: 1$
16.

Work done by gas?
(1) 100 J
(2) 200 J
(3) 300 J
(4) 350 J

Ans. (3)
Sol. Work done by gas $=$ area under curve of $\mathrm{P}-\mathrm{V}$
$=\frac{1}{2} \times 300 \times 2=300 \mathrm{~J}$
17. A body of mass m is released from height R from surface of earth. Find velocity of body when it reaches the surface of earth?
(1) $\sqrt{\frac{\mathrm{GM}}{4 \mathrm{R}}}$
(2) $\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}$
(3) $\sqrt{\frac{\mathrm{GM}}{\mathrm{R}}}$
(4) $\sqrt{\frac{\mathrm{GM}}{2 \mathrm{R}}}$

Ans. (3)

Unleashing Potential
Sol. M.E. conservation
$-\frac{\mathrm{GMm}}{2 \mathrm{R}}=-\frac{\mathrm{GMm}}{\mathrm{R}}+\frac{1}{2} \mathrm{mv}^{2}$
$\frac{1}{2} \mathrm{mv}^{2}=\frac{\mathrm{GMm}}{2 \mathrm{R}}$
$v=\sqrt{\frac{G M}{R}}$
18. In hydrogen spectrum ratio of wavelength $\lambda_{2}: \lambda_{1}$ is $\frac{7}{4 n}$ then the value of n is :

A : $1^{\text {st }}$ excited state
B : $3^{\text {nd }}$ excited state
C: $3{ }^{\text {rd }}$ excited state
Ans. 5
Sol. For $\mathrm{A}, \mathrm{x}=2$
B, $x=3$
C, $x=4$
$\frac{1}{\lambda_{1}}=\operatorname{Rz}^{2}\left[\frac{1}{9}-\frac{1}{16}\right]$
$\frac{1}{\lambda_{1}}=\operatorname{Rz}^{2} \frac{7}{16 \times 9}$
$\frac{1}{\lambda_{2}}=\mathrm{Rz}^{2}\left[\frac{1}{4}-\frac{1}{9}\right]=\mathrm{Rz}^{2} \frac{5}{9 \times 4}$
$\frac{\lambda_{2}}{\lambda_{1}}=\frac{7}{5 \times 4} \quad \Rightarrow \quad \mathrm{n}=5$

Unleashing Potential
19. Find current given by battery?

(1) 1.5 A
(2) 2.5 A
(3) 1 A
(4) 0 A

Ans. (1)
Sol. $\quad \mathrm{R}_{\mathrm{eq}}=\frac{20 \times 10}{20+10}=\frac{20}{3}$

$$
\mathrm{I}=\frac{10}{\left(\frac{20}{3}\right)}=\frac{3}{2}=1.5 \mathrm{~A}
$$

20. Light of $\lambda=600 \mathrm{~nm}$ is diffracted using a single slit of width d . Find d (in $\mu \mathrm{m})$ if $\mathrm{I}^{\text {st }}$ minima is formed at 30° ?

Ans. 1.2
Sol.

$$
\mathrm{I}^{\text {st }} \text { minima is at } \sin \theta=\frac{\lambda}{\mathrm{d}}
$$

$$
\therefore \quad \sin 30^{\circ}=\frac{600 \times 10^{-9}}{\mathrm{~d}}
$$

$$
\therefore \quad d=1200 \times 10^{-9} \mathrm{~m}
$$

$$
=1.2 \mu \mathrm{~m}
$$

Unleashing Potential
21. y-component of force $\overrightarrow{\mathrm{F}}$ is $2 \sqrt{3}$ newton. What will be the x -component of $\overrightarrow{\mathrm{F}}$.

(1) 1 N
(2) 4 N
(3) 5 N
(4) 2 N

Ans. (4)
Sol. $\quad \tan 60^{\circ}=\frac{\mathrm{F}_{\mathrm{y}}}{\mathrm{F}_{\mathrm{x}}}$
$\mathrm{F}_{\mathrm{x}}=\frac{\mathrm{F}_{\mathrm{y}}}{\tan 60^{\circ}}$
$\mathrm{F}_{\mathrm{x}}=\frac{2 \sqrt{3}}{\sqrt{3}}=2$ Newton
22. Statement-1 : In Bohr's orbit, angular momentum of an electron is quantized.

Statement-2 : Bohr's model does not obey Heisenberg uncertainty principle.
(1) Statement $1 \&$ statement 2 are true
(2) Statement $1 \&$ statement 2 are false
(3) Statement 1 is true and statement 2 is false
(4) Statement 1 is false and statement 2 is true

Ans. (1)
Sol. Basic theory
23. Velocity is represented in terms of wavelength λ, gravitational acceleration g, density ρ as $v=\lambda^{a}$ $g^{b} \rho^{c}$, then value of a, b, c is
(1) $1, \frac{1}{2}, \frac{1}{2}$
(2) $\frac{1}{2}, \frac{1}{2}, 0$
(3) $\frac{1}{2}, 0, \frac{1}{2}$
(4) $1,1,0$

Ans. (2)
Sol. $[\mathrm{v}]=[\lambda]^{\mathrm{a}}[\mathrm{g}]^{\mathrm{b}}[\rho]^{\mathrm{c}}$
$\left[\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-1}\right]=\left[\mathrm{L}^{\alpha}\right]\left[\mathrm{L}^{\mathrm{b}} \mathrm{T}^{-2 \mathrm{~b}}\right]\left[\mathrm{M}^{\mathrm{c}} \mathrm{L}^{-3 \mathrm{c}}\right]$
$=M^{c} L^{a+b-3 c} T^{-2 b}$
$\mathrm{c}=0 ;-2 \mathrm{~b}=-1$

Unleashing Potential
$\therefore \quad \mathrm{b}=\frac{1}{2}$
\&

$$
a+b-3 c=1
$$

and $\quad a+\frac{1}{2}=1$

$$
\begin{array}{ll}
\therefore & a=\frac{1}{2} \\
\therefore & {[\mathrm{v}]=[\lambda]^{1 / 2}[\mathrm{~g}]^{1 / 2}[\rho]^{0}}
\end{array}
$$

24. S_{1} : In series combination the value of equivalent resistance is less then the smallest resistance
$\mathrm{S}_{2}:$ Resistivity of material depends on temperature
(1) S_{1} and S_{2} True
(2) S_{1} is true and S_{2} is false
(3) S_{1} is False and S_{2} is true
(4) S_{1} and S_{2} is false.

Ans. (3)
Sol. $\quad \mathrm{R}_{\text {eq. }}=\mathrm{R}_{1}+\mathrm{R}_{2}$
$\mathbf{R}_{\text {eq. }}>\operatorname{Max.}\left(\mathrm{R}_{1}\right.$ and $\left.\mathrm{R}_{2}\right)$
25. A wire of length ℓ, radius r is stretched by force F then elongation in wire is x if another wire of same material but length 2ℓ, radius 2 r is stretched by 2 F force, then elongation in wire.
(1) $2 x$
(2) x
(3) $\frac{x}{2}$
(4) $4 x$

Ans. (2)
Sol. $\mathbf{y}=\frac{\mathrm{F} \ell}{\mathrm{x} \times \pi \mathrm{r}^{2}} \quad \mathbf{x}^{\prime}=$ new elongation
$\mathbf{y}=\frac{2 \mathrm{Fx} 2 \ell}{\mathrm{x}^{\prime} \times 4 \pi \mathrm{r}^{2}} \quad \mathbf{x}=$ old elongation

Unleashing Potential
26. Match the following :

Column-I		Column-II	
(A)	Visible	(p)	$400 \mathrm{~nm}-700 \mathrm{~nm}$
(B)	γ-ray	(q)	$10^{-3} \mathrm{~nm}-10^{-2} \mathrm{~nm}$
(C)	Ultra-violet	(r)	$1 \mathrm{~nm}-400 \mathrm{~nm}$
(D)	X-ray	(s)	$0.1 \mathrm{~nm}-10 \mathrm{~nm}$

(1) A-p, B-q, C-r, D-s
(2) A-q, B-p, C-r, D-s
(3) A-q, B-p, C-s, D-r
(4) D-q, B-p, C-s, A-r

Ans. (1)
Sol. Basic Theory
27.

Find the minimum deviation?
Ans. $\delta_{\text {min }}=30^{\circ}$

Sol.
$\mu=\frac{\sin \left[\frac{\delta_{\text {min }}+\mathrm{A}}{2}\right]}{\sin \left(\frac{\mathrm{A}}{2}\right)}$
$\frac{1}{\sqrt{2}}=\sin \left(\frac{\delta_{\text {min }}}{2}+30\right)$
$\frac{\delta_{\text {min }}}{2}+30^{\circ}=45^{\circ}$
$\delta_{\text {min }}=30^{\circ}$
28. at $\mathrm{t}=0$ switch is closed. At $\mathrm{t}=1 \mathrm{~ms}$ voltage across inductor is 10 V . Find L .

(1) 8.6 mH
(2) 12 mH
(3) 4 mH
(4) 3 mH

Ans. (1)

Unleashing Potential
Sol. $\quad \mathbf{i}=\frac{\varepsilon}{\mathrm{R}}\left[1-\mathrm{e}^{\frac{-\mathrm{TR}}{\mathrm{L}}}\right]$
$\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}=\varepsilon e^{\frac{-t}{\mathrm{~L}} \mathrm{R}}$
$10=20 e^{\frac{-1 \times 10^{-3} \times 6}{\mathrm{~L}}}$
$\mathrm{L}=\frac{6 \times 10^{-3}}{\ell \mathrm{n} 2}$
$\mathrm{L}=8.6 \times 10^{-3} \mathrm{H}$
$\mathrm{L}=8.6 \mathrm{mH}$

RELIABLE INSTITUTE : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com
© reliablekota O reliablekota © reliableinstitutekota © reliable_kota if reliablekota

