PART : CHEMISTRY

1. Number of P-O-P bond in $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}, \mathrm{P}_{4} \mathrm{O}_{10}$ and $\left(\mathrm{HPO}_{3}\right)_{3}$ respectively :
(1) $1,6,3$
(2) $0,1,2$
(3) $3,2,1$
(4) $1,2,1$

Ans. (1)

Sol.

$\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$: Pyrophosphoric acid

$\mathrm{P}_{4} \mathrm{O}_{10}$: Dimer of phosphorus pentaoxide

(HPO_{3}): : Cyclotrimetaphosphoric acid

Number of P-O-P bond	
Pyrophosphoric acid	1
Dimer of phosphorus pentaoxide	6
Cyclotrimetaphosphoric acid	3

2. How many of the following statements are incorrect :
(1) Conductivity (K) decreases with increase in dilution for both strong and weak electrolyte.
(2) Molar conductivity increases with increase in dilution for both strong and weak electrolyte.
(3) Molar conductivity increases with increases in ' α ' for weak electrolyte.
(4) Change in molar conductivity is same for both strong and weak electrolyte with increases in dilution.

Ans. (4)
Sol. (1) On dilution, Molarity decrease, conductivity decrease, volume increase.
Number of ions per unit volume decrease so conductivity decrease.
(2) Molar conductivity increase on dilution.
(3) On increase ' α ' for weak electrolyte Molar conductivity increase.
3. Statement-I : According to Bohr's modal, angular momentum is quantised for stationary orbits.

Statement-II : Bohr's modal doesn't follow Heisenberg's uncertainty principle.
(1) Both Statement-I and Statement-II are true.
(2) Statement-I is true and Statement-II is false.
(3) Statement-I is false and Statement-II is true. (4) Both Statement-I and Statement-II are false.

Ans. (1)
Sol. According to Bohr's modal orbit angular momentum of stationary orbit is quantaized it is equal to $\frac{\mathrm{nh}}{2 \pi}$ (on $=$ No. of orbit) Heisenberg's uncertainty principle explain orbital concept, which is depends on finding probability of electron.
4. How many of the following are isoelectric species $\mathrm{F}^{-}, \mathrm{Al}^{3+}, \mathrm{F}_{1} \mathrm{O}_{2}{ }^{+}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Al}, \mathrm{Na}, \mathrm{O}^{2-}$
Ans. (5)
Sol.

Species :	F^{-}	Al^{3+}	F	O_{2}^{+}	Na^{+}	Mg^{2+}	Al	Na	O^{2-}
No. of $\mathrm{e}^{-}:$	10	10	9	15	10	10	13	11	10

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
5. The interionic distance in Cs Cl structure is
$\left(r^{+}+r\right)$
(1) $\frac{\mathrm{a}}{\sqrt{2}}$
(2) $\frac{\sqrt{3} a}{4}$
(3) $\frac{\sqrt{3} a}{2}$
(4) $\frac{a}{2}$

Ans. (3)
Sol. $\quad \mathrm{CsCl}$ has body centred unit cell (BCC)
So body diagonal $\sqrt{3} a=2\left(r^{+}+r^{-}\right)$
$\left(r^{+}+r^{-}\right)=\left(\frac{\sqrt{3} a}{2}\right)$
6. In a complex of Co^{2+} with ligand $\mathrm{H}_{2} \mathrm{O}$ in octahedral complex number of unpaired electron in t_{29} orbital \qquad
Ans. (1)
Sol. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} ; \mathrm{Co}^{2+}=\mathrm{d}^{7}$ configuration
$\mathrm{t}_{29}^{22^{\prime \prime}} \mathrm{eg}^{11}$
No. of unpaired electron $=1$ in $t_{2 g}$
7. Which of the following statement are correct ?
(a) NF_{3} has triangular planer structure
(b) Bond length of N_{2} is smaller than O_{2}
(c) For isoelectronic species bond order will be some
(d) Dipole moment of $\mathrm{H}_{2} \mathrm{~S}$ is lesser than $\mathrm{H}_{2} \mathrm{O}$
(1) Only b, c, d
(2) Only a, b, c
(3) Only a, c, d
(4) Only a, b, d

Ans. (1)
Sol. (a) NF_{3} has triangular pyramidal structure

(b) Molecule : $\mathrm{N}_{2} \quad \mathrm{O}_{2}$
B.O. 3
B. L $\mathrm{N}_{2}<\mathrm{O}_{2}$
(d) Dipole moment $\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{O}$ due to less EN difference $\mathrm{b} / \mathrm{w} \mathrm{H}$ and S as compare to H and O
8. Assertion : BeCl_{2} and MgCl_{2} give characteristic colour to flame.

Reason : Excitation enthalpy are very high for BeCl_{2} and MgCl_{2}.
(1) Assertion, Reason both are correct Reason is correct explation of Assertion.
(2) Assertion, Reason both are correct Reason is not correct explation of Assertion.
(3) Assertion is correct Reason is not correct.
(4) Assertion is not correct Reason is correct.

Ans. (4)
Sol. Due small size and high EN of Be and Mg .

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Resgnance

9. Oxidation number of Cr in chromyl chloride vapour.

Ans. 6
Sol. Chromyl chloride : $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
Oxidation number of $\mathrm{Cr}=+6$
$\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
$x+2(-2)+2(-1)=0$
$x=+6$
10. Find the vapour pressure (in mm of Hg) of aqueous solution having 30% mass by volume glucose (Given : $\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}^{0}=760 \mathrm{~mm}$ of Hg) (density of solution $=1.2 \mathrm{~g} / \mathrm{mol}$) (Report your answer in nearest integer)
Ans. 729 mm of Hg
Sol. $\quad \frac{P^{\circ}{ }_{A}-P s}{P_{s}}=\frac{n}{N}$
density of solution $=\frac{\text { Mass }}{\text { volume }}$
density of solution $=100 \mathrm{ml}$
Mass $=120 \mathrm{~g}$
weight of glucose $=120 \times \frac{30}{100}=36 \mathrm{~g}$
weight of $\mathrm{H}_{2} \mathrm{O}=120-36=84 \mathrm{~g}$
mole of glucose $=36 / 180=0.2$ mole
mole of $\mathrm{H}_{2} \mathrm{O}=\frac{84}{18}=4.6 \mathrm{~mole}$
$\frac{760-P s}{P_{s}}=\frac{0.2}{4.67}$
$760-\mathrm{Ps}=0.0428 \mathrm{Ps}$
Ps $=\frac{760}{1.0428}=728.8 \mathrm{~mm}$ of Hg
$=729 \mathrm{~mm}$ of Hg
11. Find change in Oxidation number of Mn when KMnO_{4} react with aqueous KI solution in acidic medium.

Ans. 5
Sol. $\quad 10 \mathrm{KI}+\underset{(+7)}{2 \mathrm{KMnO}_{4}}-8 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \underset{(+2)}{2 \mathrm{MnSO}_{4}}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{I}_{2}+6 \mathrm{~K}_{2} \mathrm{SO}_{4}$
change on Oxidation number of $M n=((+7)-(+2))=5$
12. What is the Ratio of silica to alumina in cement
(1) 3
(2) 2
(3) 4.5
(4) 1.5

Ans. (1)
Sol. For gas good quality of cement the ratio of silica $\left(\mathrm{SiO}_{2}\right)$ to Alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ should be between 2.5 and 4 : 1

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail :contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

13. Which of the following reaction is not a calcination process.
(1) $\mathrm{CaCO}_{3} \longrightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
(2) $\mathrm{CaCO}_{3} \cdot \mathrm{MgCO}_{3} \xrightarrow[\Delta]{ } \mathrm{MgO}+\mathrm{CaO}+\mathrm{CO}_{2}$
(3) $\mathrm{PbS}+\mathrm{O}_{2} \longrightarrow \mathrm{PbO}+\mathrm{SO}_{2}$
(4) $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot x \mathrm{H}_{2} \mathrm{O} \xrightarrow[\Delta]{\longrightarrow} \mathrm{Fe}_{2} \mathrm{O}_{3}+x \mathrm{H}_{2} \mathrm{O}$

Ans. (3)
Sol. $\mathrm{PbS}+\mathrm{O}_{2} \longrightarrow \mathrm{PbO}+\mathrm{SO}_{2}$ is a roasting reaction.
14. Which of the following having highest value of splitting energy (Δ_{0}).
(1) $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$
(2) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3}$
(3) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3}$
(4) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3}$

Ans. (2)
Sol. From L to R in 3d series M^{3+} ion size decreases, change density increase, so attraction b / w^{3+} and ligand increase so Δ_{0} increase.
15. For water gas shift reaction, which of the following is correct.
(1) CO get oxidised in CO_{2}
(2) CO_{2} get reduced in CO
(3) Water get vaporised
(4) CO get reduced in CH_{4}

Ans. (1)
Sol. The production of dihydrogen can be increased by reacting CO of Syn gas mixture with steam in the presence of iron chromate as catalyst
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \xrightarrow[\text { Catalyst }]{673 \mathrm{~K}} \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
Water gas shift Reaction
16. For a radioactive decay $\mathrm{t}_{\frac{1}{2}}=15$ years, what will be the rate constant $\left(\mathrm{yr}^{-1}\right)$

Ans. $0.05 \mathrm{yr}^{-1}$
Sol. radioactive decay is $\mathrm{l}^{\text {stt }}$ order,
so rate constant $K=\frac{0.693}{t_{1 / 2}}=\frac{0.693}{15}=0.0462$
$=0.05 \mathrm{yr}^{-1}$
17. Statement-I: pH of $10^{-8} \mathrm{M} \mathrm{HCl}$ is 8 at $25^{\circ} \mathrm{C}$

Statement-II : Titration of weak acid and strong base at half equivalence point gives $\mathrm{pH}=\frac{\mathrm{pK}_{\mathrm{a}}}{2}$
(1) Both Statement-I and Statement-II are correct.
(2) Both Statement-I and Statement-II are incorrect.
(3) Statement-I is incorrect and Statement-II is correct.
(4) Statement-II is incorrect and Statement-I is correct.

Ans. (2)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 18002585555
[回 7340010333 If 'rateoc conhemercats

18.

(1) $\mathrm{Br}_{2} / \mathrm{Fe}, \mathrm{KMnO}_{4}, \mathrm{LiAlH}_{4}$
(2) $\mathrm{H}_{2} / \mathrm{Pd}, \mathrm{Br}_{2} / \mathrm{Fe}, \mathrm{KMnO}_{4}$
(3) $\mathrm{Br}_{2} / \mathrm{Fe}, \mathrm{KMnO}_{4}, \mathrm{H}_{2} / \mathrm{Pd}$
(4) $\mathrm{KMnO}_{4}, \mathrm{Br}_{2} / \mathrm{Fe}, \mathrm{LiAlH}_{4}$

Ans. (3)

Sol.

19.

(1)

(3)

(4)

Ans. (2)

Sol.

Ninhydrin
Ninhydrin-hydrate

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

20. Friedel-craft acylation in chlorobenzene gives.
(1)

(2)

(3)

(4)

Ans. (4)

Sol.

21. Photochemical smog is minimum
(1) In Kolkata (October)
(2) In Mumbai - (May)
(3) In Chennai (July)
(4) In Jammu \& Kashmir (January \& February)

Ans. (4)
22.

Find B.
(1)

(2)

(3)

(4)

Ans. (1)

Sol.

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

23. The correct match is.

	LIST-I (Monomer)		LIST-II (Polymer)
(A)	Tetrafluoroethene	(I)	Orlon
(B)	Caprolactum	(II)	Natural rubber
(C)	Acrylonitrile	(III)	Nylon-6
(D)	Isoprene	(IV)	Teflon

(1) (A) - (IV) ; (B) - (III) ; (C) - (II) ; (D) - (I)
(2) (A) - (IV) ; (B) - (II) ; (C) - (III) ; (D) - (I)
(3) (A) - (IV) ; (B) - (III) ; (C) - (I) ; (D) - (II)
(4) (A) - (III) ; (B) - (II) ; (C) - (IV) ; (D) - (I)

Ans. (3)

Sol.

Acrylonitrile
Polyacrylonitrile(Orlon)

24. Increasing order of rate of electrophilic aromatic substitution reaction is

A

B

C

D

E
(1) C $<$ B $<$ A $<$ D $<$ E
(2) C $<$ B $<$ A $<$ E $<$ D
(3) C $<$ B $<$ D $<$ E $<$ A
(4) C $<$ A $<$ D $<$ E $<$ B

Ans. (1)
Sol. Rate of electrophilic substitution reaction \propto Electron density in benzene ring.

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

25.

Product ' P ' is
(1) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\stackrel{\|}{\mathrm{C}}-\mathrm{OCH}_{3}$
(3)

(2) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$
(4)

Ans. (3)
Sol.

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

