					PAF	RT : C	HEMI	STR	Y			
1.	Number of P	-0-P I	oond in	H ₄ P ₂	07, P40	10 and (HPO ₃) ₃ r	espect	ively:			
•	(1) 1, 6, 3		(2	2) 0, 1	, 2		(3) 3,	2, 1		(4)	1, 2, 1	
Ans.	(1)											
	0		-			0=0	~			6	2.2	0
	- <u>1</u>	Ĩ			0=P		-0-	P = 0		HO		00
	HOTO	P	OH			o P					Q P O	
Sol.	OH					0					O O	
E	$H_4P_2O_7$: Pyrophosphoric acid P_4O_{10} : Dimer of phosphorus pentaoxide (HPO ₃) ₃ : Cyclotrimetaphosphoric acid										horic acid	
	١	lumb	er of P	-0-P I	bond							
	Pyrophosph	noric a	icid			1	_					
	Dimer of ph	iospho	prus pe	ntaoxi	de	6	- 1					
	Cyclotrimet	aphos	phoric	acid		3						
2	How many o	f the f	ollowing	a state	ements	are inco	orrect :					
	(1) Conductiv	vity (K) decre	ases	with inc	rease in	dilution	for bot	h stron	g and we	eak electroly	te.
	(2) Molar cor	nductiv	, vity incr	eases	with in	crease	in dilutio	n for bo	oth stro	ng and v	veak electrol	yte.
	(3) Molar cor	(3) Molar conductivity increases with increases in ' α ' for weak electrolyte.										
	(4) Change i	n mola	ar cond	uctivit	y is san	ne for b	oth stron	g and v	weak el	ectrolyte	with increase	ses in dilution.
Ans.	(4)											
Sol.	(1) On dilutio	on, Mo	larity d	ecreas	se, con	ductivity	decreas	e, volu	me inc	rease.		
	(2) Molar cor	Number of ions per unit volume decrease so conductivity decrease.										
	 (2) Molar conductivity increase on dilution. (3) On increase 'c' for weak electrolyte Molar conductivity increase. 											
		100 0.	ior we		ou ory to	monure	onduouv	ity into	0400.			
3.	Statement-I	Statement-I : According to Bohr's modal, angular momentum is quantised for stationary orbits.										orbits.
	Statement-II : Bohr's modal doesn't follow Heisenberg's uncertainty principle.											
	(1) Both Statement-I and Statement-II are true. (2) Statement-I is true and Statement-II is false.									is false.		
Re	(3) Statemer	nt-l is	false a	nd Sta	atement	-II is tru	e. (4) Bo	th Stat	ement	I and Sta	atement-II ar	re false.
Ans.	(1)											
Sol.	According to Bohr's modal orbit angular momentum of stationary orbit is quantaized it is equal to $\frac{nh}{2}$ (o											
	= No of orbit) Heisenberg's uncertainty principle explain orbital concept which is depends on finding											
	probability of electron.											
4.	How many o	f the f	ollowing	g are i	isoelect	ric spec	ies					
	F ⁻ , Al ³⁺ , F, O	2 ⁺ , Na	⁺ , Mg ²⁺	, AI, N	la, O ²⁻							
Ans.	(5) Response Response Responses Resonance											
301.	Species :	F-	A 3+	F	0.+	Na ⁺	Ma ²⁺	AI	Na	O ²⁻		
	openes.	1	10	-	45	110	10	10	144			
	No of of the	101	10	l u	1 1 2	1 10	1 10	1 1 4	1 11	10		

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 55555

This solution was download from Resonance JEE (Main) 2023 Solution portal

5.	The interionic distance in Cs CI structure is $(r^+ + r^-)$								
	(1) $\frac{a}{\sqrt{2}}$ (2) $\frac{\sqrt{3}a}{4}$ (3) $\frac{\sqrt{3}a}{2}$ (4) $\frac{a}{2}$								
Ans. Sol.	(3) CsCl has body centred unit cell (BCC)								
	So body diagonal $\sqrt{3a} = 2(r^+ + r^-)$ $(r^+ + r^-) = \left(\frac{\sqrt{3a}}{2}\right)$								
3. <u>B</u>	In a complex of Co ²⁺ with ligand H ₂ O in octahedral complex number	of unpaired electron in							
Ans. Sol.	• (1) $[Co(H_2O)_6]^{2+}; Co^{2+} = d^7 \text{ configuration}$ $t_{2g}^{22''} \text{ eg}^{11}$								
	No. of unpaired electron = 1 in t _{2g}								
7.	Which of the following statement are correct ? (a) NF ₃ has triangular planer structure (b) Bond length of N ₂ is smaller than O ₂								
	(c) For isoelectronic species bond order will be some	(c) For isoelectronic species bond order will be some							
	(d) Dipole moment of H ₂ S is lesser than H ₂ O (1) Only b. c. d	(d) Dipole moment of H ₂ S is lesser than H ₂ O							
	(2) Only a, b, c								
	(3) Only a, c, d								
Ans.	(4) Only a, b, d								
Sol.	(a) NF ₃ has triangular pyramidal structure								
	F F								
	(b) Molecule : N ₂ O ₂								
	B.O. 3 2 B.L. No. $\leq O_{2}$								
	(d) Dipole moment $H_2S < H_2O$ due to less EN difference b/w H and S as compare to H and O								
E8									
8.	Assertion : BeCl ₂ and MgCl ₂ give characteristic colour to flame.								
	(1) Assertion, Reason both are correct Reason is correct explation of Assertion.								
	(2) Assertion, Reason both are correct Reason is not correct explation of Assertion.								
	(3) Assertion is correct Reason is not correct.								
	(4) Assertion is not correct Reason is correct.								
Ans	Due small size and high EN of Be and Mg.								

Resonance*

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 💿 7340010333 👔 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 📓 www.youtube.com/resonance.ac.in

This solution was download from Resonance JEE (Main) 2023 Solution portal

Educa	iting for better tomorrow JEE(Main) 2023 DATE: 15-04-2023 (SHIFT-1) PAPER-	I MEMORT BASED CHEMISTRT
9.	Oxidation number of Cr in chromyl chloride vapour.	
Ans.		
Sol.	Chromyl chloride : CrO ₂ Cl ₂	
	Oxidation number of $Cr = +6$	
	v + 2(2) + 2(1) = 0	
	x + 2(-2) + 2(-1) = 0 x = +6	
	Resentance Responses Gesp	
10.	Find the vapour pressure (in mm of Hg) of aqueous solution having	g 30% mass by volume glucose
	(Given : $P_{a}^{0} = 760 \text{ mm of Ha}$) (density of solution = 1.2 a/mol) (Reference)	eport your answer in nearest integer)
A	$(200 \text{ mm} \text{ of } H_2)^{-1}$ is the origin (action) of container -12 gives) (it	opent year another arrival eet anogery
Ans.	729 mm of Hg	
Sol.	$\frac{P^{o}A - Ps}{r} = \frac{n}{r}$	
	Ps N	
	density of solution = <u>Mass</u>	
	volume	
	density of solution = 100 ml	
	Mass - 120g	
	weight of glucose = $120 \times \frac{30}{100} = 36g$	
	weight of H ₂ O = 120 – 36 = 84g	
	mole of glucose = 36/180 = 0.2 mole	
	mole of H ₂ O = $\frac{84}{18}$ = 4.6 mole	
	760-Ps 0.2	
	$Ps = \frac{1}{4.67}$	
	760 – Ps = 0.0428 Ps	
	Ps = <u>760</u> = 728.8 mm of Hg 1.0428	
	= 729 mm of Hg	
11.	Find change in Oxidation number of Mn when KMnO₄ react with a	queous KI solution in acidic medium.
Ans.	5	
Sol.	$10\text{KI} + 2\text{KMnO}_4 - 8\text{H}_2\text{SO}_4 \longrightarrow 2\text{MnSO}_4 + 8\text{H}_2\text{O} + 5\text{I}_2 + 6\text{K}_2\text{SO}_4$ $(+2)$	
	change on Oxidation number of $Mn = ((+7) - (+2)) = 5$	
12.	What is the Ratio of silica to alumina in cement	
	(1) 3 (2) 2 (3) 4.5	(4) 1.5
Ans.	(1)	
Sol.	For gas good quality of cement the ratio of silica (SiO ₂) to Alumir 4 · 1	na (Al ₂ O ₃) should be between 2.5 and

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 55555

This solution was download from Resonance JEE (Main) 2023 Solution portal

13	Which of the following reaction is not a calcination process							
15.	(1) $C_{2}C_{2}$ (2) + C_{2}							
	$(2) CaCO_2 MaCO_2 \qquad \qquad > MaO + CaO + CO_2$							
	(2) CaCO ₃ . MigCO ₃ \longrightarrow MigO + CaO + CO ₂							
	$(3) PbS + O_2 \longrightarrow PbO + SO_2$							
	(4) Fe_2O_3 . $xH_2O {} Fe_2O_3 + xH_2O$							
Ans.	. (3)							
Sol.	$PbS + O_2 \longrightarrow PbO + SO_2$ is a roasting reaction.							
	Resonance: Resonance: Resonance: Resonance							
14.	Which of the following having highest value of splitting energy (Δ_0).							
	(1) $[Ti(H_2O)_6]^{+2}$ (2) $[Fe(H_2O)_6]^{+3}$							
	(3) $[Mn(H_2O)_6]^{+3}$ (4) $[Cr(H_2O)_6]^{+3}$							
Ans.	. (2)							
Sol.	From L to R in 3d series M3+ ion size decreases, change density increase, so attraction b/w	M ³⁺ an						
	ligand increase so Δ_0 increase.							
15.	For water gas shift reaction, which of the following is correct.							
	(1) CO get oxidised in CO ₂							
	(2) CO ₂ get reduced in CO							
	(3) Water get vaporised							
	(4) CO get reduced in CH ₄							
Ans.	s. (1)							
Sol.	The production of dihydrogen can be increased by reacting CO of Syn gas mixture with steam in the							
	presence of iron chromate as catalyst							
	$CO(g) + H_2O(g) \xrightarrow{673K} CO_2(g) + H_2(g)$							
	Water gas shift Reaction							
16.	For a radioactive decay $t_{\frac{1}{2}} = 15$ years, what will be the rate constant (yr ⁻¹)							
Ane	0.05 yr1							
Sol	radioactive decay is lst order							
001.								
	so rate constant K = $\frac{0.093}{t_{1/2}} = \frac{0.093}{15} = 0.0462$							
	= 0.05 yr ⁻¹							
17.	Statement-I : pH of 10 ⁻⁸ M HCl is 8 at 25°C							
	Statement-II : Titration of weak acid and strong base at half equivalence point gives pH = $\frac{pK_a}{2}$							
	(1) Both Statement-I and Statement-II are correct.							
	(2) Both Statement-I and Statement-II are incorrect.							
	(3) Statement-I is incorrect and Statement-II is correct.							
	(4) Statement-II is incorrect and Statement-I is correct.							
A	(2)							

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555 Toll 7340010333 Toll facebook.com/ResonanceEdu
www.youtube.com/ResonanceEdu
toll Free : 1800 258 5555 Toll 7340010333

This solution was download from Resonance JEE (Main) 2023 Solution portal

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Tail Free : 1800 258 5555 Tail facetoek.com/ResonanceEdu
Tolk facetoek.com/ResonanceEdu

This solution was download from Resonance JEE (Main) 2023 Solution portal

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555 Toll 7340010333
Toll Free : 1800 258 5555 Toll 734001033
Toll Free : 1800 258 5555 Toll 734001033
Toll Free : 1800 258 5555 Toll 734001033
Toll Free : 1800 258 5555 Toll 7340010333
Toll Free : 1800 258 5555 Toll 734001033
Toll Free : 1800 258 5555 Toll 7340010333
Toll Free : 1800 258 5555 Toll 7340010338
Toll Free : 1800 258 5555 Toll 7340010338
Toll Free : 1800 258 5555 Toll 734001038
Toll Free : 1800 258 5555 Toll 734001038
Tol

This solution was download from Resonance JEE (Main) 2023 Solution portal

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 (3) 7340010333 II tocstock.com/ResonanceEdu (2) twitter.com/ResonanceEdu (2) twitter.com/Res

This solution was download from Resonance JEE (Main) 2023 Solution portal

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 55555

This solution was download from Resonance JEE (Main) 2023 Solution portal