

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

This solution was download from Resonance JEE (Main) 2023 Solution portal

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 () 7340010333 Tolescek.com/ResonanceEdu () www.youtube.com/ResonanceEdu () big resonance.ac.in () CIN : U80302RJ2007PLC024029

This solution was download from Resonance JEE (Main) 2023 Solution portal

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Tail Free : 1800 258 5555 Tail resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

This solution was download from Resonance JEE (Main) 2023 Solution portal

So,
$$\frac{H_{H_2}}{\langle K_{Ar} \rangle} = \frac{H_2}{f_{Ar}} = \frac{3}{3}$$

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 (2) 7340010333 If toebook.com/ResonanceEdu (2) twitter.com/ResonanceEdu (2) twitter.com/Reso

This solution was download from Resonance JEE (Main) 2023 Solution portal

9.	In single slit diffraction experiment angular position of first minima is 30°. If wavelength used is 600 nm				
	then find the slit width .				
	(1) 0.3 μm	(2) 0.6 μF	(3) 1.2 μm	(4) 1.8 μm	
Ans.	(3)				
Sol.	$asin\theta = \lambda$				
	asin30° = λ				
	a = 2λ				
	= 1200 nm = 1.2 j	μm			
10.	Velocity of wave in water v = $\lambda^a g^b \rho^c$ find value a, b, c				
	$(1)\frac{1}{2},\frac{1}{2},0$	(2) $0, \frac{1}{2}, \frac{1}{2}$	(3) 1, 1, 0	(4) 1, 0, 1	
Ans.	(1)				
Sol.	$M^{0}L^{1}T^{-1} = L^{a}L^{b}T^{-2b}M^{c}L^{-3c}$				
	$M^{0}L^{1}T^{-1} = M^{C}T^{-2b}L^{a+b-3c}$				
	C = 0				
	$b = \pm 1/2$				
	$a + \frac{1}{2} + 0 = 1$				
	$a = \frac{1}{2}$				
	$V = \lambda^{1/2} g^{1/2} \rho^0$				
11. Bi	A particle of mass 10 kg experiences a force $F = 5x$ along x-axis. Find work done by the force F on the particle from $x = 2$ to $x = 4$:				
	(1) 10J	(2) 15 J	(3) 30 J	(4) 40 J	
Ans.	(3)				
Sol.	$w = \int F dx = \int_{2}^{5} 5x dx = 5 \int_{2}^{5} x dx$				
	$w = \frac{5}{2} \left[4^2 - 2^2 \right] = \frac{5}{2} \left[16 - 4 \right] \implies w = 5/2 \times 12 = 30 \text{ J}$				
12.	Minimum angle of deviation for equilateral prism of refractive index $n = \sqrt{2}$ will be:				
	(1) 60°	(2) 40°	(3) 30°	(4) 15°	
Ans.	(3)	-/			

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 📓 7340010333 🌃 tocebeek.com/ResonanceEdu 📓 twitter.com/ResonanceEdu 📓 www.youtube.com/resonance.ac.in

This solution was download from Resonance JEE (Main) 2023 Solution portal

Resonance | JEE (Main) 2023 | DATE : 15-04-2023 (SHIFT-1) | PAPER-1 | MEMORY BASED | PHYSICS

Sol.
$$\eta = \frac{\sin(A + \delta_{\min})}{\sin\frac{A}{2}}$$
$$\Rightarrow \sqrt{2} = \frac{\sin60 + \delta_{\min}}{\sin\frac{60}{2}}$$
$$\Rightarrow \sqrt{2} \sin 30^{\circ} = \sin\frac{60 + \delta_{\min}}{2}$$
$$\Rightarrow \frac{1}{\sqrt{2}} = \sin\frac{60 + \delta_{\min}}{2}$$
$$\Rightarrow 45^{\circ} = \frac{60 + \delta_{\min}}{2}$$
$$\delta_{\min} = 30^{\circ}$$

13. y-component of given position vector \vec{A} is $2\sqrt{3}$ m. Then x component of position vector will be

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 ig 7340010333 if heatoek com/Resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

This solution was download from Resonance JEE (Main) 2023 Solution portal

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 (C) 7340010333 II tocheek.com/ResonanceEdu (C) www.youtube.com/ResonanceEdu (C) big resonance.ac.in (C) big resona

This solution was download from Resonance JEE (Main) 2023 Solution portal

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 55555

This solution was download from Resonance JEE (Main) 2023 Solution portal