

WBJEE: 2023

PHYSICS

Question with Solution

Test Booklet Code: 🌣

Date: 30.04.2023

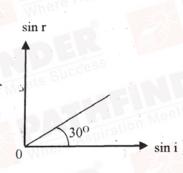
Subject: PHYSICS & CHEMISTRY

(Booklet Number)

Duration: 2 Hours Full Marks: 100

INSTRUCTIONS

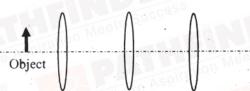
- 1. All questions are of objective type having four answer options for each.
- 2. Category-1: Carries 1 mark each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ¼ mark will be deducted.
- 3. Category-2: Carries 2 marks each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ½ mark will be deducted.
- 4. Category-3: Carries 2 marks each and one or more option(s) is/are correct. If all correct answers are not marked and no incorrect answer is marked, then score = 2 × number of correct answers marked ÷ actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will be considered wrong, but there is **no negative marking** for the same and zero mark will be awarded.
- 5. Questions must be answered on OMR sheet by darkening the appropriate bubble marked A, B, C, or D.
- 6. Use only Black/Blue ink ball point pen to mark the answer by filling up of the respective bubbles completely.
- 7. Write Question Booklet number and your roll number carefully in the specified locations of the OMR Sheet. Also fill appropriate bubbles.
- 8. Write your name (in block letter), name of the examination center and put your signature (as is appeared in Admit Card) in appropriate boxes in the **OMR Sheet**.
- 9. The OMR Sheet is liable to become invalid if there is any mistake in filling the correct bubbles for Question Booklet number/roll number or if there is any discrepancy in the name/ signature of the candidate, name of the examination center. The OMR Sheet may also become invalid due to folding or putting stray marks on it or any damage to it. The consequence of such invalidation due to incorrect marking or careless handling by the candidate will be the sole responsibility of candidate.
- 10. Candidates are not allowed to carry any written or printed material, calculator, pen, log-table, wristwatch, any communication device like mobile phones, bluetooth device etc. inside the examination hall. Any candidate found with such prohibited items will be reported against and his/her candidature will be summarily cancelled.
- 11. Rough work must be done on the Question Booklet itself. Additional blank pages are given in the Question Booklet for rough work.
- 12. Hand over the OMR Sheet to the invigilator before leaving the Examination Hall.
- 13. This Booklet contains questions in both English and Bengali. Necessary care and precaution were taken while framing the Bengali version. However, if any discrepancy(ies) is /are found between the two versions, the information provided in the English version will stand and will be treated as final.
- 14. Candidates are allowed to take the Question Booklet after examination is over.


Signature of the Candidate:	Where Application Me	
(as in Admit Card)	ER Where	
Signature of the Invigilator:	Success Sale DEIS	
PC-2023	Meets Success 62	0

PHYSICS

Category-1 (Q. 1 to 30)

(Carry 1 mark each. Only one option is correct. Negative marks : - 1/4)

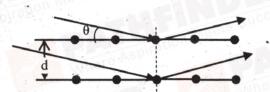

A ray of monochromatic light is incident on the plane surface of separation between two media X and Y with angle of incidence 'i' in medium X and angle of refraction 'r' in medium Y. The given graph shows the relation between sin i and sin r. If V_X and V_Y are the velocities of the ray in media X and Y respectively, then which of the following is true?

- (A) $V_X = \frac{1}{\sqrt{3}} V_Y$
- (B) $V_X = \sqrt{3} V_Y$ (C) Total internal reflection can happen when the light is incident in medium X.
- (D) $v_x = \sqrt{3}v_y$, where v_X and v_Y are frequencies of the light in medium X and Y respectively.

একটি একবর্ণী আলোর রশ্মি X ও Y দুটি মাধ্যমের সমতল বিচেছদ তলের উপর আপতিত হ'ল, যেখানে X মাধ্যমে আপতন কোণ 'i'ও Y মাধ্যমে প্রতিসরণ কোণ 'r'। sin i ও sin r-এর মধ্যে সম্পর্ক চিত্রে দেখানো হয়েছে। যদি V_X ও V_Y যথাক্রমে X ও Y মাধ্যমে রশ্মিটির বেগ হয় তবে নিচের কোন উক্তিটি সঠিক ?

- (A) $V_X = \frac{1}{\sqrt{3}} V_Y$
- (B) $V_X = \sqrt{3} V_Y$
- (C) রশুটি X মাধ্যমে আপতিত হ'লে আভ্যন্তরীণ পূর্ণ প্রতিফলন হতে পারে।
- (D) $v_x = \sqrt{3}v_y$, (যখানে v_X ও v_Y হ'ল যথাক্রেমে X ও Y মাধ্যমে আলোকের কম্পাঙ্ক
- Three identical convex lenses each of focal length f are placed in a straight line separated by a distance f from each other. An object is located at f/2 in front of the leftmost lens.

- (A) Final image will be at f/2 behind the rightmost lens and its magnification will be -1. Final image will be at f/2 behind the rightmost lens and its magnification will be +1.
- Final image will be at f behind the rightmost lens and its magnification will be -1.
- Final image will be at f behind the rightmost lens and its magnification will be +1. িফোকাস দৈর্ঘ্যের তিনটি অভিন্ন উত্তল লেম্সকে একটি সরল রেখায় একে অপর থেকে f দূরত্বে স্থাপন করা হ'ল। বাঁ দিকের প্রথম লেম্সটির সামনে f/2 দুরত্বে একটি বস্তু রাখা হ'ল। সেক্ষেত্রে,
- অন্তিম প্রতিবিম্বটি ডানদিকের শেষ লেন্সের পিছনে f/2 দূরতে সৃষ্টি হবে এবং বিবর্ধন হবে -1
- অন্তিম প্রতিবিম্বটি ডানদিকের শেষ লেন্সের পিছনে f/2 দুরত্বে সৃষ্টি হবে এবং বিবর্ধন হবে +1
- অন্তিম প্রতিবিম্বটি ডানদিকের শেষ লেন্সের পিছনে f দুরত্বে সৃষ্টি হবে এবং বিবর্ধন হবে -1
- অন্তিম প্রতিবিম্বটি ডানদিকের শেষ লেন্সের পিছনে f দূরত্বে সৃষ্টি হবে এবং বিবর্ধন হবে +1



P.T.O.

Head Office: 96K, S.P. Mukherjee Road, Hazra More, Kolkata -700 026, Phone - 24551840 / 24544817

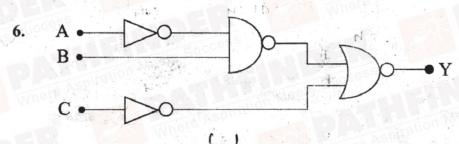
X-rays of wavelength λ gets reflected from parallel planes of atoms in a crystal with spacing d between two planes as shown in the figure. If the two reflected beams interfere constructively, then the condition for maxima will be, (n is the order of interference fringe)

λ তরঙ্গদৈর্ঘ্যের X-রশ্মি একটি কেলাসের সমান্তরাল দুটি তল (যাদের মধ্যে দূরত্ব হ'ল d) থেকে প্রতিফলিত হ'ল। প্রতিফলিত রশ্বিদটির গঠনমূলক ব্যতিচারের শর্ত হবে, (n হ'ল ব্যতিচার পটির ক্রম)

- $d \tan \theta = n\lambda$ (B) $d \sin \theta = n\lambda$
- (C) $2d \cos \theta = n\lambda$
- $2d \sin \theta = n\lambda$

If the potential energy of a hydrogen atom in the first excited state is assumed to be zero, then the total energy of $n = \infty$ state is,

হাইড্রোজেন পরমাণুর প্রথম উদ্দীপিত স্তরের স্থিতিশক্তি শূন্য ধরলে $n=\infty$ স্তরে মোট শক্তি হবে


- (B) 6.8 eV
- (C) 0

200 Ω $R_L = 100 \Omega$

> In the given circuit, find the voltage drop V₁ in the load resistance R₁. প্রদত্ত বর্তনীতে লোড R, -এ বিভব প্রভেদ V, -এর মান কত ?

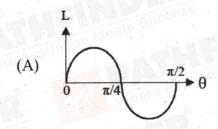
- (A) 5 V

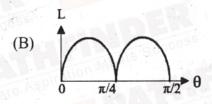
- 6 V (D)

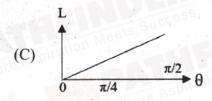
Consider the logic circuit with inputs A, B, C and output Y. How many combinations of A, B and C gives the output Y = 0?

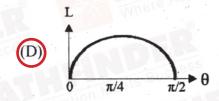
ইনপুট A, B, C ও আউটপুট Y-এর প্রদত্ত বর্তনীটি বিবেচনা কর। A, B ও C-এর কত রকমের ক্ষেত্রে Y = 0 হবে ?

- (A) 8
- (B) 5


(D)






7. A particle of mass m is projected at a velocity u, making an angle θ with the horizontal (x-axis). If the angle of projection θ is varied keeping all other parameters same, then magnitude of angular momentum (L) at its maximum height about the point of projection varies with θ as,

m ভরের একটি বস্তুকণাকে u বেগে অনুভূমিক (x-অক্ষের) সঙ্গে θ কোণে প্রক্ষেপ করা হ'ল। অন্য সমস্ত কিছু একই রেখে যদি শুধু প্রক্ষেপকোণ θ পরিবর্তন করা হয় তবে ঐ বস্তুকণার সর্বোচ্চ অবস্থানে প্রক্ষেপ বিন্দুর সাপেক্ষে কৌণিক ভরবেগের (L) পরিবর্তন নিচের কোন লেখচিত্রটি দ্বারা নির্দেশ করা যায় ?

8. A body of mass 2 kg moves in a horizontal circular path of radius 5 m. At an instant, its speed is $2\sqrt{5}$ m/s and is increasing at the rate of 3 m/s². The magnitude of force acting on the body at that instant is,

 $2~{
m kg}$ ভরের একটি বস্তু $5~{
m m}$ ব্যাসার্ধের অনুভূমিক বৃত্তাকার পথে ঘুরছে। কোনো এক মুহূর্তে বস্তুটির দুতি $2\sqrt{5}~{
m m/s}$ এবং ঐ দুতি $3~{
m m/s}^2$ হারে বৃদ্ধি পাচেছ। ঐ মুহূর্তে বস্তুটির উপর ক্রিয়ারত বলের মান হ'ল,

- (A) 6 N
- (B) 8 N
- (C) 14 N
- (D) 10 N

9. In an experiment, the length of an object is measured to be 6.50 cm. This measured value can be written as 0.0650 m. The number of significant figures on 0.0650 m is

একটি পরীক্ষায় একটি বস্তুর দৈর্ঘ্য মেপে পাওয়া গেল $6.50~{
m cm}$ । পরিমাপের মানটির একক পরিবর্তন করে লেখা যায় $0.0650~{
m m}$ । $0.0650~{
m m}$ –এ তাৎপর্যপূর্ণ অঙ্কসংখ্যা হ'ল

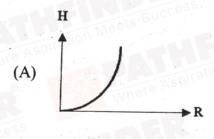
3

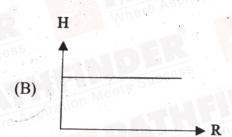
- (B) 4
- (C) 2
- (D) 5

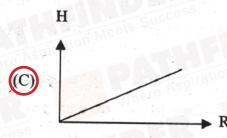
5

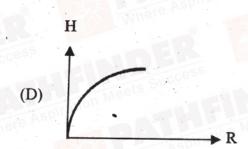
A mouse of mass m jumps on the outside edge of a rotating ceiling fan of moment of inertia I and radius R. The fractional loss of angular velocity of the fan as a result is,

m ভরের একটি ইদুর R ব্যাসার্ধ ও I জাড্যভামক বিশিষ্ট একটি ঘুর্ণায়মান সিলিং ফ্যানের বহিঃপ্রান্তে লাফ দিয়ে উঠল। তাহলে ফ্যান্টির কৌণিক বেগের আংশিক ফ্রাস কত হবে ? *


(B)
$$\frac{I}{I+mR^2}$$


(C)
$$\frac{I - mR^2}{I}$$


$$\frac{mR^2}{I + mR^2}$$
 (B) $\frac{I}{I + mR^2}$ (C) $\frac{I - mR^2}{I}$ (D) $\frac{I - mR^2}{I + mR^2}$


Acceleration due to gravity at a height H from the surface of a planet is the same as that at a depth of H below the surface. If R be the radius of the planet, then H vs. R graph for different planets will be,

একটি গ্রহের পৃষ্ঠ থেকে H উচ্চতায় ও একই গভীরতায় অভিকর্মজ ত্বরণের মান সমান। গ্রহটির ব্যাসার্ধ যদি R হয় তবে বিভিন্ন গ্রহের জন্য H বনাম R লেখচিত্রটি হবে,

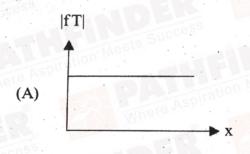
A uniform rope of length 4 m and mass 0.4 kg is held on a frictionless table in such a way that 0.6 m of the rope is hanging over the edge. The work done to pull the hanging part of the rope on to the table is, (Assume $g = 10 \text{ m/s}^2$)

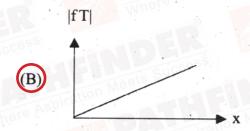
0.4 kg ভরের ও 4 m দৈর্ঘ্যের একটি দড়িকে একটি ঘর্ষণ বিহীন টেবিলের উপর এমন ভাবে রাখা আছে যে দিড়িটির $0.6~\mathrm{m}$ অংশ টেবিলের বাইরে ঝুলছে। দড়িটিকে টেবিলের উপর টেনে তুলতে কত কার্য্য করতে হবে ? (ধরে নাও g = 10 m/s²)

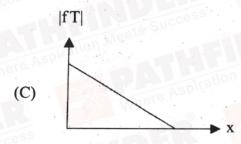
- (A) 0.36 J
- (B) 0.24 J
- (C) 0.12 J

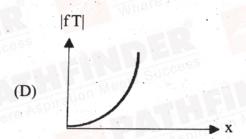
13. The displacement of a plane progressive wave in a medium, travelling towards positive x-axis with velocity 4 m/s at t = 0 is given by $y = 3 \sin 2\pi \left(-\frac{x}{3}\right)$. Then the expression for the displacement at a later time t = 4 sec will be

একটি মাধ্যমে ধনাত্মক x-অক্ষ অভিমুখে $4~\mathrm{m/s}$ বেগে গতিশীল একটি সমতল চলতরঙ্গের t=0 সময়ে সরণের সমীকরণ $y=3\sin 2\pi\left(-\frac{x}{3}\right)$ । তাহলে t=4 সেকেন্ড সময়ে সরণের রাশিটি হবে,

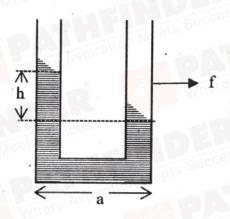

(A)
$$y = 3 \sin 2\pi \left(-\frac{x-16}{3}\right)$$


(B)
$$y = 3 \sin 2\pi \left(\frac{-x-16}{3}\right)$$


(C)
$$y = 3 \sin 2\pi \left(\frac{-x+1}{3}\right)$$


(D)
$$y = 3 \sin 2\pi \left(\frac{-x-1}{3}\right)$$

14. In a simple harmonic motion, let f be the acceleration and T be the time period. If x denotes the displacement, then |fT| vs. x graph will look like, একটি সরল দোলগতির ক্ষেত্রে f হ'ল তুরণ ও T হ'ল পর্যায়কাল। যদি x হয় সরণ তবে |fT| বনাম x লেখচিত্রটি হবে,



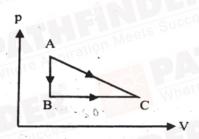
Head Office: 96K, S.P. Mukherjee Road, Hazra More, Kolkata -700 026, Phone - 24551840 / 24544817

15. As shown in the figure, a liquid is at same levels in two arms of a U-tube of uniform cross-section when at rest. If the U-tube moves with an acceleration 'f' towards right, the difference between liquid heights between two arms of the U-tube will be, (acceleration due to gravity = g) চিত্রে প্রদর্শিত স্থির অবস্থায় সমপ্রস্থচেছদযুক্ত U-নলের দৃটি বাহুতে একটি তরল সমান উচ্চতায় থাকে। যদি U-নলটি 'f' ত্রণে ডানদিকে গতিশীল হয় তবে U-নলের দুই বাহুর তরলের উচ্চতার পার্থক্য হবে, (অভিকর্মজ তুরণ = g)

- (B) $\frac{g}{f}$ a
- (D)
- Six molecules of an ideal gas have velocities 1, 3, 5, 5, 6 and 5 m/s respectively. At any 16. given temperature, if \overline{V} and V_{rms} represent average and rms speed of the molecules, then একটি আদর্শ গ্যাসের ছয়টি অণুর বেগ যথাক্রমে 1,3,5,5,6 ও $5~\mathrm{m/s}$ । যদি $\overline{\mathrm{V}}$ ও $\mathrm{V}_{\mathrm{rms}}$ কোন নির্দিষ্ট তাপমাত্রায় অণুগুলির গড়বেগ ও rms বেগ বোঝায় তবে,
 - (A) $\overline{V} = 5 \text{ m/s}$
- (B) $V_{rms} > \overline{V}$ (C) $V_{rms}^2 < \overline{V}^2$ (D) $V_{rms} = \overline{V}$

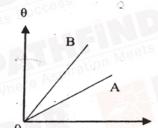
As shown in the figure, a pump is designed as horizontal cylinder with a piston having area A and an outlet orifice having an area 'a'. The piston moves with a constant velocity under the action of force F. If the density of the liquid is p, then the speed of the liquid emerging from the orifice is, (assume A >> a)

চিত্রে প্রদর্শিত একটি পাম্প অনুভূমিক চোঙের আকারে গঠিত যার পিষ্টনের প্রস্থচেছদের ক্ষেত্রফল A ও নির্গমন মুখের প্রস্তুচ্ছেদের ক্ষেত্রফল 'a'। একটি স্থির বল F-এর প্রয়োগে পিষ্টনটি স্থির বেগে অগ্রসর হয়। তরলের ঘনত্ব যদি ho হয় তবে পাম্পের মুখ থেকে নির্গত তরলের বেগ হবে (ধরে নাও A >> a),


8

- (A) $\sqrt{\frac{F}{\rho A}}$ (B) $\frac{a}{A}\sqrt{\frac{F}{\rho A}}$ (C) $\sqrt{\frac{2F}{\rho A}}$ (D) $\frac{A}{a}\sqrt{\frac{2F}{\rho A}}$

18. A given quantity of gas is taken from A to C in two ways;


a) directly from A → C along a straight line and b) in two steps, from A → B and then from B → C. Work done and heat absorbed along the direct path A→C is 200 J and 280 J respectively.

If the work done along $A \rightarrow B \rightarrow C$ is 80 J, then heat absorbed along this path is,

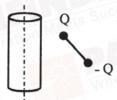
একটি নির্দিষ্ট পরিমাণ গ্যাসকে A থেকে C অবস্থানে দুই ভাবে নিয়ে যাওয়া হ'ল, a) $A \to C$ সরল রেখা বরাবর ও b) $A \to B$ ও $B \to C$ এই দুই ধাপে। $A \to C$ পথে কৃত কার্য্য ও শোষিত তাপ যথাক্রন্মে $200~\mathrm{J}$ ও $280~\mathrm{J}$ । $A \to B \to C$ পথে কৃত কার্য্য যদি $80~\mathrm{J}$ হয় তবে ঐ পথে শোষিত তাপ হবে,

- (A) 80 J
- (B) 0
- (C) 160 J
- (D) 120 J
- 19. Two substances A and B of same mass are heated at constant rate. The variation of temperature θ of the substances with time t is shown in the figure. Choose the correct statement.
 - (A) Specific heat of A is greater than that of B.

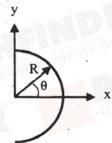
- (B) Specific heat of B is greater than that of A.
- (C) Both have same specific heat.
- (D) None of the above is true.

একই ভরের দৃটি পদার্থ A ও B কে একই হারে উত্তপ্ত করা হচেছ। সময় (t)-এর সাথে তাপমাত্রা (θ)-এর পরিবর্তন চিত্রে দেখানো হয়েছে। সেক্ষেত্রে সঠিক উক্তিটি নির্বাচন কর।

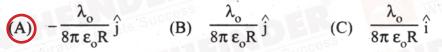
- (A) B-এর চেয়ে A-এর আপেক্ষিক তাপ বেশি।
- (B) A-এর চেয়ে B-এর আপেক্ষিক তাপ বেশি।
- (C) দুটি পদার্থেরই আপেক্ষিক তাপ সমান।
- (D) উপরের কোনো উক্তিই সঠিক নয়।


P.T.O.

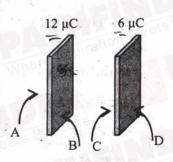
Head Office: 96K, S.P. Mukherjee Road, Hazra More, Kolkata -700 026, Phone - 24551840 / 24544817


Consider a positively charged infinite cylinder with uniform volume charge density $\rho > 0$. An electric dipole consisting of + Q and - Q charges attached to opposite ends of a massless rod is oriented as shown in the figure. At the instant as shown in the figure, the dipole will experience,

- (A) a force to the left and no torque.
- (B) a force to the right and a clockwise torque.
- (C) a force to the right and a counter clockwise torque.
- (D) no force but only a clockwise torque.


মনে কর ধনাত্মক আধানযুক্ত একটি অতি দীর্ঘ চোঙের আয়তনিক আধান ঘনত ho>0। আবার একটি ভরহীন দত্তের দুই প্রান্তে + Q ও - Q আধান যুক্ত একটি তড়িৎ দ্বিমেরু চিত্রে প্রদর্শিত অভিমুখে রাখা আছে। চিত্রে প্রদর্শিত মুহূর্তে তড়িৎ দ্বিমেরুটির উপর ক্রিয়া করবে.

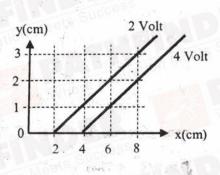
- (A) বাম অভিমুখে একটি বল কিন্তু কোনো ভ্রামক নয়।
- (B) ডান অভিমুখে একটি বল ও ঘড়ির কাঁটার অভিমুখে একটি ভ্রামর ।
- ডান অভিমুখে একটি বল ও ঘড়ির কাঁটার বিপরীত অভিমুখে একটি ভ্রামক। (C)
- (D) কোন বল নয়, তথু ঘড়ির কাঁটার অভিমুখে একটি ভ্রামক।
- A thin glass rod is bent in a semicircle of radius R. A charge is non-uniformly distributed along the rod with a linear charge density $\lambda = \lambda_0 \sin \theta$ (λ_0 is a positive constant). The electric field at the centre P of the semicircle is. একটি সরু কাঁচের দণ্ডকে R ব্যাসার্ধের অর্ধবৃত্তাকারে বাঁকানো হ'ল। দণ্ডটিতে



অসম বিস্তৃত আধান যুক্ত আছে যার রৈখিক ঘনত হ'ল $\lambda=\lambda_0\sin\theta$ $(\lambda_0$ একটি ধনাত্মক ধ্রুবক)। সেক্ষেত্রে অর্ধবৃত্তের কেন্দ্র P-তে তড়িং ক্ষেত্রের মান হবে,

10

12 μC and 6 μC charges are given to the two conducting plates having same cross-sectional area and placed face to face close to each other as shown in the figure. The resulting charge distribution in µC on surfaces A, B, C and D are respectively, চিত্রে প্রদর্শিত একই প্রস্তুচেছদ যুক্ত দৃটি পরিবাহী পাতকে যথাক্রমে 12 μC ও 6 μC আধান দেওয়া হ'ল এবং খুব কাছাকাছি মুখোমুখি রাখা হ'ল। সেক্ষেত্রে A, B, C ও D পৃষ্ঠে বন্টিত আধানের মান (μC এককে) হবে যথাক্রমে,


- (A) 9, 3, -3, 9
- (B) 3, 9, -9, 3 (C) 6, 6, -6, 12
- A wire carrying a steady current I is kept in the x-y plane along the curve $y = A \sin\left(\frac{2\pi}{\lambda}x\right)$. 23.

A magnetic field B exists in the z-direction. The magnitude of the magnetic force in the portion of the wire between x = 0 and $x = \lambda$ is

ছির তড়িৎপ্রবাহ I যুক্ত একটি সরু তারকে x-y তলে $y=A\sin\left(\frac{2\pi}{\lambda}x\right)$ বক্রবেখা বরাবর রাখা হ'ল। ঐ

স্থানে z–অক্ষ অভিমুখে একটি চৌম্বক ক্ষেত্র B ক্রিয়া করে। তাহলে তারটির x=0 ও $x=\lambda$ –এর মধ্যবর্তী অংশের উপর যে চৌম্বক বল ক্রিয়া করে তার মান হ'ল,

- (A) 0
- (B) 2IλB
- ΙλΒ
- (D) $I\lambda B/2$
- The figure represents two equipotential lines in x-y plane for an electric field. The x-component E_x of the electric field in space between these equipotential lines x-y তলে একটি তড়িতক্ষেত্রের মধ্যে দুটি সমবিভব রেখা চিত্রে দেখানো হয়েছে। ঐ দুটি রেখার মধ্যবর্তী স্থানে তড়িৎক্ষেত্রের x-উপাংশ E_y -এর মান হ'ল,

- (A) 100 V/m
- -100 V/m
- (C) 200 V/m
- (D) -200 V/m

An electric dipole of dipole moment p is placed at the origin of the co-ordinate system along the z-axis. The amount of work required to move a charge 'q' from the point (a, 0, 0) to the point (0, 0, a) is,

р बिমেরু ভ্রামকের একটি তড়িৎ-দ্বিমেরু কার্টেজীয় নির্দেশতন্ত্রের মূলবিন্দুতে রাখা আছে। দ্বিমেরুটির অভিমুখ z-অক্ষ বরাবর। তাহলে একটি 'q' আধানকে (a, 0, 0) বিন্দু থেকে (0, 0, a) বিন্দুতে নিয়ে যেতে প্রয়োজনীয় কৃতকাৰ্য্য হ'ল,

- (C) $\frac{-pq}{4\pi\epsilon_0 a^2}$
- The electric field of a plane electromagnetic wave of wave number k and angular frequency ω is given by $\vec{E} = E_0(\hat{i} + \hat{j}) \sin(kz - \omega t)$. Which of the following gives the direction of the associated magnetic field B?

তরঙ্গ সংখ্যা k ও ω কৌণিক কম্পাঙ্কের একটি সমতল তড়িৎ চৌম্বকীয় তরঙ্গের তড়িৎেক্ষত্র $\vec{E} = E_0(\hat{i} + \hat{j}) \sin(kz - \omega t)$ । তাহলে নিচের কোনটি আনুসঙ্গিক চৌম্বকক্ষেত্র \vec{B} -এর দিক নির্দেশ করে ?

- (A) k
- (B) $-\hat{\mathbf{i}} + \hat{\mathbf{j}}$ (C) $-\hat{\mathbf{i}} \hat{\mathbf{j}}$ (D) $\hat{\mathbf{i}} \hat{\mathbf{k}}$
- 27. A charged particle in a uniform magnetic field $\vec{B} = B_0 \hat{k}$ starts moving from the origin with velocity $v = 3\hat{i} + 4\hat{k}$ m/s. The trajectory of the particle and the time t at which it reaches 2 m above x-y plane are,
 - (A) Circular path, ½ sec.

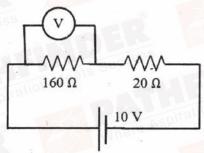
Helical path, 1/2 sec.

(C) Circular path, 2/3 sec.

(D) Helidat path, 2/3 sec.

সুষম ভড়িৎক্ষেত্র $\vec{B}=B_0\hat{k}$ -এর মধ্যে একটি আহিত কণা মূলবিন্দু থেকে $\nu=3\hat{i}+4\hat{k}$ m/s বেগে চলতে শুরু করে। কণাটির গমনপথ ও যে সময় t-তে কণাটি x-y-তলের 2 m উচ্চতায় পৌছবে তা হ'ল,

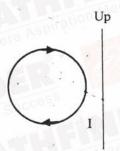
(A) বৃত্তাকার পথ, ½ সেকেড


(B) কুণ্ডলায়িত পথ, ½ সেকেণ্ড

(C) বৃত্তাকার পথ, 2/3 সেকেড

(D) কুণ্ডলায়িত পথ, 2/3 সেকেণ্ড

28. In an experiment on a circuit as shown in the figure, the voltmeter shows 8 V reading. The resistance of the voltmeter is,



চিত্রে প্রদর্শিত বর্তনীর পরীক্ষায় ভোল্টমিটার ৪ ∨ পাঠ দেয়। তাহলে ভোল্টমিটারের রোধ কত ?

- (A) 20 Ω
- (B) 320 Ω
- (C) 160 Ω
- (D) 1.44 k Ω
- 29. An interference pattern is obtained with two coherent sources of intensity ratio n:1. The ratio $\frac{I_{Max} I_{Min}}{I_{Max} + I_{Min}}$ will be maximum if

প্রাবল্যের অনুপাত n:1 বিশিষ্ট দুটি সুসংগত উৎস দ্বারা একটি ব্যাতিচার পটি গঠিত হ'ল । সেক্ষেত্রে $\frac{I_{\rm Max}-I_{\rm Min}}{I_{\rm Max}+I_{\rm Min}}$ অনুপাতটি সর্বোচ্চ হবে যখন,

- $(A) \quad n=1.$
- (B) n=2
- (C) n = 3
- (D) n = 4
- 30. A circular coil is placed near a current carrying conductor, both lying on the plane of the paper. The current is flowing through the conductor in such a way that the induced current in the loop is clockwise as shown in the figure. The current in the wire is,

- (A) time dependent and downward.
- (B) steady and upward.
- (C) time dependent and upward.
- (D) An alternating current.

একটি বৃত্তাকার কুণ্ডলীকে একটি তড়িৎবাহী পরিবাহীর কাল্পেরাখা হ'ল; উভয়েই কাগজের তলে অবস্থিত। পরিবাহীর মধ্য দিয়ে তড়িৎ এমন ভাবে প্রবাহিত হচেছ যে কুণ্ডলীতে আবিষ্ট তড়িৎ প্রবাহের অভিমুখ ঘড়ির কাঁটার দিকে (চিত্রে প্রদর্শিত)। সেক্ষেত্রে পরিবাহীর মধ্যে তড়িৎপ্রবাহ

- (A) সময়ের সাথে পরিবর্তনশীল ও নিমুমুখী
- (B) উর্ধুমুখী ও ছিরপ্রবাহ
- (C) সময়ের সাথে পরিবর্তনশীল ও উর্ধুমুখী
- (D) একটি পরিবর্তী তড়িৎপ্রবাহ

Category-2 (Q. 31 to 35) (Carry 2 marks each. Only one option is correct. Negative marks : $-\frac{1}{2}$)

An amount of charge Q passes through a coil of resistance R. If the current in the coil 31. decreases to zero at a uniform rate during time T, then the amount of heat generated in the coil will be,

R রোধের একটি কুন্ডলীর মধ্য দিয়ে Q আধান গমন করে। যদি T সময়ে কুন্ডলীতে প্রবাহ সুষম হারে কমে শূন্য হয় তাহলে কুন্ডলীতে উৎপন্ন তাপের পরিমাণ হবে,

- $(A) \frac{4Q^2R}{3T} \qquad (B) \frac{2QR}{3T}$
- (C) $\frac{Q^2T}{4R}$ (D) Q^2RT

A modified gravitational potential is given by $V = -\frac{GM}{r} + \frac{A}{r^2}$. If the constant A is expressed in terms of gravitational constant (G), mass (M) and velocity of light (c), then from dimensional analysis, A is,

মূনে কর একটি পরিবর্তিত মহাকর্ষীয় বিভবের মান দেওয়া আছে $V=-rac{GM}{r}+rac{A}{r^2}$ । ধ্রুবক A-কে যদি মহাক্ষীয় ধুরক (G) ভর (M) ও আলোকের বেগ (c)-এর সাহায্যে নির্ণয় করা যায় তাহলে A হ'ল

 $(A) \frac{G^2M^2}{c^2}$

(B) $\frac{GM}{a^2}$

(D) Dimensionless (মাত্রাবিহীন)

33. There are n elastic balls placed on a smooth horizontal plane. The masses of the balls are m, $\frac{m}{2}$, $\frac{m}{2^2}$, ... $\frac{m}{2^{n-1}}$ respectively. If the first ball hits the second ball with velocity v_0 , then the velocity of the nth ball will be,

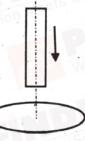
একটি মসৃণ অনুভূমিক তলের উপর n সংখ্যক স্থিতিস্থাপক বল রাখা হ'ল। বলগুলির ভর যথাক্রমে $m, \frac{m}{2}, \frac{m}{2^2}, \dots, \frac{m}{2^{n-1}}$ । প্রথম বলটি যদি দ্বিতীয় বলকে v_0 বেগে আঘাত করে তাহলে n-তম বলের বেগ হবে,

(A) $\frac{4}{3}v_0$

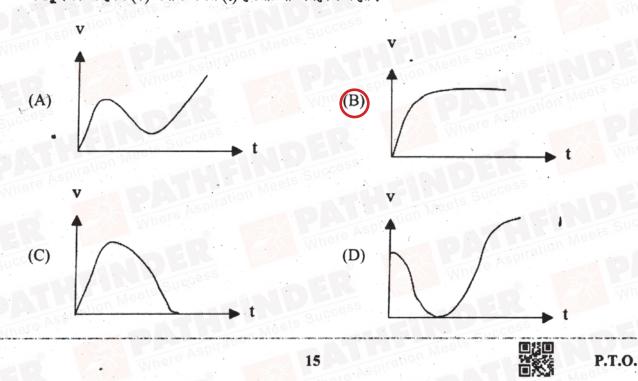
14

- (B) $\left(\frac{4}{3}\right)^n v_0$ (D) $\left(\frac{4}{3}\right)^{n-1} v_0$ (D) v_0

- 34, An earth's satellite near the surface of the earth takes about 90 min per revolution. A satellite orbiting the moon also takes about 90 min per revolution. Then which of the following is true?
 - (A) $\rho_m < \rho_e$
 - (B) $\rho_m > \rho_e$
 - (C) $\rho_m = \rho_e$
 - (D) No conclusion can be made about the densities.


[where ρ_m is density of the moon and ρ_e is density of the earth.]

পৃথিবী পৃষ্ঠের কাছাকাছি একটি উপগ্রহ 90 min-এ একবার পৃথিবীকে প্রদক্ষিণ করে। চন্দ্রপৃষ্ঠের কাছাকাছি একটি উপগ্রহও 90 min-এ একবার চন্দ্রকে প্রদক্ষিণ করে। সেক্ষেত্রে নিচের কোনটি সঠিক ?


- $(A) \rho_m < \rho_e$
- (B) $\rho_m > \rho_e$
- (C) $\rho_m = \rho_e$
- (D) ঘনত্ব সম্পর্কে কোনো উপসংহার করা সম্ভব নয়।

[रयथारन pm 2'न हरन्द्रत घनज् ଓ pe 2'न शृथितौत घनज्।]

35. A bar magnet falls from rest under gravity through the centre of a horizontal ring of conducting wire as shown in figure. Which of the following graph best represents the speed (v) vs. time (t) graph of the bar magnet?

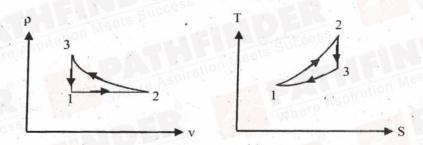
চিত্রে প্রদর্শিত পরিবাহী তারের একটি অনুভূমিক রিং-এর কেন্দ্র বরাবর একটি
দশুচুম্বককে অভিকর্ষের প্রভাবে উল্লম্ব ভাবে নিচে ফেলা হ'ল। তাহলে নিচের কোনটি সবচেয়ে সঠিক ভাবে
দশুচুম্বকটির বেগ (v) বনাম সময় (t) লেখচিত্রটি নির্দেশ করে ?

Category-3 (Q. 36 to 40)

(Carry 2 marks each. One or more options are correct. No negative marks)

- A uniform magnetic field B exists in a region. An electron of charge q and mass m moving with velocity v enters the region in a direction perpendicular to the magnetic field.

 Considering Bohr angular momentum quantization, which of the following statement(s) is/are true?
 - (A) The radius of n^{th} orbit $r_n \propto \sqrt{n}$.
 - (B) The minimum velocity of the electron is $\frac{\sqrt{qB\hbar}}{m}$
 - C) Energy of the nth level $E_n \infty n$.
 - (D) Transition frequency ω between two successive levels is independent of n.


 কোনো স্থানে একটি সুষম চৌম্বক ক্ষেত্ৰ B রয়েছে। ঐ স্থানে একটি m ভর ও q আধানসম্পন্ন ইলেক্ট্রন চৌম্বক
 ক্ষেত্রের উল্লম্ব দিক বরাবর ν বেগে প্রবেশ করল। বোরের কৌণিক ভরবেগের কোয়ান্টাইজেশন শর্ত অনুযায়ী
 নিচের কোন্ উক্তি(গুলি) সঠিক ?
 - (A) n-তম কক্ষের ব্যাসার্ধ $r_n \infty \sqrt{n}$.
 - (B) ইলেট্রনের ন্যূনতম বেগ $\frac{\sqrt{qB\hbar}}{m}$
 - (C) n-তম কক্ষের শক্তি $E_n ∞ n$.
 - (D) পরস্পর দৃটি ধাপের মধ্যে স্থানান্তর কম্পাঙ্ক ω, n-এর উপর নির্ভরশীল নয়।

- 37. A train is moving along the tracks at a constant speed u. A girl on the train throws a ball of mass m straight ahead along the direction of motion of the train with speed v with respect to herself. Then
 - (A) Kinetic energy of the ball as measured by the girl on the train is $mv^2/2$.
 - (B) Work done by the girl in throwing the ball is $mv^2/2$.
 - (C) Work done by the train is mvu.
 - (D) The gain in kinetic energy of the ball as measured by a person standing by the rail track is mv²/2.

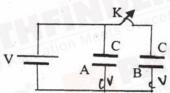
একটি ট্রেন u স্থির বেগে চলছে। ট্রেনের যাত্রী একটি বালিকা m ভরের একটি বলকে ট্রেনের গতির অভিমূখে সরাসরি সামনের দিকে v বেগে ছুঁড়ে দিল। তাহলে

- (A) ট্রেনের যাত্রী বালিকার সাপেক্ষে বলটির গতিশক্তি হবে $\mathrm{mv}^2/2$ ।
- (B) বলটি ছোঁড়ার জন্য বালিকা দ্বারা কৃত কার্য্য হ'ল $mv^2/2$ ।
- (C) ট্রেনটি দ্বারা কৃত কার্য্য হ'ল mvu।
- (D) বেললাইনের ধারে দাঁড়ানো কোনো ব্যক্তির সাপেক্ষে বলটির গতিশক্তি হ'ল $mv^2/2$ ।

38.

A cyclic process is shown in p-v diagram and T-S diagram. Which of the following statement(s) is/are true?

- (A) $1\rightarrow 2$: Isobaric, $2\rightarrow 3$: Isothermal.
- (B) 3→1: Isochoric, 2→3: adiabatic.
- (C) Work done by the system in the complete cyclic process is non-zero.
- The heat absorbed by the system in the complete cyclic process is non-zero.


একটি চক্রীয় প্রক্রিয়াকে p-v লেখচিত্র ও T-S লেখচিত্রের সাহায্যে দেখানো হয়েছে। নিচের কোন উক্তি(গুলি) সঠিক ?

- (A) 1→2: সমচাপী, 2→3: সমোষ্ণ
- (B) 3→1: সমায়তনী, 2→3: রূদ্ধতাপ
- (C) সম্পূর্ণ চক্রীয় প্রক্রিয়াটিতে কৃত কার্য্য শূন্য নয়।
- (D) সম্পূর্ণ চক্রীয় প্রক্রিয়াতে তন্ত্রটি দ্বারা শোষিত তাপ শূন্য নয়।

Head Office: 96K, S.P. Mukherjee Road, Hazra More, Kolkata -700 026, Phone - 24551840 / 24544817

39. The figure shows two identical parallel plate capacitors A and B of capacitances C connected to a battery. The key K is initially closed. The switch is now opened and the free spaces between the plates of the capacitors are filled with a dielectric constant 3. Then which of the following statement(s) is/are true?

- (A) When the switch is closed, total energy stored in the two capacitors is CV²
- (B) When the switch is opened, no charge is stored in the capacitor B.
- (C) When the switch is opened, energy stored in capacitor B is $\frac{3}{2}$ CV².
- When the switch is opened, total energy stored in two capacitors is $\frac{5}{3}$ CV².

চিত্রে প্রদর্শিত C ধারকত্ব বিশিষ্ট A ও B দুটি সমান্তরাল পাত ধারককে একটি ব্যাটারীর দুই প্রান্তে যুক্ত করা হয়েছে। K চাবিটি প্রথমে বন্ধ করা আছে। এবার চাবিটি খুলে দিয়ে ধারক দুটির পাত দুটির মধ্যে 3 পরাবৈদ্যুতিক স্থিরাঙ্ক বিশিষ্ট মাধ্যম দিয়ে পূর্ণ করা হ'ল। তাহলে নিচের কোন্ উক্তি(গুলি) সঠিক ?

- (A) চাবিটি বন্ধ থাকার সময়ে ধারকদৃটিতে সঞ্চিত মোট শক্তি হ'ল CV²
- (B) চাবিটি যখন খোলা হয় তখন B ধারকে কোনো আধান সঞ্চিত থাকে না।
- (C) চাবিটি যখন খোলা হয় তখন B ধারকে সঞ্চিত শক্তি হ'ল $\frac{3}{2}$ CV^2
- (D) চাবিটি যখন খোলা হয় তখন ধারক দুটিতে সঞ্চিত মোট শক্তি হ'ল $\frac{5}{3}~{
 m CV}^2$
- 40. A charged particle of charge q and mass m is placed at a distance 2R from the centre of a vertical cylindrical region of radius R where magnetic field varies as $\vec{B} = (4t^2 2t + 6)\hat{k}$, where t is time. Then which of the following statement(s) is/are true?
 - (A) Induced electric field lines form closed loops.
 - B) Electric field varies linearly with r if r < R, where r is the radial distance from the centerline of the cylinder.
 - (C) The charged particle will move in clockwise direction when viewed from top.
 - (D) Acceleration of the charged particle is $\frac{7q}{2m}$ when t = 2 sec.

R ব্যাসার্ধ বিশিষ্ট একটি উল্লম্ব চোঙাকৃতি স্থানে চৌম্বক ক্ষেত্র $\vec{B} = (4t^2 - 2t + 6)\hat{k}$ অনুযায়ী পরিবর্তিত হয়, যেখানে t হ'ল সময়। সেখানে q আধান ও m ভর বিশিষ্ট একটি ব্যুকণাকে চোঙের অক্ষরেখা থেকে 2R দূরত্বে রাখা হ'ল। তাহলে নিচের কোন উক্তি(গুলি) সঠিক ?

- (A) আবিষ্ট তড়িৎবলরেখাগুলি বদ্ধ লুপের আকারে হয়।
- (B) তড়িংক্ষেত্রের মান r-এর সঙ্গে সরলরৈখিক সম্পর্কে পরিবর্তিত হয় যদি r < R হয়, যেখানে r হ'ল চোঙের অক্ষরেখা থেকে ব্যাস বরাবর দূরত্ব।
- (C) উপর থেকে দেখলে কণাটি ঘড়ির কাঁটার দিকে ঘুরবে।
- (D) $t = 2 \sec সময়ে কণাটির ত্বরণ হ'ল <math>\frac{7q}{2m}$ ।

