DR ACADEMYDO RIGHT FOR GENUINE EDUCATION
\#42, 100FT ROAD,
KAMMAGONDANAHALLI, JALAHALLI WEST, BENGALURU - 560015 Phone : 9008030463 9008030896 / 9513330437

HOSKOTE - MALUR ROAD, ISRI CROSS, KATTIGENAHALLI, JADIGENAHALLI HOBLI, BENGALURU - 562114 Phone: 9741332998 7760575487/ 9535527713

PLOT NO.87, VAHINI NIVAS MATRUSRI NAGAR COLONY, HAFEEZ PET, MIYAPUR, HYDERABAD - 500049
Phone: 8977548407 8977548408 / 8977548409

KCET EXAMINATION - 2022
 SUBJECT : CHEMISTRY (VERSION - B3)

1. A first order reaction is half completed in 45 min. How long does it need 99.9% of the reaction to be completed?
1) 10 Hours
2) 20 Hours
3) 5 Hours
4) 7.5 Hours

Ans. 4
Sol. $t_{99.9 \%}=10 t_{50 \%}$
$=10 \times 45 \mathrm{~min}=450 \mathrm{~min}=7.5$ hours
2. The rate of the reaction

$$
\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
$$

is given by the equation , Rate= $\mathrm{K}\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right][\mathrm{NaOH}]$. If concentration is expressed in $\mathrm{mol} \mathrm{L}^{-1}$, the unit of K is

1) $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$
2) s^{-1}
3) $\mathrm{mol}^{-2} \mathrm{~L}^{2} \mathrm{~s}^{-1}$
4) $\mathrm{molL}^{-1} \mathrm{~s}^{-1}$

Ans. 1
Sol. $2^{\text {nd }}$ order reaction
3. Colloidal solution commonly used in the treatment of skin disease is

1) Colloidal Gold
2) Colloidal Antimony
3) Colloidal Sulphur
4) Colloidal Silver

Ans. 3
Sol. Conceptual
4. Specific conductance of $0.1 \mathrm{M} \mathrm{HNO}_{3}$ is $6.3 \times 10^{-}$ ${ }^{2} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$. The molar conductance of the solution is

1) $6.300 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
2) $63.0 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
3) $630 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
4) $315 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$

Ans. 3
Sol. $\lambda_{\mathrm{m}}=\frac{1000 \mathrm{k}}{\mathrm{C}}=\frac{1000 \times 6.3 \times 10^{-2}}{0.1}$
$=630 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
5. For spontaneity of a cell, which is correct?

1) $\Delta G=+v e, \Delta E=+v e$
2) $\Delta G=-v e$
3) $\Delta \mathrm{G}=0, \Delta \mathrm{E}=0$
4) $\Delta \mathrm{G}=-\mathrm{ve}, \Delta \mathrm{E}=0$

Ans. 2
Sol. Conceptual
6. For $\mathrm{n}^{\text {th }}$ of reaction, Half-life period is directly proportional to

1) a^{n-1}
2) a^{1-n}
3) $\frac{1}{a^{n-1}}$
4) $\frac{1}{a^{1-n}}$

Ans. 3
So1. $\mathrm{t}_{1 / 2} \propto \frac{1}{\mathrm{a}^{\mathrm{n}-1}}$
7. Half-life of a reaction is found to be inversely proportional to the fifth power is initial concentration, the order of reaction is

1) 5
2) 6
3) 3
4) 4

Ans. 2
Sol. $\mathrm{t}_{1 / 2} \propto \frac{1}{\mathrm{a}^{\mathrm{n}-1}} ; \mathrm{n}=6$
8. The strong reducing property of hypophosphorous acid is due to

1) Two P-H bonds
2) Presence of phosphorus in its highest oxidation state
3) Its concentration
4) The positive valency of phosphorus

Ans. 1
Sol. Conceptual
9. A transition metal exists in its highest oxidation state. It is expected to behave as

1) An oxidizing agent
2) A reducing agent
3) A chelating agent
4) A central metal in a co-ordination compound
Ans. 1
Sol. Conceptual
10. What will be the value of x in $\mathrm{Fe}^{\mathrm{x}+}$, if the magnetic moment $\mu=\sqrt{24} B M$?
1) 0
2) +1
3) +2
4) +3

Ans. 3
Sol. $\mathrm{n}=4$
$\mathrm{Fe}^{+2}=3 \mathrm{~d}^{6}$
11. Which can adsorb larger of hydrogen gas?

1) Finely divided platinum
2) Colloidal $\mathrm{Fe}(\mathrm{OH})_{3}$
3) Finely divided nickel
4) Colloidal solution of palladium

Ans. 4
Sol. Conceptual
12. The property of halogens which is not correctly matched is

1) $\mathrm{I}>\mathrm{Br}>\mathrm{Cl}>\mathrm{F}$ (density)
2) $\mathrm{F}>\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$ (electron gain enthalpy)
3) $\mathrm{F}>\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$ (ionization enthalpy)
4) $\mathrm{F}>\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$ (electronegativity)

Ans. 2
Sol. Conceptual
13. Which noble gas has least tendency to form compounds?

1) Ar
2) Kr
3) He
4) Ne

Ans. 3
Sol. Conceptual
14. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ on heating liberates a gas. The same gas will be obtained by

1) Treating $\mathrm{H}_{2} \mathrm{O}_{2}$ with NaNO_{2}
2) Treating $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ with $\mathrm{H}_{2} \mathrm{O}$
3) Heating $\mathrm{NH}_{4} \mathrm{NO}_{3}$
4) Heating $\mathrm{NH}_{4} \mathrm{NO}_{2}$

Ans. 4
Sol. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\text { heat }} \mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$
$\mathrm{NH}_{4} \mathrm{NO}_{2} \xrightarrow{\Delta} 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$
15. The complex hexamine platinum (IV) chloride will give \qquad number of ions on ionization.

1) 3
2) 2
3) 5
4) 4

Ans. 3
Sol. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{4} \longrightarrow\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+4}+4 \mathrm{Cl}^{-}$
Five ions are produced
16. In the following pairs of halogen compounds, which compound undergoes faster SN^{1} reaction?
(i)

(ii)

1)

$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow	\uparrow

(i) $\stackrel{C}{l}^{C l}$

2)

3)

4)

(ii)

Ans. 4
Sol. Reactivity order of Sn^{1} reaction is $3^{0}>2^{0}>1^{0}$
17. The only Lanthanoid which is radioactive

1) Promethium
2) Praseodymium
3) Lanthanum
4) Cerium

Ans. 1
Sol. Conceptual
18. All $\mathrm{Cu}(\mathrm{II})$ halides are known, except the iodide, the reaction for it is that

1) Cu^{+2} has much more negative hydration enthalpy
2) Cu^{+2} ion has smaller size
3) Iodide is bulky ion
4) Cu^{+2} oxidises iodide to iodine

Ans. 4
Sol. Conceptual
19. The correct IUPAC name of cis-platin is

1) Diammine dichloride platinum (O)
2) Dichlorido diammine platinum (IV)
3) Diammine dichlorido platinum (II)
4) Diammine dichloride platinum (IV)

Ans. 3
Sol. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]=$ cis-platin
20. Crystal Field Splitting Energy (CFSE) for $\left[\mathrm{CoCl}_{6}\right]^{4-}$ is $18000 \mathrm{~cm}^{-1}$. The Crystal Field Splitting Energy (CFSE) for $\left[\mathrm{CoCl}_{4}\right]^{2-}$ will be

1) $8000 \mathrm{~cm}^{-1}$
2) $10,000 \mathrm{~cm}^{-1}$
3) $18,000 \mathrm{~cm}^{-1}$
4) $16,000 \mathrm{~cm}^{-1}$

Ans. 1
Sol. $\Delta_{\mathrm{t}}=\frac{4}{9} \Delta_{0}=\frac{4}{9} \times 18000 \mathrm{~cm}^{-1}=8000 \mathrm{~cm}^{-1}$
21. The major product obtained when ethanol is heated with excess of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ at at 443 K is

1) ethane
2) methane
3) ethene
4) ethyne

Ans. 3
Sol.

22. Among the following, the products formed by the reaction of anisole with HI are

1) Benzene + Methanol
2) Phenol + Methane
3) Phenol + Iodomethane
4) Sodium phenate + Methanol

Ans. 3

Sol.

23. Which one of the following Chlorohydrocarbon readily undergoes solvolysis?
1)

2)

3) $\mathrm{CH}_{2}=\mathrm{CHCl}$
4)

Ans. 1

Sol.
 on solvolysis give more stable benzyl carbocation
24. Identify the products A and B in the reactions:
$\mathrm{R}-\mathrm{X}+\mathrm{AgCN} \rightarrow \mathrm{A}+\mathrm{Ag} \mathrm{X}$
$\mathrm{R}-\mathrm{X}+\mathrm{KCN} \rightarrow \mathrm{B}+\mathrm{KX}$

1) $\mathrm{A}=\mathrm{RNC} ; \mathrm{B}=\mathrm{RCN}$
2) $A=R N C ; B=R N C$
3) $\mathrm{A}=\mathrm{R}-\mathrm{CN} ; \mathrm{B}=\mathrm{RCN}$
4) $A=R C N ; B=R N C$

Ans. 1
Sol. $\quad \mathrm{R}-\mathrm{X}+\mathrm{AgCN} \rightarrow \mathrm{R} \underset{(\mathrm{A})}{\mathrm{NC}}+\mathrm{AgX}$
$\mathrm{R}-\mathrm{X}+\mathrm{KCN} \rightarrow \mathrm{R} \underset{\text { (B) }}{-\mathrm{CN}}+\mathrm{KX}$
25. An organic compound with molecular formula $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$ dissolves in NaOH and gives a characteristic colour with FeCl_{3}. On treatment with bromine, it gives a tribromo derivative $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{OBr}_{3}$. The compound is

1) m-Cresol
2) p-Cresol
3) Benzyl alcohol
4) o-Cresol

Ans. 1
Sol. Phenols gives characteristic colour with FeCl_{3}

Meta-derivative of phenol only gives tribromo derivative
26. In Kolbes reaction the reacting substances are

1) Sodium phenate and CCl_{4}
2) Phenol and CHCl_{3}
3) Sodium phenate and CO_{2}
4) Phenol and CCl_{4}

Ans. 3

Sol.

27. In Carbylamine test for primary amines the resulting foul smelting product is

1) $\mathrm{CH}_{3} \mathrm{NC}$
2) COCl_{2}
3) $\mathrm{CH}_{3} \mathrm{NCl}_{2}$
4) $\mathrm{CH}_{3} \mathrm{CN}$

Ans. 1
Sol. Carbylamine test for primary amines the resulting isocyanide
$\mathrm{CH}_{3}-\mathrm{NH}_{2} \xrightarrow[\mathrm{NaOH}]{\mathrm{CHCl}_{3}} \mathrm{CH}_{3} \mathrm{NC}$
28. Ethanoic acid undergoes Hell-Volhard Zelinsky reaction but Methanoic acid does not, because of

1) absence of $\alpha-H$ atom in ethanoic acid
2) higher acidic strength of ethanoic acid than methanoic acid
3) presence of $\alpha-\mathrm{H}$ atom in methanoic acid
4) presence of $\alpha-\mathrm{H}$ atom in ethanoic acid

Ans. 4
Sol. Carboxylic acid with alpha hydrogen undergoes HVZ reaction
29. The general name of the compound formed by the reaction between aldehyde and alcohol is

1) Glycol
2) Acetate
3) Ester
4) Acetal

Ans. 4

Sol.

30. Reaction by which benzaldehyde can not be prepared is

1) Toluene $\xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{+}]{\text {(i) } \mathrm{CrO}_{2} \mathrm{Cl}_{2} \text { in } \mathrm{CS}_{2}}$
2) Benzoyl chloride $+\mathrm{H}_{2} \xrightarrow[\Delta]{\mathrm{Pd}-\mathrm{BaSO}_{4}}$
3) Benzene $+\mathrm{CO}+\mathrm{HCl} \xrightarrow{\text { anhydrous } \mathrm{AlCl}_{3}}$
4) Benzoic acid $\xrightarrow{\mathrm{Zn}-\mathrm{Hg} \text { and con. } \mathrm{HCl}}$

Ans. 4

Sol. a)

b)

c)

d)

31. The test to differentiate between pentan-2-one and pentan-3-one is

1) Fehling's test
2) Iodoform test
3) Baeyer's test
4) Benedict's test

Ans. 2

Sol.

32. A secondary amine is

1) a compound with an NH_{2} group on the carbon atom in number 2 position
2) a compound in which 2 of the hydrogen of NH_{3} have been replaced by organic groups
3) an organic compound with two NH_{2} group
4) a compound with two carbon atom and an NH_{2} group

Ans. 2
So1. $[\mathrm{R}-\ddot{\mathrm{N}} \mathrm{H}-\mathrm{R}]$
33. Which of the following is correctly matched?

1) Bakelite - Novolac
2) Polyster - tetrafluoroethene
3) Nylon - acrylonitrile
4) Teflon - copralactum

Ans. 1
Sol. Conceptual
34. Which institute has approved the emergency use of 2 -deoxy-D-Glucose as additive therapy for COVID-19 patients?

1) Ministry of Health and Family Welfare
2) Drug Controlled General of India
3) Indian Council of Medical Research
4) World Health Organisation

Ans. 2
Sol. Conceptual
35. A Nucleic acid, whether DNA or RNA gives on complete hydrolysis, two purines bases, two pyrimidine bases, a pentose sugar and phosphoric acid. Nucleotides which are intermediate products in the hydrolysis contain

1) purine or pyrimidine base and orthophosphoric acid
2) purine or pyrimidine base, a pentose sugar and ortho-phosphoric acid
3) purine or pyrimidine base and pentose sugar
4) a purine base, pentose sugar and orthophosphoric acid
Ans. 2
Sol. Conceptual
36. Which is most VISCOUS?
1) Ethylene glycol
2) Glycerol
3) Methanol
4) Ethanol

Ans. 2
Sol. Conceptual
37. The volume of 2.8 g of CO at $27^{\circ} \mathrm{C}$ and 0.821 atm, pressure is ($\mathrm{R}-0.08210$ lit.atm. $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$)

1) 3 litres
2) 30 litres
3) 0.3 litres
4) 1.5 litres

Ans. 1
Sol. Conceptual
38. The work done when 2 moles of an ideal gas expands reversibly and isothermally from a volume of 1 L to 10 L at 300 K is
($\mathrm{R}-0.0083 \mathrm{~kJ} \mathrm{~K} \mathrm{~mol}{ }^{-1}$)

1) 0.115 kJ
2) 58.5 kJ
3) 11.5 kJ
4) 5.8 kJ

Ans. 3
Sol. $\mathrm{W}=-2.303 \mathrm{nRT} \log \mathrm{V}_{2} / \mathrm{V}_{1}$
39. An aqueous solution of alcohol contains 18 g of water and 414 g of ethyl alcohol. The mole fraction of water is

1) 0.7
2) 0.9
3) 0.1
4) 0.4

Ans. 3
Sol. $n_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}=\frac{414}{46}=9$
$\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}=\frac{18}{18}=1$
$\mathrm{X}_{\mathrm{H}_{2} \mathrm{O}}=\frac{1}{10}=0.1$
40. If wavelength of photon is $2.2 \times 10^{-11} \mathrm{~m}$ and $h=6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s}$, then momentum of photon

1) $1.452 \times 10^{-44} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
2) $6.89 \times 10^{43} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
3) $3 \times 10^{-23} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
4) $3.33 \times 10^{-22} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$

Ans. 3
Sol. $\lambda=\frac{h}{m v}=\frac{h}{p}$
$\mathrm{p}=\frac{\mathrm{h}}{\lambda}=\frac{6.6 \times 10^{-34}}{2.2 \times 10^{-11}}=3 \times 10^{-23}$
41. Elements X, Y and Z have atomic number 19, 37 and 55 respectively. Which of the following statements is true about them?

1) Z would have the highest ionization potential
2) Y would have the highest ionization potential
3) Their ionization potential would increase with increasing atomic number
4) Y would have an ionization potential between those of X and Z
Ans. 4
Sol. Conceptual
42. In oxygen and carbon molecule the bonding is
1) $\mathrm{O}_{2}: 1 \sigma, 1 \pi ; \mathrm{C}_{2}: 0 \sigma, 2 \pi$
2) $\mathrm{O}_{2}: 0 \sigma, 2 \pi ; \mathrm{C}_{2}: 2 \sigma, 0 \pi$
3) $\mathrm{O}_{2}: 1 \sigma, 1 \pi ; \mathrm{C}_{2}: 1 \sigma, 1 \pi$
4) $\mathrm{O}_{2}: 2 \sigma, 0 \pi ; \mathrm{C}_{2}: 0 \sigma, 2 \pi$

Ans. 1
Sol. Conceptual
43. Amphoteric oxide among the following:

1) $\mathrm{Ag}_{2} \mathrm{O}$
2) SnO_{2}
3) BeO
4) CO_{2}

Ans. 2 and 3
Sol. Conceptual
44. Which property of CO_{2} makes it biologically and geo-chemically important?

1) Its low solubility in water
2) Its high compressibility
3) Its acidic nature
4) Its colourless and odourless nature

Ans. 1
Sol. Its low solubility in water makes it of biological and geo-chemical importance. It form carbonic acid with water which dissociates to give HCO_{3}^{-} ions. $\mathrm{H}_{2} \mathrm{CO}_{3} / \mathrm{HCO}_{3}^{-}$buffer system helps to maintain pH of blood between 7.26-7.42
45. The IUPAC name for

1) 1-carboxybutan-3-one
2) 4-oxopentanoic acid
3) 1-hydroxy pentane-1, 4-dione
4) 1,4-dioxopentanol

Ans. 2
Sol. Conceptual
46. 1 mole of HI is heated in a closed container of capacity of 2 L . At equilibrium half a mole of HI is dissociated. The equilibrium constant of the reaction is

1) 0.25
2) 0.35
3) 1
4) 0.5

Ans. 1
Sol.
$2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2}+\mathrm{I}_{2}$
$1 \quad 0 \quad 0$
$\begin{array}{lll}0.5 & 0.25 & 0.25\end{array}$
$\mathrm{K}_{\mathrm{C}} \frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}}$
$\mathrm{K}_{\mathrm{C}}=\frac{\frac{0.25 \times 0.25}{2}}{\frac{0.5 \times 0.5}{2} 2}=\frac{1}{4}=0.25$
47. Which among the following has highest pH ?

1) $1 \mathrm{MH}_{2} \mathrm{SO}_{4}$
2) 0.1 M NaOH
3) 1 MHCl
4) 1 M NaOH

Ans. 4
Sol. Conceptual
48. In which of the following compounds, an element exhibits two different oxidation states?

1) $\mathrm{N}_{2} \mathrm{H}_{4}$
2) $\mathrm{N}_{3} \mathrm{H}$
3) $\mathrm{NH}_{2} \mathrm{CONH}_{2}$
4) $\mathrm{NH}_{4} \mathrm{NO}_{3}$

Ans. 4
Sol. Conceptual
49. Which of the following hydrides is electron deficient?

1) CH_{4}
2) $\mathrm{B}_{2} \mathrm{H}_{6}$
3) NaH
4) CaH_{2}

Ans. 2
Sol. Conceptual
50. Identify A and B in the reaction

1)
 Br

B: $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{I}$
2)

3) $\mathrm{A}: \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}$, B: $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{I}$
4) $\mathrm{A}: \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}$,

Ans. 4
Sol. Conceptual
51. Vacant space in body centered cubic lattice unit cell is about

1) 23%
2) 46%
3) 32%
4) 10%

Ans. 3
Sol. Conceptual
52. How many number of atoms are there in a cube based unit cell, having one atom on each corner and 2 atom on each body diagonal of cube?

1) 4
2) 9
3) 8
4) 6

Ans. 2
Sol. Conceptual
53. Which of the following is NOT true about the amorphous solids?

1) Amorphous solids can be moulded by heating
2) They are anisotropic in nature
3) On heating they may become crystalline at certain temperature
4) They may become crystalline on keeping for long time.
Ans. 2
Sol. Conceptual
54. Which of the following colligative properties can provide molar mass of proteins, polymers, and colloids with greater precision?
1) Depression in freezing point
2) Osmotic pressure
3) Relative lowering of vapour pressure
4) Elevation in boiling point

Ans. 2
Sol. Conceptual
55. In Fuel cells \qquad are used as catalysts.

1) Zinc - Mercury
2) Lead - Manganese
3) Platinum - Palladium
4) Nickel - Cadmium

Ans. 3
Sol. Conceptual
56. The molar conductivity is maximum for the solution of concentration

1) 0.005 M
2) 0.001 M
3) 0.004 M
4) 0.002 M

Ans. 2
Sol. $\Delta_{\mathrm{m}}=\frac{\mathrm{k} \times 1000}{\mathrm{M}}$
Lower the molarity higher the molar conductivity
57. Alkali halides do not show dislocation defect because

1) Cations and anions have almost equal size
2) There is large difference in size of cations and anions
3) Cations and anions have low co-ordination number.
4) Anions cannot be accommodated in vacant spaces.
Ans. 2
Sol. Conceptual
58. Solubility of a gas in a liquid increases with
1) increase of P and decrease of T
2) decrease of P and decrease of T
3) increase of P and increase of T
4) decrease of P and increase of T

Ans. 1
Sol. Conceptual
59. The rise in boiling point of a solution containing 1.8 g of glucose in 100 g of solvent is $0.1^{\circ} \mathrm{C}$. The molal elevation constant of the liquid is

1) $2 \mathrm{~K} \mathrm{~kg} / \mathrm{mol}$
2) $10 \mathrm{~K} \mathrm{~kg} / \mathrm{mol}$
3) $0.1 \mathrm{~K} \mathrm{~kg} \mathrm{/} \mathrm{~mol}$
4) $1 \mathrm{~K} \mathrm{~kg} / \mathrm{mol}$

Ans. 4
So1. $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \cdot \mathrm{m} \cdot \mathrm{i} \Rightarrow 0.1=\mathrm{K}_{\mathrm{b}} \times \frac{1.8}{180} \times \frac{1000}{100} \times 1$
$\mathrm{K}_{\mathrm{b}}=1$
60. If 3 g of glucose (molar mass $=180 \mathrm{~g}$) is dissolved in 60 g of water at $15^{\circ} \mathrm{C}$, the osmotic pressure of the solution will be

1) 6.57 atm
2) 5.57 atm
3) 0.34 atm
4) 0.65 atm

Ans. 1
Sol. $\pi=$ C.R. $T=\frac{\mathrm{w}_{2}}{\mathrm{M}_{2}} \frac{1000}{\mathrm{~V}(\mathrm{~m} \ell)} \times$ R.T
$\Rightarrow \frac{3}{180} \times \frac{1000}{60} \times 0.0821 \times 288=6.568 \mathrm{~atm}$

