Odisha Joint Entrance Examination 2014

Pharmacy/ BAMS/ BHMS/MCA-dual degree

Time: 01 hr. Full marks: 240

Answer all the questions

- 1. Aqueous solution of an organic compound "A" on electrolysis liberates acetylene and CO₂ at anode. "A" is:
 - a) potassium citrate

b) potassium acetate

c) potassium succinate

- d) potassium maleate
- 2. Which of the following reagent used for the conversion of 3-hexyne into *trans*-3-hexene?
 - a) NaBH₄

b) H₂, PtO₂

c) Na, liq. NH₃/C₂H₅OH

- d) H₂, Pd-BaSO4, quinoline
- 3. Propene can be converted into 1-propanol by oxidation. Indicate which set of reagents amongst the following is most suitable for the above conversion.
 - a) alkaline KMnO₄

b) OsO₄, NaHSO₄

c) B₂H₆ and alkaline H₂O₂

- d) dil. H_2SO_4 at $140^{\circ}C$
- 4. Arrange the following carbocations in order of decreasing stability:

(II)

(I)

(III)

(IV)

a) (II) > (IV) > (I) > (III)

b) (II) > (I) > (III) > (IV)

c) (I) > (II) > (III) > (IV)

- d) (II) > (III) > (IV) > (I)
- 5. Correct IUPAC name of the given compound

$$\begin{array}{ccc} \mathsf{CN} & \mathsf{OC}_2\mathsf{H}_5 \\ \mathsf{CH}_3 \cdot \mathsf{CH} - \mathsf{CH} - \mathsf{CONH}_2 \end{array}$$

- a) 3-cyano-2-ethoxybutanamide
- b) 2-methyl-3-ethoxy-3-carbamoylpropanenitrile

- c) ethoxy-1-carbamoyl-2-cyanopropane
- d) 3-carbmoyl-3-ethoxy-3-methylpropanenitrile
- 6. Which of the following compound will give positive iodoform test?

CH₃COCHCOOC₂H₅

CH₃CH₂CHIOH
(II)

COCHI₂

- a) (I) and (II)
- b) (III) and (IV)
- c) (III) only
- d) (IV) only
- 7. The bond that determine the secondary structure of a protein is
 - a) ionic bond

b) covalent bond

c) hydrogen bond

- d) coordinate bond
- 8. Diazotisation of aniline with aqueous NaNO₂ and dil HCl, an excess of HCl is used primarily due to:
 - a) generate stoichiometric amount of HNO₂
 - b) neutralize the base liberated from the reaction
 - c) suppress the concentration of free aniline
 - d) activate the β -naphthol for coupling reaction
- 9. An organic molecule necessarily shows optical activity, if it
 - a) contain asymmetric carbon atoms
- b) is superimposable on its mirror image
- c) is non-superimposable on its mirror image
- d) is non-planar
- 10. Predict the major product of the following reaction:

$$\frac{\text{Conc. H}_2\text{SO}_4}{\Delta}$$

a) 3

b) 5

c) 4

d) 2

12. Identify the final product [Q] in this reaction sequence.

- 13. A condensation polymer among the following is
 - a) dacron

- b) PVC
- c) teflon
- d) polystyrene

14. Which of the following molecule does not exhibit tautomerism

15. Reaction of acetylchloride with sodium propanoate will produce

a) acetic anhydride

b) propanoic anhydride

c) ethylpropanoate

d) ethanoic propanoic anhydride

16. In the reaction:

[X] is

17	The reaction	H-C-COOH	AgNO ₃	_	0	is called as
1/.	The reaction	H ₃ C-COOH -			CH ₃ COCH ₃	is carred as

a) Hunsdiecker reaction

b) Hell Volhard Zelinsky reaction

c) Simonini reaction

d) Finkelstein reaction

18. Which one of the following is most reactive towards electrophilic reagent?

- 19. An organic compound reacts with aqueous nitrous acid at low temperature to produce an oily product. The compound is
 - a) $(CH_3CH_2)_3N$

b) $(CH_3CH_2)_2NH$

c) $C_6H_5CH_2NH_2$

- d) $C_6H_5CH_2CH_2NH_2$
- 20. p-Amino benzenesulphonic acid when treated with excess bromine water give
 - a) 2,6-dibromo-4-amino benzenesulphonic acid
 - b) 2,4,6-tribromo aniline
 - c) 2,4-dibromo aniline
 - d) 2,6-dibromo aniline
- 21. The equivalent mass of an element is 4. Its chloride has a vapour density 59.25. The valency of the element will be.
 - a) 4

b) 3

c) 2

- d) 1
- 22. Which pair of the following substances is said to be isomorphous?
 - a) Epsom salt and white vitriol

b) white vitriol and blue vitriol

23.	Magnetic quantum number is a number related to:						
	a) spin	b) shape	c) size	d) orientation			
24.	Which one of t	Which one of the following is the man made radioactive disintegration series?					
	a) Uranium ser	ries	b) Thorium serie	es			
	c) Neptunium series		d) Actinium seri	d) Actinium series			
25.	The maximum	The maximum number of molecules is present in:					
	a) 01.0 gm of I	H ₂ gas	b) 10 gm of O ₂ g	b) 10 gm of O ₂ gas			
	c) 15 L of H ₂ gas at STP		d) $10 L \text{ of } N_2 \text{ ga}$	d) 10 L of N ₂ gas at STP			
26.	A gas can be li	A gas can be liquefied:					
	a) below its cri	tical temperature	b) above its criti	ical temperature			
	c) at its critical temperature		d) at any tempe	d) at any temperature			
27.	If 4 gms of oxygen diffuse through a very narrow hole, how much hydrogen would have diffused under same condition?						
	a) 16 gm	b) 1 gm	c) 0.25 gm	l) 64 gm			
28.	Solubility product of BaSO ₄ is 1.5×10^{-9} . The precipitation in a 0.01 M solution of Ba ²⁺ ions will start on adding H ₂ SO ₄ of concentration:						
	a) 10^{-6} M	b) 10 ⁻⁸ M	c) 10 ⁻⁹ M	d) 10 ⁻⁷ M			
29.	At high pressure van der Waals equation can be written as						
	a) $\left(P + \frac{a}{v}\right)$	$\left(\begin{array}{c} - \end{array}\right)\left(\begin{array}{c} v - b \end{array}\right) = RT$	b) P (v -	-b $= RT$			
	c) $\left(P + \frac{a}{V}\right)$, ,	d) $PV = RT$,			

d) Glauber's salt and blue vitriol

c) Epsom salt and Glauber's salt

31.	ŕ	, , ,	c) 4.926 atm	d) 2.92 atm					
31.	a) concentration at w	, , ,							
31.	a) concentration at w	, , ,							
	ŕ								
	h) someontustion of m	which micelle formation st	a) concentration at which micelle formation starts						
	b) concentration of i	b) concentration of micelles at room temperature							
	c) concentration of e	lectrolyte added to destro	y the micelle						
	d) concentration at w	which micelles are destroy	red						
32.	2 Moles of an ideal gentropy change (R =	gas at 27 ⁰ C is expanded r 2 cal/ mol K)	eversibly from 2 litre to	20 litre. Find the					
	a) 0	b) 4	c) 9.2	d) 92.1					
33.	Enthalpy changes for two reactions are given by equations.								
	2 Cr (g) + 3/2 O ₂ (g)	\longrightarrow Cr_2O_3 (s)	Δ H =	-1130 kJ					
	$C(s) + 1/2 O_2(g)$	— CO ₂ (g)	ΔΗ:	= -110 kJ					
	What is the enthalpy change in kJ for the following reaction?								
$C(s) + Cr_2O_3(s)$ \longrightarrow $2Cr(s) + 3CO(g)$									
	a) - 800 kJ	b) + 800 kJ	c) + 1020 kJ	d) + 1460 kJ					
34.	Consider the exothermic reaction $\chi \longrightarrow \gamma$ with the activation energies E_b and E_f for backward and forward reactions respectively. Which statement is correct?								
	$a) \; E_b < \; E_f$		b) $E_b = E_b$	$\mathcal{E}_{\mathbf{f}}$					
	c) no definite relatio	n between E_b and E_f	d) $E_b > E$	Ž _f					
35.	NaOH + Cl₂ →	NaCI + NaCIO ₃ + H ₂ O							
-		of Cl ₂ in the above reacti	on is						
	a) M/2	b) M/5	c) 2M/3	d) 3M/5					
		0,1110	0, 21.110	<i>a,</i> 2.11.10					

36.	On heating a liquid, its viscosity					
	a) decreases		b) increases			
	c) remains same		d) first increases and the	en decreases		
37.	During the change of O_2 to O_2^- ion, the electron adds on which one of the following orbital?					
	a) π^* orbital	b) σ [*] orbital	c) π orbital	d) σ orbital		
38.		If 0.8 mole of BaCl ₂ is mixed with 0.4 mole of Na ₃ PO ₄ , the maximum number of mole of Ba ₃ (PO ₄) ₂ that can be formed.				
	a) 1.2 b) 0.4	45	c) 0.20	d) 0.40		
39.	The pair of compou	nd having same shape.				
	a) SF ₄ and XeF ₄	b) CO ₂ and XeF ₂	c) BCl ₃ and BrF ₃	d) IF ₅ and PCl ₅		
40.	The dissociation equilibrium of a gas AB ₂ . The degree of dissociation is "x" and is		small compared to 1. The	e expression relating the		
	degree of dissociation x with equilibrium constant K_p and total pressure P is:					
	a) 2K _p /P	b) K _p /P	c) (2K _p /P) ^{1/2}	d) (2K _p /P) ^{1/3}		
41.	In the modern periodic table one of the following does not have appropriate position:					
	a) inert gasesc) transition elemen	ts	b) inner-transition elend) none of the above	nents		
42.	The ratio of the diff orbit energy is:	erence between 2 nd and	13 rd Bohr's orbit energy to	that between 3 rd and 4 th		
	a) 0.35	b) 0.185	c) 5.4	d) 2.85		
43.	Basic strength of tri	halides of nitrogen inc	reases in the order:			
	a) NCl ₃ <nbr<sub>3 <ni<sub>3 c) NF₃ <nbr<sub>3 < NCl</nbr<sub></ni<sub></nbr<sub>		b) NF ₃ < NCl ₃ < NBr ₃ < I d) NF ₃ < NI ₃ < NCl ₃ < N	•		

44.	H ₂ SO ₄ has a very corrosive action on skin because					
	a) it acts as dehydrating agentc) it acts as oxidizing agentd) it acts as dehydrating agent and absorp		b) it reacts with proteins bition of water is highly exothermic			
45.	Calcium cyanamide on treatment with steam under pressure gives ammonia and					
	a) CaCO ₃	b) Ca(OH) ₂	c) CaO	d) CaHCO ₃		
46.	When excess of SnCl ₂ is added to a solution of HgCl ₂ , a white precipitate turning black is obtained. The black colour is due of the formation of:					
	a) Hg ₂ Cl ₂	b) SnCl ₄	c) Sn	d) Hg		
47.	Lead dissolves most readily in:					
	a) CH ₃ COOH	b) HNO ₃	c) H ₂ SO ₄	d) HCl		
48.	Electrolytic reduction process is used for the extraction of:					
	a) noble metalsc) highly electrope	sitive elements	b) highly electronegatived) transition metals	ve elements		
49.	Standard electrode potentials are: $Fe^{2+} Fe = -0.44 \text{ V} \text{ and } Fe^{3+} Fe^{2+} = +0.77 \text{ V}. Fe^{2+} \text{ and } Fe^{3+} \text{ blocks are kept}$ together, then a) Fe^{3+} increases b) Fe^{2+} / Fe^{3+} remains unchanged					
	c) Fe ³⁺ decreases		d) Fe ²⁺ decreases	lenanged		
50.	When ZnS and PbS minerals are present together, NaCN is added of separate them in from floatation process because a) PbS forms soluble complex, Na ₂ Pb(CN) ₄ b) ZnS forms soluble complex, Na ₂ Zn(CN) ₄ c) Pb(CN) ₂ is precipitated while there is no effect on ZnS			separate them in froth		
	d) both (b) and (c)					

51.	Both HNO ₃ and HF are strong acids. But when HNO ₃ dissolve in HF, it behaves as:					
	a) an acid	b) a zwitter ion	c) amphiprotic solver	d) a base		
52.	A commercial sample of H ₂ O ₂ is labeled as "15 volume" its percentage strength is nearly:					
	a) 9 %	b) 4.5 %	c) 10 %	d) 45%		
53.	Which one of the fol	lowing is used for revi	ving the exhaust permu	tit?		
	a) dil. HCl solution		b) 15 % FeCl ₃			
	c) 10 % MgCl ₂ solut	ion	d) 10 % NaCl	solution		
54.	The bond present in	horazole are:				
51.	a) 9α , 9π	b) 6α, 6π	c) 9α, 6π	d) 12α, 3π		
	a) 90., 91.	b) 6d, 6h	c) 9a, 0h	d) 12a, 3h		
55.	Which one of the fol	lowing ions in aqueous	s solution is the best co	nductor of electricity?		
	a) Cs ⁺	b) Na ⁺	c) Mg ²⁺	d) Li ⁺		
	u)	5) 1 (4	0) 1116	<i>a)</i> 21		
56.	6. A chemical reaction is carried out at 280 K and 300K. The rate constants were found of be					
	and k ₂ respectively.	Then				
	a) $k_1 = 4k_2$	b) $k_2 = 2k_1$	c) $k_2 = 4k_1$	d) $k_2 = 0.5k_1$		
57.	<u>-</u>	ution in aryl halides is	•	4.1		
	a) electron donating groupc) both electron donating and withdrawing g		b) electron withdrawing group groups d) none of these			
	e, com ciccuron don	and windrawing	groups a) none of the			
58.	The inhibitors:					
	a) retard the rate of a chemical reactionb) do not allow the reaction of proceed					
	c) stop a chemical reaction immediately					
	d) are reducing agents					
59.	2					
	Red phosphorous is less reactive than yellow phosphorous because a) its colour is red					
	b) it is hard					
	c) it is tetra atomic					

d) it is highly polymerized

60. Weight of iodine required to oxidize 500 mL of 2 N $Na_2S_2O_3$ solution is

a) 6.35 gm

b) 63.5 gm

c) 31.75 gm

d) 127 gm