1. The 6 th term of an AP of n terms whose sum is n^2-2n is				
(A) 9	(B) 10	(C) 12	(D) 18	
2. If $y = 1 + x + x^2$	$+ \cdots$ to ∞ , with $ x $	<1, then x is		
(A) $\frac{y}{y-1}$	(B) $\frac{y}{1-y}$	(C) $\frac{y-1}{y}$	(D) $\frac{1-y}{y}$	
3. Which of the follo	wing statement is no	ot TRUE		
(A) $2 \ge 3$ or 3 is n	ot a positive integer			
(B) $2 < 3$ or 3 is a	a positive integer			
(C) $2 \ge 3 \text{ or } 3 \text{ is } 6$	a positive integer			
(D) $2 < 3$ or 3 is n	ot a positive integer			
4. The contrapositive	of the implication `	`If it is snowing, then I ge	et wet'' is	
(A) If it is not snow	wing, then I do not g	et wet.		
(B) If I do not get	wet, then it is not sn	owing.		
(C) If it is snowing	, then I do not get w	et.		
(D) If it is not snow	ving, then I get wet.			
5. Number of subset	5. Number of subset of $\{a, b, c, d\}$ having two elements is			
(A) 4	(B) 3	(C) 6	(D) 15	
6. The relation R def	ined on the set $X =$	${4,5,6}$ by $R = {(4,5)}$	is	
(A) reflexive (B) symmetric (C) identity (D) transitive 7. If $A = \emptyset$ (empty set). Number of elements present in power set of A is				
(A) 0	(B) 1	(C) 2	(D) none of these	
8. The domain of the function $f(x) = \frac{x^2 + 2x + 1}{x^2 - x - 6}$ is				
(A) ℝ	(B) ℝ\{3}	(C) $\mathbb{R}\setminus\{-2,3\}$	(D) none of these	
9. The value of π is				
(A) $\frac{22}{7}$	(B) 3.14	(C) 3.142	(D) none of these	
10. If $z = 2 - \sqrt{3}i$, then value of $z\bar{z}$ is				
(A) 8	B) 7	(C) $2 + \sqrt{3}i$	(D) none of these	
11. The nth roots of unity are in				
(A) AP	(B) GP	(C) HP	(D) none of these	

12. The number of different 5 letter words, with or without meaning, which can be formed			
out of the letters of the word ``APPLE", where repetition of the letters is not allowed is			
(A) 60	(B) 30	(C)120	(D) none of these
13. The number of v	ways the 3 girls and 2 b	poys can be seated in a	row so that no two boys
are together is			
(A) 36	(B 9	(C) 6	(D) 72
14. The term independent	ndent of x in $\left(\frac{x}{3} - \frac{2}{x^2}\right)$	is is	
(A) 6	(B) 4	(C) 3	(D) none of these
15. In the expansion	of $(1+x)^n$, the sum of	of coefficients of odd p	owers of x is
(A) $2^n + 1$	(B) $2^n - 1$	(C) 2^n	(D) 2^{n-1}
16. If the equations $ax^2 + bx + c = 0$ and $bx^2 + cx + a = 0$ have a common root with			
$a \neq b \neq c$, then			
(A) $a + b + c = 0$	(B) $a + b + c = 1$	(C) $a + b + c = -$	1 (D) none of these
17. The number of so	olution of the equation	$\cos(e^x) = 4^x + 4^{-x} i$	S
(A) 1	(B) 2	(C) 0	(D) infinite
18. If α is the AM of the roots of the equation $x^2-2\alpha x+b=0$ and β is the GM of			
the roots of the e	equation $x^2 - 2bx + a$	$a^2 = 0$, then	
(A) $\alpha > \beta$	(B) $\alpha = \beta$	(C) $\alpha < \beta$	(D) none of these
19. The vector $\vec{b} \times (\vec{b})$	$ec{a} imesec{b}$) is		
(A) perpendicular to \vec{b}		(B) perpendicular to \vec{a}	
(C) perpendicular to both $ec{a}$ and $ec{b}$		(D) null vector	
20. The area of the parallelogram whose adjacent sides are given by vectors $\vec{a} = \hat{\imath} - \hat{\jmath} + 3\hat{k}$ and			
$\vec{b} = 2\hat{\imath} - 7\hat{\jmath} + \hat{k}$	is		
(A) $10\sqrt{2}$	(B) $5\sqrt{2}$	(C) $15\sqrt{2}$	(D) none of these
21. The decimal equivalent of 110110 is			
(A) 54	(B) 52	(C) 56	(D) 58
22. If $a=3\sqrt{3}$, $b=9$ and $C=90^\circ$ in a $\triangle ABC$, then $\angle A$ is			
(A) $\frac{\pi}{4}$	(B) $\frac{\pi}{3}$	(C) $\frac{\pi}{2}$	(D) $\frac{\pi}{6}$

23. $\sin\left[tan^{-1}\left(\frac{1-x^2}{2x}\right) + cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right]$ is equal to			
(A) 0	(B) 1	(C) $\frac{1}{\sqrt{2}}$	(D) $\sqrt{2}$
24. If $\sin 5x + \sin 3x$	$x + \sin x = 0$, then the	e value of x other than	n zero between $0 \le x \le \frac{\pi}{2}$ is
(A) $\frac{\pi}{6}$	(B) $\frac{\pi}{12}$	(C) $\frac{\pi}{3}$	(D) $\frac{\pi}{9}$
25. Range of $\cot x$ is			
(A))(1, ∞)	(B) [-1,1]	(C) $(-\infty, -1)$	(D R
26. If A is any non-sin	ngular square matrix o	f order 3, then $A(adj)$	A) is equal to
(A) <i>I</i>	(B) det <i>A</i> . <i>I</i>	(C) $det A^3 I$ (D)	none of these
27. The system of lin	ear equations :		
x + y + z = 0, 2x	+2y + 2z = 0,3x + 3	3y + 3z = 0 has	
(A) No solution		(B) A unique solutions	
(C) An infinitely many solutions (D) None of these			
28. The cofactor of '(\mathbf{D}' in the determinant	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
(A) 33	(B) 24	(c) -33	(D) -24
29. The value of determinant $\begin{vmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 5 & 7 & 8 \end{vmatrix}$ is			
(A) 1	(B) 32	(C) -32	(D) 0
30. If the mean deviation is 16, then the value of standard deviation is			
(A) 15	(B) 18	(C) 20	(D) none of these
31. The mean of the sum of first n natural number is			
(A) $\frac{n-1}{2}$	(B) $\frac{n+1}{2}$	(C) $\frac{n}{2}$ (D) no	one of these
32. Two identical dice are rolled. The probability that the same number will appear			
on each of them is			
(A) $\frac{1}{6}$	(B) $\frac{1}{18}$	(C) $\frac{1}{36}$	(D) None of these
33. A determinant is	chosen at random from	m the set of all detern	ninants of order 2 with
elements 0 or 1 only. The probability that the values of the determinant is chosen is positive is			
(A) $\frac{5}{16}$	(B) $\frac{7}{16}$	(C) $\frac{1}{4}$	(D) $\frac{3}{16}$

(A) 4	(B) -4	(C) 3	(D) -3	
36. The equation of t	he circle which touch	es the line $5x + 12y$	= 1 and which has its centre at	
(3,4) is				
(A) $(x-3)^2 + (y$	$-4)^2 = \left(\frac{62}{11}\right)^2$	(B) $(x-3)^2 + (y-3)^2 + $	$(-4)^2 = \left(\frac{62}{17}\right)^2$	
(C) $(x-3)^2 + (y$	$(-4)^2 = \left(\frac{62}{13}\right)^2$	(D) none of these		
37. The equation of t	he normal to the para	abola $y^2 = 4x$ which	is parallel to the line	
y - 2x + 6 = 0 i	S			
(A) $2x - y - 12 = 0$		(B) $2x + y - 12 =$	(B) $2x + y - 12 = 0$	
(C) $x + 2y - 12 = 0$		(D) $x - 2y + 12 = 0$		
38. The equation of the ellipse whose foci are $(\pm 2,0)$ and eccentricity $\frac{1}{2}$ is				
$(A)\frac{x^2}{12} + \frac{y^2}{16} = 1$	(B) $\frac{x^2}{16} + \frac{y^2}{12} = 1$	(C) $\frac{x^2}{16} + \frac{y^2}{8} = 1$	(D) None of these	
39. The equation of t	he diameter which is	conjugate to $y = 3x$	with respect to the hyperbola	
$\frac{x^2}{4} - \frac{y^2}{9} = 1$ is				
$(A) y = \frac{3}{4}x$	$(B) y = -\frac{3}{4}x$	$(C) y = \frac{4}{3}x$	$(D) y = -\frac{4}{3}x$	
40. The direction cosines of any normal to the $xy-$ plane are				
(A) 1,0,0	(B) 0,1,0	(C) 1,1,1	(D) 0,0,1	
41. The lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$ and $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$ are coplanar if				
(A) $k = 0 \ or - 1$	(B) $k = 1 \ or - 1$	(C) $k = 3 \text{ or } -3$	(D) $k = 0 \ or - 3$	
42. The perpendicular distance of the point $(3,4,5)$ from the $y-$ axis, is				
(A) $\sqrt{34}$	(B) $\sqrt{41}$	(C) 4	(D) 5	
43. The radius of the sphere $x^2 + y^2 + z^2 - 6x + 8y - 10z + 1 = 0$ is				

34. Equation of a straight line making equal intercepts on the axes and passing through the

(D) x + 2y - 5 = 0

35. If the equation $4x^2 - 8xy + \lambda y^2 = 0$ represents two perpendicular lines, then the

(B) 2x + y - 4 = 0

point (1,2) is

(A) 4x - y - 2 = 0

(C) x + y - 3 = 0

value of λ is

(A) 5	(B) 2	(C) 7	(D) 15
44. The solution of the given differential equation $\frac{dy}{dx} = ye^x$ with $y(0) = e$ is			
$(A) y = e^x$	(B) $y = e^{-x}$	(C) $\ln y = e^x$	(D) None of these
45. The solution of (x)	$(x + 2y^3)dy = y dx$ is		
$(A) x + y^3 = cy$	$(B) x = y^3 + cy$	$(C) y^2 - x = cy$	(D) None of these
46. The second order	differential equation	is	
(A) $y'^2 + x = y^2$	(B) $y'y'' + y = \sin x$	(C) $y''' + y'' + y = c$	$\cos x$ (D) $y' = y$
47. The slope of the t	angent to the curve $oldsymbol{y}$	$=\frac{1}{4}x^3-4x$ at $x=4$	is
(A) 16	(B) 64	(C) 32	(D) 8
48. If $\omega = f(y-z, z-x, x-y)$ then $\frac{\partial \omega}{\partial x} + \frac{\partial \omega}{\partial y} + \frac{\partial \omega}{\partial z}$ is			
(A) 0	(B) 3	(C) -3	(D) None of these
49. $D^{(16)}cos(x+5)$ i	is equal to		
(A) $5^{16}cos(x+5)$	(B) $5^{16}sin(x+5)$	(C) $sin(x + 5)$	(D) $cos(x+5)$
50. $\lim_{x\to 0} \frac{\tan 3x}{\tan 4x}$ is equal to			
(A) 0	(B) $\frac{3}{4}$	(C) $\frac{4}{3}$	(D) 1
51. The graph of the function $y = \ln x$ lies in			
(A) 1 st and 2 nd quadrant		(B) 2 nd and 3 rd quadrant	
(C) 3 rd and 4 th quadrant		(D) 1 st and 4 th quadrant	
52. The function $f(x) = \begin{cases} x \sin \frac{1}{x} & , x \neq 0 \\ 0 & , x = 0 \end{cases}$ is			
(A) differentiable at $x = 0$		(B) continuous at $x =$: 0
(C) $f'(x)$ is continuous at $x = 0$		(D) none of these	
53. If $y = cot^{-1} \left[tan \left(\frac{\pi}{2} - x \right) \right]$ then $\frac{dy}{dx}$ is			

55. $\frac{d}{dx}(\sin x^{\circ})$ is

(A) 1

(B) $\frac{1}{1+x^2}$

(B) -1

54. If x = p is a local maximum point of the function $f(x) = x^5 - 5x^4 + 5x^3 - 10$, then p is

(C) 3

(C) 1 (D) $-\frac{1}{1+x^2}$

(D) -3

- (A) $\cos x^{\circ}$ (B) $\frac{\pi}{180} \sin x^{\circ}$ (C) $\frac{\pi}{180} \cos x^{\circ}$
- (D) $\sin x^{\circ}$
- 56. The area bounded by the curve $y = x^2$ and the line y = x is
 - (A) $\frac{1}{3}$
- (B) $\frac{1}{6}$

- (C) 1
- (D) $\frac{1}{2}$

- 57. $\int_{-1}^{1} |x| dx$ is equal to
 - (A) 1
- (B)2

- (C) 4
- (D) $\frac{1}{2}$

- 58. $\int \frac{\cos \sqrt{x}}{\sqrt{x}} dx$ is equal to
 - (A) $2\cos\sqrt{x} + C$ (B) $\frac{1}{2}\cos\sqrt{x} + C$ (C) $\sin\sqrt{x} + C$ (D) $2\sin\sqrt{x} + C$

- 59. $\int e^x \cos x \, dx$ is equal to
 - (A) $\frac{1}{2}e^{x}(\cos x \sin x) + C$ (B) $\frac{1}{2}e^{x}(\cos x + \sin x) + C$
 - (C) $\frac{1}{2}e^x(\sin x \cos x) + C$ (D) none of these
- 60. $\int_0^{\frac{\pi}{2}} \left(\sin^2 \frac{x}{4} \cos^2 \frac{x}{4} \right) dx$ is
 - (A) 0
- (B) 1

- (C) -1
- (D) -2