Subject: CHEMISTRY

(Booklet Number)

Duration: 90 Minutes

Full Marks: 100

INSTRUCTIONS

- All questions are of objective type having four answer options for each. Only one option is correct. Correct answer will carry full marks 2. In case of incorrect answer or any combination of more than one answer, ½ mark will be deducted.
- Questions must be answered on OMR sheet by darkening the appropriate bubble marked A, B, C, or D.
- Use only Black/Blue ball point pen to mark the answer by complete filling up of the respective bubbles.
- 4. Mark the answers only in the space provided. Do not make any stray mark on the OMR.
- Write question booklet number and your roll number carefully in the specified locations of the OMR. Also fill appropriate bubbles.
- Write your name (in block letter), name of the examination centre and put your full signature in appropriate boxes in the OMR.
- 7. The OMR is liable to become invalid if there is any mistake in filling the correct bubbles for question booklet number/roll number or if there is any discrepancy in the name/ signature of the candidate, name of the examination centre. The OMR may also become invalid due to folding or putting stray marks on it or any damage to it. The consequence of such invalidation due to incorrect marking or careless handling by the candidate will be sole responsibility of candidate.
- Candidates are not allowed to carry any written or printed material, calculator, pen, docupen, log table, wristwatch, any communication device like mobile phones etc. inside the
 examination hall. Any candidate found with such items will be reported against and his/her
 candidature will be summarily cancelled.
- Rough work must be done on the question paper itself. Additional blank pages are given in the question paper for rough work.
- 10. Hand over the OMR to the invigilator before leaving the Examination Hall.
- 11. This paper contains questions in both English and Bengali. Necessary care and precaution were taken while framing the Bengali version. However, if any discrepancy(ies) is /are found between the two versions, the information provided in the English version will stand and will be treated as final.

CHEMISTRY

At constant temperature the rate of effusion (r) of an ideal gas is related to the pressure (p) 1. and density (d) of the gas as

কোনো নির্দিষ্ট উষ্ণতায় একটি আদর্শ গ্যাসের ছিদ্রব্যাপনের হার (r), গ্যাসের চাপ (p) এবং গ্যাসের ঘনতের (d) সম্পর্কটি হল:

(A)
$$r \propto \frac{\sqrt{p}}{d}$$

(B)
$$r \propto \frac{p}{\sqrt{d}}$$

(C)
$$r \propto \frac{p}{d}$$

(D)
$$r \propto \sqrt{\frac{p}{d}}$$

At any temperature and pressure, the compressibility factor (Z) of a real gas; which obeys 2. the equation, P(v-nb)= nRT is

P(v-nb)=nRT সমীকরণটি মেনে চলে এমন একটি বাস্তব গ্যাসের ক্ষেত্রে যে কোনো উষ্ণতা ও চাপে সংনম্যতা গুণকের (Z) মান হল:

(A)
$$1 - \frac{Pb}{RT}$$

$$(B) \quad \frac{P(v-nb)}{nRT}$$

(C)
$$1 + \frac{Pb}{RT}$$

At a definite temperature when a spherical water droplet of radius R is transformed into 3. two identical spherical water droplets with radius r for each droplet, the change in total surface energy is (Given: Surface tension of water = γ)

কোনো নির্দিষ্ট উষ্ণতায় R ব্যাসার্ধ বিশিষ্ট একটি গোলাকার জলবিন্দুকে r ব্যাসার্ধ বিশিষ্ট দুটি অভিন্ন গোলাকার জলবিন্দ্রতে পরিণত করলে মোট পৃষ্ঠশক্তির পরিবর্তন হবে: (জলের পৃষ্ঠটান হল γ)

(A)
$$4\pi R^2 \left(2^{\frac{1}{3}}-1\right)\gamma$$

(B)
$$8\pi \left(r^2 - \frac{1}{2}\right)\gamma$$

(C)
$$4\pi \left(r^2 - \frac{2}{3}\right)\gamma$$

(D)
$$4\pi R^2 \left(2^{\frac{2}{3}}-1\right)\gamma$$

The number of atoms (Z) in a unit cell of a face centred cubic metallic crystal is related 4. with density of the crystal (p), diameter of the atom (d) and mass of an atom (m) as

একটি ধাতব কেলাসের পৃষ্ঠকেন্দ্রিক ঘনকাকার একক কোশে অবস্থিত প্রমাণুর সংখ্যা (Z), কেলাসের ঘনত (ρ), পরমাণুর ব্যাস (d) ও প্রতিটি পরমাণুর ভর (m) -এর মধ্যে সম্পর্কটি হল:

$$(A) \quad Z \propto \frac{\rho d}{m}$$

$$(B) \quad Z \propto \frac{\rho d^3}{m}$$

$$(C) \quad Z \propto \frac{\rho^2 d}{m}$$

(D)
$$Z \propto \frac{\rho d^2}{m}$$

An ideal gas of fixed mass at an initial state, A is transformed separately to different final 5. states, B and C by isothermal reversible expansion and reversible adiabatic expansion respectively. If the transformation, B → C is an isochorochange and pressure at state B is P2 and that at state C is P3 then

ছির ভরের একটি আদর্শ গ্যাসকে প্রাথমিক অব্বস্থা A থেকে দুটি ভিন্ন অন্তিম অবস্থা B ও C-তে যথাক্রন্মে সমোষ্ট পরাবর্ত সম্প্রসারণ ও রুদ্ধতাপীয় পরাবর্ত সম্প্রসারণ করে পরিবর্তিত করা হল। যদি $B \to C$ সমায়তনিক পুরিবর্তন হয় এক B অবস্থায় চাপ P_2 ও C অবস্থায় চাপ P_3 হয় তবে

(A)
$$P_3 < P_2$$

(B)
$$P_3 > P_2$$

(C)
$$P_3 = P_2$$

(D)
$$P_3 = P_2/2$$

At constant temperature 1 mole of an ideal gas is expanded freely. For this process the 6. values of the quantities will be

স্থির উষ্ণতায় 1 মোল আদর্শ গ্যাসের মুক্ত সম্প্রসারণ করা হলে প্রক্রিয়াটিতে রাশিগুলির মান হবে:

(A)
$$W = 0$$
, $q > 0$, $\Delta U > 0$, $\Delta H > 0$

(A)
$$W = 0$$
, $q > 0$, $\Delta U > 0$, $\Delta H > 0$ (B) $W < 0$, $q = 0$, $\Delta U > 0$, $\Delta H < 0$

(C)
$$W = 0$$
, $q = 0$, $\Delta U = 0$, $\Delta H = 0$

(D)
$$W < 0$$
, $q < 0$, $\Delta U < 0$, $\Delta H < 0$

A reaction is spontaneous at T_1 K but non – spontaneous at T_2 K $(T_2 > T_1)$. If ΔH and ΔS 7. are independent of temperature, then the condition applicable for the reaction is একটি বিক্রিয়া T_1 K উষ্ণতায় স্বতঃস্ফুর্ত কিন্তু T_2 K $(T_2>T_1)$ উষ্ণতায় স্বতঃস্ফুর্ত নয়। যদি ΔH ও ΔS-এর মান উষ্ণতো নিরপেক্ষ হয়, তবে বিক্রিয়াটির ক্ত্রে প্রযোজ্য শর্ত হল:

(A)
$$\Delta H < 0$$
, $\Delta S < 0$

(B)
$$\Delta H > 0, \Delta S > 0$$

(C)
$$\Delta H > 0$$
, $\Delta S < 0$

(D)
$$\Delta H < 0, \Delta S > 0$$

 If 1 ml 1(M) HCl solution is added to 100 ml of a buffer, made of CH₃COOH and CH₃COONa of strength 0.1 (M) for each, the change of pH of buffer is

(Given: $pK_a(CH_3COOH) = 4.74$)

প্রতিটি $0.1~(\mathrm{M})$ গাঢ়ত্বের $\mathrm{CH_3COOM}$ ও $\mathrm{CH_3COOM}$ a-এর মিশ্রণে তৈরী $100~\mathrm{ml}$ বাফারের মধ্যে $1~\mathrm{ml}~1(\mathrm{M})~\mathrm{HCl}$ দ্রবণ যোগ করলে ওই বাফারের pH -এর পরিবর্তণ হবে :

(দেওয়া আছে : $pK_a(CH_3COOH) = 4.74$)

(A) + 0.09

(B) + 0.009

(C) -0.009

- (D) -0.09
- 9. The concentration of an aqueous solution of a weak acid, HA in its is 0.1(M). If this solution is diluted 4 times, the degree of dissociation of the acid becomes 'n' times to that of its initial solution. Then the value of 'n' is

মৃদু অ্যাসিড HA-এর জলীয় দ্রবণের গাঢ়ত 0.1(M)। ওই অ্যাসিড দুরুলকৈ 4 তণ লঘু করলে HA-এর বিয়োজন মাত্রা প্রারম্ভিক বিয়োজন মাত্রার 'n' তণ হয়। তার্থনি 'n' -এর মান হল:

(A) 3

(B)

(C) 1.5

- (D) 0.5
- 10. If x g of an electrolyte, AB (molecular weight = y) is dissolved in 500 g of water, depression of freezing point of the resulting solution becomes θ K. The degree of ionisation of the electrolyte, AB is [Given: Molal depression of freezing point of water is K_f (K kg mol⁻¹)]

x g তড়িৎবিশ্লেষ্য AB-কে (আনবিক গুরুত্ব = y) 500 g জলে দ্রবীভূত করলে দ্রবণের হিমাঙ্কের অবনমন হয় θ K। সেক্ষেত্রে AB-এর আয়নায়ন মাত্রা হল: ।প্রদন্ত: জলের হিমাঙ্কের মোলাল অবনমন হল K_f (K kg mol $^{-1}$)]

(A) $\frac{\theta K_f}{2xy} + 1$

(B) $\frac{\theta y}{2xK_f} + 1$

(C) $\frac{\theta y}{2xK_f} - 1$

(D) $\frac{\theta K_f}{2xy} - 1$

 If the reduction potential for the following half-cell is - 0.3 V at 25 °C then pH of the solution of H₂SO₄ in the half cell is

$$Half cell \rightarrow Pt(s) \mid H_2(g, latm) \mid H_2SO_4(aq)$$

 25° C উষ্ণতোয় নিমুপ্রদত্ত অর্দ্ধকোশটির বিজারণ বিভব – $0.3~\rm V$ হলে ওই অর্দ্ধকোশে $\rm H_2SO_4$ দ্রবণের $\rm pH$ –এর মান হল:

অর্দ্ধকোশ \rightarrow Pt(s) | $H_2(g,latm)$ | $H_2SO_4(aq)$

(A) 7.00

(B) 10.16

(C) 2.54

(D) 5.08

12. At a definite temperature, molar conductivity of the solution of acetic acid at infinite dilution is y Ohm⁻¹cm²mol⁻¹ and that for a solution of 0.001 (M) acetic acid at the same temperature is x Ohm⁻¹cm²mol⁻¹. The pH of the later solution is

একটি নির্দিষ্ট উচ্চতায় অ্যাসেটিক অ্যাসিডের অসুীম লঘূত্বের দ্রবণের মোলার পরিবাহীতাঙ্ক হল y $Ohm^{-1}cm^2mol^{-1}$ । একই উচ্চতায় অ্যাসেটিক অ্যাসিডের 0.001 (M) দ্রবণের মোলার পরিবাহীতাঙ্ক হল x $Ohm^{-1}cm^2mol^{-1}$ । তাহলে দ্বিতীয় দ্রবণের pH-এর মান কত ?

(A) $3 - \log_{10} \left(\frac{x}{y} \right)$

(B) $3 + \log_{10} \left(\frac{x}{y} \right)$

(C) $\log_{10}\left(\frac{x}{y}\right)$

(D) $\log_{10} \left(\frac{y}{r} \right)$

13. For a first order reaction, A → Products, concentration of A becomes a^x C₀, a^y C₀ and a^z C₀ at times t, 2t and 4t respectively. If C₀ = initial concentration of A and 'a' is a constant and 0 < a < 1, the relation among x, y and z is</p>

একটি প্রথমক্রম বিক্রিয়া $A \to$ বিক্রিয়াজাত পদার্থ-এর ক্ষেত্রে t, 2t ও 4t সময়ে A-এর গাঢ়ত্ব হয় যথাক্রমে $a^x C_0$, $a^y C_0$ ও $a^z C_0$ । A-এর প্রারম্ভিক গাঢ়ত্ব দি C_0 হয়, 'a' যদি ধ্রুবক হয়, এবং 0<a<1 হয় তাহলে x,y ও z মধ্যে সম্পর্কটি হল :

 $(A) \quad x = 2y = 4z$

(B) $x = \frac{y}{2} = \frac{z}{4}$

(C) 4x = 2y = z

(D) $\frac{x}{4} = \frac{y}{2} = z$

14.		262 mg of xenon gas reacts completely with 152 mg fluorine gas to form a mixture of XeF_2 and XeF_6 in the mole ratio of m: n (At. Wt. of $Xe = 131$, $F = 19$). The ratio m: n is							
	262 এবং	62 mg জেনেন গ্যাস ও 152 mg ফ্লোরিন গ্যাস সম্পূর্ণ রূপে বিক্রিয়া করে m : n মোল অনুপাতে XeF ₂ বাবং XeF ₆ -এর একটি মিশ্রণ তৈরী করে। Xe ও F-এর পারমাণবিক শুরুত্ মথাক্রমে 131 ও 19 বিলে m : n অনুপাতটি হল :							
		1:3	(B)	2:1					
		1:1		1:2					
15.	Which of the following is correct when solid NH4Cl decomposes on heating to give NH3 and HCl gas? যখন তাপ প্রয়োগে NH4Cl-এর বিভাজন হয়ে NH3 ও HCl গ্যাস উৎপন্ন হয় সেক্ষেত্রে নীচের কোন্সম্পর্কটি সঠিক ?								
		S0234 (S803-001-41)	(D)	AIT - 0 AC - 0					
		$\Delta H > 0, \Delta S > 0$		$\Delta H > 0, \Delta S < 0$					
	(C)	$\Delta H < 0, \Delta S < 0$	(D)	$\Delta H < 0, \Delta S > 0$					
16.		Out of the three aqueous solutions of (a) CH ₃ COONH ₄ , (b) CH ₃ COONa and (c) NaHCO ₃ the buffer solutions are:							
	(A)	only (a)	(B)	(a) and (b)					
		(b) and (c)	(D)	(a) and (c)					
		फिन्कि करनेश मुख्य (a) CH COONH (b) CH COONa (c) NaHCO , जुड शांश डाकांड							
	দ্ৰবণ	বণ কোন্টি ?							
	(A)	তধুমাত্র (a)	(B)	(a) 9 (b)					
	(C)	(b) 3 (c)	(D)	(a) S (c)					
17.	Whi	Which of the following statements is correct? (A) Both H ₃ PO ₃ and H ₃ BO ₃ are protic acids							
	(B)	H ₃ PO ₃ is a protic acid but H ₃ BO ₃ is not							
	(C)								
	(D)	Neither H ₃ PO ₃ nor H ₃ BO ₃ are protic acids							
	নীচের	চর কোন্ উক্তিটি সঠিক ?							
	(A)	H,PO, ও H,BO, উভয়েই প্রোটিক অ্যাসিড							
	(B)	H ₃ PO ₃ প্রোটিক অ্যাসিড কিন্তু H ₃ BO ₃ প্রোটিক অ্যাসিড নয়							
	(C)								
	(D)	H,PO, বা H,BO, কোনোটিই প্রোটিক							
Chemistry			7	A					
	- 5								

Which of the following represents the composition of carnallite mineral?						
নীচের কোন্টি কার্নালাইট খনিজের গঠন নির্দেশ করে?						
(A)	K ₂ O.Al ₂ O ₃ .6SiO ₂	(B)	KNO ₃			
(C)	KCl.MgCl ₂ .6H ₂ O	(D)	$\rm K_2SO_4.MgSO_4.MgCl_2.6H_2O$			
A weak monobasic acid ($K_a = 10^{-5}$) is being titrated with NaOH solution. The pH at the						
point of one third neutralization of the acid will be						
একটি	মৃদু একক্ষারীয় অ্যাসিডকে (K _a = 10	5) NaOH	দ্রবণ দ্বারা প্রশমিত করা হচেছ। যখন			
অ্যাসিভের এক-তৃতীয়াংশ প্রশমিত হবে তখন pH-এর মান হবে						
(A)	5 – log 3	(B)	5 – log 6			
(C)	5 – log 2	(D)	$5 + \log 2 - \log 3$			
	8					
In a cubic unit cell, seven of the eight corners are occupied by atoms 'A' and centres of						
faces are occupied by atoms 'B'. The general formula of the compound is:						
একটি একক ঘনকাকার কোশের আটটির মধ্যে সাজটি কোণে 'A' পরমাণু অবস্থিত এবং প্রতিটি তলের						
কেন্দ্রে 'B' পরমাণু অবস্থিত। যৌগটির সাধারণ সঙ্কেত হল:						
(A)	A_7B_6		$A_{7}B_{24}$			
(C)	$A_{7}B_{12}$	(D)	$A_{24}B_{7}$			
A diatomic molecule has a dipole moment of 1.2 D. If its bond distance is 1.0 A°, what fraction of an electronic charge 'e' exists on each atom ?						
একটি দ্বিপরমাণুক অণুর দ্বিমেরু ভ্রামকের মান 1.2 D। যদি ইহার বন্ধন দূরত্ব 1.0 A° হয় তাহলে						
শতকরা কত অংশ ইলেক্ট্রনীয় আধান 'e' প্রতিটি পরমাণুর উপর বর্তমান ?						
(A)	12% of 'e'	(B)	18% of 'e'			
(C)	25% of 'e'	(D)	29% of 'e'			
emistry		8				
	নীচের (A) (C) A we point একটি আসিন (A) (C) In a faces একটি কেন্দে (A) (C) A di fract একটি শতব	নীচের কোন্টি কার্নালাইট খনিজের গঠন নির্দেশ (A) $K_2O.Al_2O_3.6SiO_2$ (C) $KCl.MgCl_2.6H_2O$ A weak monobasic acid $(K_a=10^{-5})$ is be point of one third neutralization of the acid একটি মৃদু একক্ষারীয় অ্যাসিডকে $(K_a=10^{-5})$	নীচের কোন্টি কার্নালাইট খনিজের গঠন নির্দেশ করে? (A) $K_2O.Al_2O_3.6SiO_2$ (B) (C) $KCl.MgCl_2.6H_2O$ (D) A weak monobasic acid ($K_a = 10^{-5}$) is being titrated point of one third neutralization of the acid will be uকটি মৃদু একন্ধারীয় অ্যাসিডকে ($K_a = 10^{-5}$) NaOH আ্যাসিডের এক-তৃতীয়াংশ প্রশমিত হবে তখন pH -এর মান (A) $5 - \log 3$ (B) (C) $5 - \log 2$ (D) In a cubic unit cell, seven of the eight corners are faces are occupied by atoms 'B'. The general formula uকিট একক ঘনকাকার কোশের আটির মধ্যে সাজটি কো কেন্দ্রে 'B' পরমাণু অবন্থিত। যৌগটির সাধারণ সঙ্কেত হব (A) A_7B_6 (B) (C) A_7B_{12} (D) A diatomic molecule has a dipole moment of 1.21 fraction of an electronic charge 'e' exists on each at urbo a face of the eight corner of the eight corner of the eight corners are faces are occupied by atoms 'B'. The general formula urbo urbo urbo urbo urbo urbo urbo urbo			

22	 White phosphorous when reacted with NaOH solution gives PH₃ and NaH₂PO₂. This reaction is an example of 							
) oxidation of phosphorous	(B) reduction of phosphorous				
	(C)) disproportionation of phosphorous) acid base reaction				
	NaOH দ্রবণের সাথে সাদা ফস্ফরাসের বিক্রিয়ায় PH_3 ও NaH_2PO_2 উৎপক্ষ হয়। বিক্রিয়াটি যে ধরনের বিক্রিয়ার উদাহরন তা হল:							
	(A)) ফস্ফরাসের জারণ						
	(B)	ফস্ফরাসের বিজারণ						
	(C)	(C) ফস্ফরাসের অসমবিয়োজন (disproportionation)						
	(D)							
23.	The first ionisation enthalpy of group 13 elements follows the order:							
	গুপ 13-এর মৌলগুলির প্রথম আয়নীয় এন্থ্যালপির সঠিক ক্রম হল:							
		B > Al > Ga > In > Tl		B > Ga > Al > In > Tl				
	(C)	B > Ga > Al > Tl > In		B > Tl > Ga > Al > In				
24.	Pick out the wrong reaction							
	ভূল রাসায়নিক বিক্রিয়াটি চিহি৽ত কর							
	(A)	(A) $2\text{MnO}_4^- + 5\text{C}_2\text{O}_4^{2^-} + 16\text{H}^+ \rightarrow 2\text{Mn}^{2^+} + 10\text{CO}_2 + 8\text{H}_2\text{O}$						
	(C)	2MnO ₂ + 4KOH + O ₂ \rightarrow 4KMnO ₄ + 2H ₂ Q 2Na ₂ CrO ₄ + 2H ⁺ \rightarrow Na ₂ Qr ₂ Q ₇ + 1Na + H ₂ Q						
	(D)							
25.	Two elements P and Q having atomic masses 75 and 16 respectively combine to give a compound having 75.8% of P. The formula of the compound is							
	যথাক্রমে 75 ও 16 পারমাণবিক ভর বিশিষ্ট দুটি মৌল P ও Q যুক্ত হয়ে একটি যৌগ গঠন করে যার মধ্যে P থাকে 75.8%. সেক্ষেত্রে যৌগটির সঙ্কেত হবে:							
	(A)	PQ		P_2Q				
	(C)	P_2Q_3	D)	P_2Q_2				
Chem	istry	9		A				

26. The Schrodinger wave equation for H-atom is $\psi_{2S} = \frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_0}\right)^{\frac{3}{2}} \left(2 - \frac{r}{a_0}\right) e^{-r/a_0}$, where a_0 is Bohr's radius. If the radial node in 2s be at r_0 , then r_0 would be equal to:

H-পরমাণুর ক্ষেত্রে শ্রোডিঞ্জার সমীকরণটি হ'ল $\psi_{2S} = \frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_0}\right)^{3/2} \left(2 - \frac{r}{a_0}\right) e^{-r/a_0}$, a_0 হ'ল বোর কক্ষের ব্যাসার্ধ। 2s কক্ষকের রেডিয়াল নোড (radial node) r_0 -তে হলে, r_0 -এর মান হবে :

(A) $\frac{a_0}{2}$

(B) $\sqrt{2} a_0$

(C) 2a₀

- (D) $\frac{a_0}{\sqrt{2}}$
- 27. The oxoacid of phosphorous having oxidation state + 4 is :
 - (A) Phosphoric acid

(B) Phosphorous acid

(C) Hypo-phosphoric acid

- (D) Meta Phosphoric acid
- + 4 জারণন্তর বিশিষ্ট ফসফরাসের অক্সোঅ্যাসিডটি হল :
- (A) ফসফরিক আসিড

(B) ফসফরাস অ্যাসিড

(C) হাইপোফসফরিক আসিড

- D) মেটাফসফরিক অ্যাসিড
- 28. A radioactive sample has initial activity of 28 dpm. Half an hour later its activity is 14 dpm. How many atoms of nuclide were present initially?

একটি তেজক্রিয় নমূনার প্রাথমিক সক্রিয়তা হল 28 dpm। আধঘন্টা পরে তার সক্রিয়তা হল dpm। প্রাথমিক অবস্থায় নিউক্লাইডটির কতগুলি পরমাণু ছিল ?

(A) 200

(B) 400

(C) 600

- (D) 1216
- 29. Which of the following ions has the highest magnetic moment?
 নীচের কোন আয়নটির চৌম্বক ভামক সর্বাধিক?
 - (A) Gd3+

(B) Mn2+

(C) Fe3+

(D) Cr6+

30. The correct order with increasing O – O bond length in KO_2 , O_2 and $O_2[AsF_6]$ is :

 $\mathrm{KO_2},\,\mathrm{O_2}$ ও $\mathrm{O_2}[\mathrm{AsF_6}]$ যৌগগুলিতে $\mathrm{O-O}$ বন্ধন দৈর্ঘ্যের ক্রমবর্দ্ধমান ক্রমটি হ'ল ?

- (A) $O_2 > O_2[AsF_6] > KO_2$
- (B) $O_2[AsF_6] < O_2 < KO_2$
- (C) $O_2 < KO_2 < O_2[AsF_6]$
- (D) $KO_2 > O_2[AsF_6] > O_2$
- 31. The geometry and bond angle of SO₃²⁻ are best described as:
 - (A) pyramidal, 107°

(B) tetrahedral, 109°

(C) bent, 104°

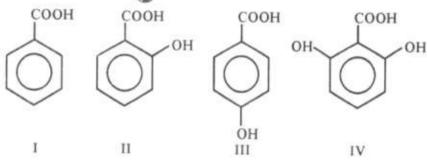
(D) trigonal planar, 120°

SO32-এর গঠন এবং বন্ধন কোণ হ'ল:

(A) পিরামিডিয়, 107°

(B) চতুক্তলকীয়, 109°

(C) কৌণিক, 104°


- (D) ত্রিকোণীয় সমতলীয়, 120°
- 32. In which of the following pairs, both the ions are coloured in aqueous solution ? নীচের আয়ন জোড়াগুলির মধ্যে কোন্ জোড়াটি জলীয় মাধ্যমে রঙীন ?
 - (A) Ni2+, Ti3+

(B) Sc³⁺, Ti³⁺

(C) Sc3+, Co2+

- (D) Ni2+, Cu+
- 33. The correct order of the strength of the following acids is

নিমুলিখিত অ্যাসিডগুলির শক্তির সঠিক ক্রম হল

 $(A) \quad IV > II > I > III$

(B) IV > II > III > I

(C) I>II>II>IV

(D) II > III > I > IV

- 34. The total number of stereoisomers and their optical activity for the molecule
 CH₃ CH(OH) CH(¹⁸OH) CH₃ will be
 - (A) 4, all active
 - (B) 3, two active and one inactive
 - (C) 3, all active
 - (D) 2, one active and one inactive

 ${
m CH}_3 - {
m CH}({
m OH}) - {
m CH}(^{18}{
m OH}) - {
m CH}_3$ অণুটির মোট স্টিরিওআইসোমারের সংখ্যা এবং তাদের আলোকসক্রিয়তা হল

- (A) 4, সকলেই আলোকসক্রিয়
- (B) 3, দৃটি আলোকসক্রিণয় এবং একটি আলোকনিজিণয়
- (C) 3, সকলেই আলোকসক্রিয়
- (D) 2, একটি আলোকসক্রিয় এবং একটি আলোকনিন্দ্রিয়
- Ph CO CH₃, when heated with concentrated HCl gives aldol condensation and the product formed is

গাঢ় HCI সহকারে উত্তপ্ত করলে (১৯ CO-CH, অ্যালডল বিক্রিয়া দেয় এবং উৎপন্ন যৌগটিহল:

(A)
$$Ph - CO - CH = C < \frac{Ph}{CH_3}$$

(B)
$$Ph - CO - CH_2 - C(OH) < Ph \\ CH_3$$

(D) None of these / কোনটিই নহে

36. Cl Br 1. Mg in dry ether 2. CH₃CHO 3. NH₄Cl
$$H_2O$$

Identity the product of the above reaction:

উপরের বিক্রিয়াটির বিক্রিয়াজাত পদার্থটি সনাক্ত কর:

(A)
$$CI$$
 CH_3
 CH_3

(C) HO
$$\stackrel{\text{CH}_3}{\longrightarrow}$$
 $\stackrel{\text{CH}_3}{\longrightarrow}$ OH (D) $\stackrel{\text{CH}_3}{\longrightarrow}$ OH

37. The best way to prepare neopentyl bromide, Me₃CCH₂B₅ is

নিওপেন্টাইল ব্রোমাইড, Me3CCH2Br তৈরী করার সর্বোৎকৃষ্ট উপায়টি হল

(A)
$$Me_3CCH_2OH \xrightarrow{PBr_3}$$

(B)
$$Me_4C \xrightarrow{Br_2} h\nu$$

(C)
$$Me_3CCH_2COOH \xrightarrow{1.aq.KOH} \xrightarrow{2.aq.AgNO_3} \xrightarrow{3.Br_2} \xrightarrow{CCl_4.\Delta}$$

(D) $Me_3CCH_2OH \xrightarrow{HBr} \Delta$

Chemistry

38. Which hydrogen (among the marked ones) is the most acidic in the conjugate acid of aspartic acid?

চিহি-ত হাইড্রোজেনগুলির মধ্যে কোনটি অ্যাসপারটিক অ্যাসিডের অনুবন্ধী অ্যাসিডের মধ্যে সর্বাধিক আম্লিক ?

$$0 \xrightarrow{H} H_{C} H_{C}$$

$$0 \xrightarrow{H_{A}} H_{C}$$

$$0 \xrightarrow{H_{A}} H_{C}$$

(A) H_A

(B) H_B

(C) H_C

(D) H_D

39. In which of the following organic compound(s), rotation around C - C bond is possible?

- I. Ethane
- II. Ethene
- III. Acetylene

IV. Allene

নিমুলিখিত কোন জৈব যৌগ্ৰে (বা যৌগতলিতে) C – C বন্ধন সাপেকে ঘূর্ণন সম্ভব ?

- ইথেন
- া ইথিন
- আসিটিলিন
- IV. আলি

(A) II only

(B) I and IV

(C) I only

(D) I and III

40. An organic compound (X) with molecular formula, C₅H₁₂O, evolves hydrogen gas upon addition of Na metal. The compound (X) immediately produces turbidity upon treatment with conc. HCl and anhydrous ZnCl₂. Predict the structure of 'X'.

একটি জৈবযৌগ (X), যাহার আণবিক সংকেত $C_5H_{12}O$, Na ধাতুর সঙ্গে বিক্রিয়া করে হাইড্রোজেন গ্যাস নির্গত হয়। উক্ত জৈবযৌগটি (X) গাঢ় HCl ও অনার্দ্র $ZnCl_2$ র সঙ্গে মেশালে তৎক্ষণাৎ দ্রবণটি ঘোলাটে হয়ে যায়। 'X' যৌগটির গঠন সংকেতটি লেখ।

(A) $H_3C - O - C(CH_3)_3$

- (B) (H₃C)₂ CH CH₂ CH₂ OH
- (C) (H₃C)₂ C(OH) CH₂ CH₃
- (D) (H₃C)₃ C CH₂ OH

Chemistry

14

A

41. Arrange the following carbocations in correct order of stability.

নিমুলিখিত কার্বোক্যাটায়নগুলিকে স্থায়িত্বের ক্রম অনুযায়ী সাজাও।

(A) I < II < III < IV

II < I < III < IV(B)

(C) II < I < IV < III

- (D) III < IV < II < I</p>
- An alkyne (X) forms red precipitate with ammoniacal cuprous chloride and it produces 42. propanoic acid as one of the products upon ozonolysis. 'X' produces a dibromo compound (Y) when treated with two equivalents of HBr. Identify the structure of একটি অ্যালকাইন (X) অ্যামোনিয়া যুক্ত কিউপ্রাস ক্লোরাইড এর মিশ্রণে লাল বর্ণের অধ্বংক্ষেপ তৈরী

করে এবং ইহা ওজোনোলিসিস বিক্রিয়ার মাধ্যমে অন্যতম উৎপন্ন পদার্থ রূপে প্রপানোয়িক অ্যাসিড গঠন করে। 'X' যৌগটি দুই তুল্যাঙ্ক HBr এর সহিত বিক্রিয়া করে একটি ডাই-ব্রোমো যৌগ

তৈরী করে। 'X' ও 'Y' এর গঠন সনাক্ত কর।

- (A) 1 Butyne and 2, 2 dibromobutane
- 1 Butyne and 1, 2 dibromobutarie
- (C) 1 Pentyne and 2 dibromopentene
- (D) 1 Pentyne and 2, 3 dibromopentene
- 43. The major product formed in the following reaction is

নিমে প্রদত্ত বিক্রিয়ায় উৎপন্ন প্রধান যৌগটি হল:

OH

Zn (Hg)

conc HCl
$$\Delta$$

Chemistry

44. Which of the following is the **incorrect** resonance structure of acetamidinium ion ?
নিম্নের কোনটি অ্যাসিট্যামিডিনিয়াম আয়নের সঠিক সংস্পদ্দন গঠন সংক্রেত নয় ?

$$(A) \qquad \bigoplus_{NH_2} \qquad \qquad (B) \qquad \bigoplus_{NH_2} \qquad \qquad (C) \qquad \bigoplus_{NH_3} \qquad \qquad (D) \qquad \bigoplus_{NH_2} \qquad (D) \qquad \bigoplus_{NH_2} \qquad \qquad (D) \qquad \bigoplus_{NH_2} \qquad (D) \qquad (D) \qquad \bigoplus_{NH_2} \qquad (D) \qquad (D) \qquad \bigoplus_{NH_2} \qquad (D) \qquad (D)$$

45. Identify the structure of 'X' and 'Y'.

$$(A) \quad X = \begin{pmatrix} OH \\ CO_2H \end{pmatrix} \begin{pmatrix} OH \\ Y = \begin{pmatrix} OH \\ CO_2H \end{pmatrix} \begin{pmatrix} OH \\ Y = \begin{pmatrix} OH \\ CO_2H \end{pmatrix} \begin{pmatrix} OH \\ Y = \begin{pmatrix} OH \\ OH \end{pmatrix} \begin{pmatrix} OH \\ Y = \begin{pmatrix} OH \\ OH \end{pmatrix} \begin{pmatrix} OH \\ OH \end{pmatrix} \begin{pmatrix} OH \\ Y = \begin{pmatrix} OH \\ OH \end{pmatrix} \begin{pmatrix} OH \\ OH \end{pmatrix} \begin{pmatrix} OH \\ Y = \begin{pmatrix} OH \\ OH \end{pmatrix} \begin{pmatrix} OH \\ OH \end{pmatrix} \begin{pmatrix} OH \\ Y = \begin{pmatrix} OH \\ OH \end{pmatrix} \begin{pmatrix} OH \\ OH \end{pmatrix} \begin{pmatrix} OH \\ Y = \begin{pmatrix} OH \\ OH \end{pmatrix} \begin{pmatrix} OH \\ OH \end{pmatrix} \begin{pmatrix} OH \\ Y = \begin{pmatrix} OH \\ OH \end{pmatrix} \begin{pmatrix} OH \\ OH \end{pmatrix} \begin{pmatrix} OH \\ Y = \begin{pmatrix} OH \\ OH \end{pmatrix} \begin{pmatrix} OH \\ OH \end{pmatrix} \begin{pmatrix} OH \\ OH \end{pmatrix} \begin{pmatrix} OH \\ Y = \begin{pmatrix} OH \\ OH \end{pmatrix} \begin{pmatrix} OH \\ O$$

- 46. Arrange the following compounds in increasing order of their reactivity towards a nucleophile.
 - I. Formaldehyde

II. p- Methoxybenzaldehyde

III. Acetaldehyde

IV. Benzaldehyde

নিমুলিখিত যৌগগুলিকে নিউক্লিওফাইলের প্রতি সক্রিয়তার উর্দ্ধক্রম অনুসারে সাজাও।

I. ফরম্যালডিহাইড

II. p- মিথক্সিবেন্জালডিহাইড

III. আসিট্যালডিহাইড

IV. বেনজালডিহাইড

 $(A) \quad I < III < II < IV$

(B) II < I < IV < III

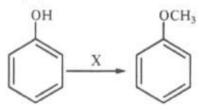
(C) II < IV < III < I

- (D) II < III < IV < I
- 47. Which of the following pair of structures are enantiomeric pair ?

নিচের কোন জ্যোড়টি পরস্পর এনানসিওমার ?

$$(A) \begin{array}{c} H \\ CH_3 \\ H \\ CI \\ CH_3 \\ (B) \\ H \\ CI \\ CH_3 \\ (C) \\ (C)$$

Chemistry


48. Which of the following bases does not occur in RNA?
নিমুলিখিত কোন ক্ষারকটি RNA এর মধ্যে থাকে না ?

$$(A) \bigvee_{H}^{NH_2} (B) \bigvee_{H}^{NH_2} (C) (D) \bigvee_{H}^{NH} (D)$$

49. Considering following reaction sequence the compound Y is

50. Identify the reagent (X) in the following reaction :

নিমুলিখিত বিক্রিয়াটির বিক্রিয়ক (X) সনাক্ত কর:

(A) CH₃I

(B) CH₃MgBr

(C) CH₃OH

(D) CH₂N₂

with building p

The state of the s