PHYSICS

- A positively charged glass rod is brought near uncharged metal sphere, which is mounted on an insulated stand. If the glass rod is removed, the net charge on the metal sphere is
 - (A) Zero
- (B) 1.6×10^{-19} C
- (C) Positive charge
- (D) Negative charge
- In the situation shown in the diagram, magnitude of $q \ll |Q|$ and $r \gg a$. The net force on the free charge -q and net torque on it about O at the instant shown are respectively [p = 2aQ is the dipole moment]

(A) $\frac{1}{4\pi \,\epsilon_0} \frac{pq}{r^2} \hat{k}, \frac{1}{4\pi \,\epsilon_0} \frac{pq}{r^3} \hat{i}$

- (B) $-\frac{1}{4\pi \epsilon_0} \frac{pq}{r^2} \hat{k}, -\frac{1}{4\pi \epsilon_0} \frac{pq}{r^3} \hat{i}$
- (C) $\frac{1}{4\pi \varepsilon_0} \frac{pq}{r^3} \hat{i}, + \frac{1}{4\pi \varepsilon_0} \frac{pq}{r^2} \hat{k}$
- (D) $\frac{1}{4\pi \, \epsilon_0} \frac{pq}{r^3} \stackrel{\wedge}{i}, -\frac{1}{4\pi \, \epsilon_0} \frac{pq}{r^2} \stackrel{\wedge}{k}$
- 3. Pressure of ideal gas at constant volume is proportional to
 - (A) average potential energy of the molecules (B) total energy of the gas
 - (C) average kinetic energy of the molecules (D) force between the molecules
- 4. A block of mass m is connected to a light spring of force constant k. The system is placed inside a damping medium of damping constant b. The instantaneous values of displacement, acceleration and energy of the block are x, a and E respectively. The initial amplitude of oscillation is A and ω' is the angular frequency of oscillations. The incorrect expression related to the damped oscillations is
 - $(A) \omega' = \sqrt{\frac{k}{m} \frac{b^2}{4m^2}}$

(B) $E = \frac{1}{2} kA^2 e^{-\frac{bt}{m}}$

(C) $m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = 0$

- (D) $x = Ae^{-\frac{b}{m}}\cos(\omega't + \phi)$
- 5. The speed of sound in an ideal gas at a given temperature T is ν . The rms speed of gas molecules at that temperature is ν_{rms} . The ratio of the velocities ν and ν_{rms} for helium and oxygen gases are X and X' respectively. Then $\frac{X}{X'}$ is equal to
 - $(A) \ \frac{5}{\sqrt{21}}$
- (B) $\sqrt{\frac{5}{21}}$
- (C) $\frac{21}{5}$

(D) $\frac{21}{\sqrt{5}}$

(A) $q[V_A + Ex]$

(B) $q[Ex - V_A]$

(D) $q[V_A - Ex]$

A parallel plate capacitor of capacitance C₁ with a dielectric slab in between its plates is 7. connected to a battery. It has a potential difference V₁ across its plates. When the dielectric slab is removed, keeping the capacitor connected to the battery, the new capacitance and potential difference are C2 and V2 respectively. Then,

(A)
$$V_1 > V_2$$
, $C_1 > C_2$ (B) $V_1 < V_2$, $C_1 > C_2$ (C) $V_1 = V_2$, $C_1 > C_2$ (D) $V_1 = V_2$, $C_1 < C_2$

A cubical Gaussian surface has side of length a = 10 cm. Electric field lines are parallel to 8. x-axis as shown. The magnitudes of electric fields through surfaces ABCD and EFGH are 6kNC⁻¹ and 9kNC⁻¹ respectively. Then the total charge enclosed by the cube is

[Take $\varepsilon_0 = 9 \times 10^{-12} \, \text{Fm}^{-1}$]

(A) 1.35 nC

(B) -1.35 nC

(C) 0.27 nC

(D) -0.27 nC

Electric field at a distance 'r' from an infinitely long uniformly charged straight conductor. 9. having linear charge density λ is E_1 . Another uniformly charged conductor having same linear charge density λ is bent into a semicircle of radius 'r'. The electric field at its centre is E₂. Then

(A) $E_2 = \frac{E_1}{E_1}$

MY COLOR

(B) $E_1 = E_2$

(C) $E_1 = \pi r E_2$

(D) $E_2 = \pi r E_1$

Five capacitors each of value 1µF are connected as shown in the figure. The equivalent 10.

(B) $2 \mu F$ (A) $1 \mu F$ Space For Rough World

(D) 3 uF

				4			
11.	For a given electric cand their mobility is μ			creased at	constant	trons in a copper wire is temperature	٧
	(A) v_d remains the sa			(B) v c	lecreases,	μ remains the same	
e e	(C) v_d remains the sa			(D) v_a	ncreases.	μ remains the same	
4.0							
12.	cells wrongly connec current through the re	ted. A resistor sistor?	internal of 10 Ω	is connec	cted to th	connected in series with the combination. What is	th
	(A) 2.4 A	(B) 0.6 A	e o Way	(C) 1.2	A	(D) 1.8 A	
13.	The equivalent resista				n the follo	wing circuit is	
		$A \stackrel{2\Omega}{\longleftarrow}$	$\frac{2\Omega}{1}$	$\frac{2\Omega}{}$			
			ξ 2 Ω	${2 \Omega}$	2 Ω		
)		, B•	L			The state of the s	
	(A) 5.5 Ω	(B) 0.05Ω	2 Ω	$(C)^{2}\Omega$	1 (8)	(D) 0.5 Ω	
14.			celeration			hown. The charged part	ic
	undergoes increase in	its speed				no win. The onargod part	L
			RFO				
			D	D_2			
	* · · · · · · · · · · · · · · · · · · ·				an in gi	7 4 at 5 %	
				1.16	· · · · · · · · · · · · · · · · · · ·		
		- Line or the commence of					
V		7 4	©				
			\overrightarrow{B}				
y.	(A) Only inside D ₂	Flig.		(B) Insi	de D ₁ , D ₂	and the gaps	
ri ya sa	(C) Only inside D ₁	ย์ เม่าจัดสัตร์ โ.ม.		(D) Onl	y in the g	ap between D ₁ and D ₂	
15.	The resistance of a ca (A) red	(13)		5%. The (C) orar	colour of	the third band is	
16.	The four bands of a	colour coded r	esistor ar	e of the c	oloure one	v (D) gold and gold. I	ħ
u / 54						ly, red, gold and gold.	•
	(A) $82\Omega \pm 10\%$	(B) $8.2\Omega \pm 5$		(C) 82Ω	± 5%	(D) $5.2\Omega \pm 5\%$	
17.	A wire of resistance current through the current I is	R is connecte circuit is I. In	d across time t, t	a cell c		I internal resistance r. The battery to establish the	he
*	(A) $\frac{\varepsilon^2 t}{r}$	(B) IRt		(C) I ² Rt	,		Control of the Contro

18.	The Curie temperatures of Cobalt and iron are 1400 K and 1000 K respectively. At $T = 1600 \text{ k}$ the ratio of magnetic susceptibility of Cobalt to that of iron is
	(A) 3 (B) $\frac{7}{5}$ (C) $\frac{5}{7}$ (D) $\frac{1}{3}$
19.	The torque acting on a magnetic dipole placed in uniform magnetic field is zero, when the angle between the dipole axis and the magnetic field is (A) 45° (B) 60° (C) 90° (D) zero
	The horizontal component of Earth's magnetic field at a place is 3×10^{-5} T. If the dip at that place is 45°, the resultant magnetic field at that place is
	(A) $\frac{3}{\sqrt{2}} \times 10^{-5} \text{T}$ (B) $\frac{3}{2} \sqrt{3} \times 10^{-5} \text{T}$ (C) $3\sqrt{2} \times 10^{-5} \text{T}$ (D) $3 \times 10^{-5} \text{T}$
21.	A proton and an alpha-particle moving with the same velocity enter a uniform magnetic field with their velocities perpendicular to the magnetic field. The ratio of radii of their circular paths is (A) 1:4 (B) 4:1 (C) 1:2 (D) 2:1
22.	A moving coil galvanometer is converted into an ammeter of range 0 to 5 mA. The galvanometer resistance is 90 Ω and the shunt resistance has a value of 10 Ω . If there are 50 divisions in the galvanometer-turned-ammeter on either sides of zero, its current sensitivity is (A) 1×10^5 A/div (B) 2×10^4 A/div (C) 1×10^5 div/A (D) 2×10^4 div/A
23.	A positively charged particle of mass m is passed through a velocity solector. It moves
	horizontally rightward without deviation along the line $y = \frac{2mv}{qB}$ with a speed v. The
	electric field is vertically downwards and magnetic field is into the plane of the paper. Now, the electric field is switched off at $t=0$. The angular momentum of the charged particle πm .
; *	about origin O at $t = \frac{\pi m}{qB}$ is
	$\overrightarrow{q} \xrightarrow{\times} \overrightarrow{v} \times \times$
	$0 \downarrow \qquad \qquad \begin{array}{c} \times & \times & \times \\ \times & \times & \times \\ \end{array}$
y na	$*$ \times \times $\otimes_{\overrightarrow{B}}$ \times \times
	(A) $\frac{2mE^2}{qB^3}$ (B) zero (C) $\frac{mE^3}{qB^2}$ (D) $\frac{mE^2}{a^3}$

Space For Rough Work

(C) $\frac{\pi}{2}$ An ideal transformer has a turns ratio of 10. When the primary is connected to 220 V, 50 H 25. ac source, the power output is (A) $\frac{1}{10}$ the power input (B) equal to power input (C) zero (D) 10 times the power input The current in a coil changes from 2A to 5A in 0.3s. The magnitude of emf induced in the 26. coil is 1.0 V. The value of self-inductance of the coil is (A) 100 mH (B) 0.1 mH (D) 1.0 mH (C) 10 mH A metallic rod of length 1 m held along east-west direction is allowed to fall down freely 27. Given horizontal component of earth's magnetic field $B_H = 3 \times 10^{-5}$ T. The emf induced in the rod at an instant t = 2s after it is released is $(Take g = 10 ms^{-2})$ (A) $3 \times 10^{-3} \text{ V}$ (B) $3 \times 10^{-4} \text{ V}$ (C) $6 \times 10^{-3} \text{ V}$ (D) $6 \times 10^{-4} \text{ V}$ A square loop of side 2 cm enters a magnetic field with a constant speed of 2 cm s = 18 28. shown. The front edge enters the field at t = 0s. Which of the following graph correctly depicts the induced emf in the loop? (Take clockwise direction positive) 2 cm

In series LCR circuit at resonance, the phase difference between voltage and current is

(D) zero

(A) π

For a given pair of transparent media, the critical angle for which colour is maximum?

(A) Red

(B) Blue

(C) Violet

(D) Green

30. An equiconvex lens made of glass of refractive index $\frac{3}{2}$ has focal length f in air. It is completely immersed in water of refractive index $\frac{4}{3}$. The percentage change in the focal length is

(A) 300% decrease

(B) 400% decrease

(C) 300% increase

(D) 400% increase

31. A point object is moving at a constant speed of 1 ms⁻¹ along the principal axis of a convex lens of focal length 10 cm. The speed of the image is also 1 ms⁻¹, when the object is at cm from the optic centre of the lens.

(A) 15

(B) 20

(C) 5

(D) 10

When light propagates through a given homogeneous medium, the velocities of 32.

(A) primary wavefronts are lesser than those of secondary wavelets.

(B) primary wavefronts are greater than or equal to those of secondary wavelets.

(C) primary wavefront and wavelets are equal.

(D) primary wavefront are larger than those of secondary wavelets.

Total impedance of a series LCR circuit varies with angular frequency of the AC source 33. connected to it as shown in the graph. The quality factor Q of the series LCR circuit is

(A) 2.5

34.

(A) 10^5 ms^{-1}

The ratio of the magnitudes of electric field to the magnetic field of an electromagnetic (B) 10^{-5} ms^{-1}

(C) 10^8 ms^{-1}

(D) 10⁻⁸ ms⁻¹

(D) 0.4

For a point object, which of the following always produces virtual image in air? 35.

(A) Plano-convex lens (B) Convex mirror

(C) Biconvex lens

(D) Concave mirror

- (A) $\frac{hv}{}$, v_0
- (B) $\frac{hv}{a}$, $-\frac{h}{a}$
- (C) $hv_1 hv_0$ (D) $\frac{h}{a}, -\frac{hv_0}{a}$
- In the Rutherford's alpha scattering experiment, as the impact parameter increases, the 37. scattering angle of the alpha particle
 - (A) is always 90°
- (B) decreases
- (C) increases
- (D) remains the same
- Three energy levels of hydrogen atom and the corresponding wavelength of the emitted 38. radiation due to different electron transition are as shown. Then.

- An unpolarised light of intensity I is passed through two polaroids kept one after the other 39. with their planes parallel to each other. The intensity of light emerging from second polaroid is $\frac{1}{4}$. The angle between the pass axes of the polaroids is (A) 0°
- In the Young's double slit experiment, the intensity of light passing through each of the two In the Young's double 3.2×10^{-2} Wm⁻². The screen-slit distance is very large in comparison with 40. double slits is 2×10^{-10} m. With slit-slit distance. The fringe width is β . The distance between the central maximum and a point P on the screen is $x = \frac{\beta}{3}$. Then the total light intensity at that point is
 - (A) $4 \times 10^{-2} \text{Wm}^{-2}$
- (B) $2 \times 10^{-2} \text{Wm}^{-2}$
- (C) $16 \times 10^{-2} \text{Wm}^{-2}$ (D) $8 \times 10^{-2} \text{Wm}^{-2}$
- A 60 W source emits monochromatic light of wavelength 662.5 nm. The number of photons 41. emitted per second is
 - (A) 2×10^{20}
- (B) 5×10^{26}
- (C) 2×10^{29}
- (D) 5×10^{17}

(D) 45°

Space For Rough Work

42.	When a p-n junction diode is in forward bias, which type of charge carriers flows in the connecting wire?
	(A) Ions (B) Protons (C) Holes (D) Free electrons
43.	A full-wave rectifier with diodes D_1 and D_2 is used to rectify 50 Hz alternating voltage. The diode D_1 conducts times in one second.
	(A) 25 (B) 75 (C) 50 (D) 100
44.	The truth table for the given circuit is
	$B \bullet A$
	(A) A B Y (B) A B Y (C) A B Y (D) A B Y
. 9	1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
45.	the emitted photons is (A) $2.56 \times 10^{-27} \text{ kg.m.s}^{-1}$ (B) $1.28 \times 10^{-11} \text{ kg.m.s}^{-1}$
	(C) $0.64 \times 10^{-27} \text{ kg.m.s}^{-1}$ (D) $1.28 \times 10^{-27} \text{ kg.m.s}^{-1}$
46.	In the following equation representing β -decay, the number of neutrons in the nucleus X is ${}^{210}_{83} \text{Bi} \longrightarrow X + e^{-1} + \overline{\nu}$
	(A) 127 (B) 125 (C) 84 (D) 126
47.	reaction is 5.5 MeV, calculate (B) 7.4 MeV (C) 4.5 MeV (D) 6.5 MeV
48	A radioactive sample has half-life of 3 years. The time required for the activity of the sample to reduce to $\frac{1}{5}$ th of its initial value is about
	(A) 7 years (B) 15 years (C) 5 years (D) 10 years

49.	A body of mass 10 kg is kept on a horizontal surface. The coefficient of kinetic friction between the body and the surface is 0.5. A horizontal force of 60 N is applied on the body. The resulting acceleration of the body is about
2 3	The resulting acceleration of the body is about (D) 1 ms ⁻²
50.	(A) 5 ms ⁻² (B) 6 ms ⁻² (C) zero A ball of mass 0.2 kg is thrown vertically down from a height of 10 m. It collides with the floor and loses 50% of its energy and then rises back to the same height. The value of its
,	floor and loses 50% of its energy and their rises of
	initial velocity is (A) 14 ms^{-1} (B) 196 ms^{-1} (C) 20 ms^{-1} (D) zero

(B) 196 ms⁻¹ (A) 14 ms^{-1} The moment of inertia of a rigid body about an axis 51.

- (A) does not depend on its shape.
- (B) depends on the position of axis of rotation.
- (C) does not depend on its size.
- (D) does not depend on its mass.

Seven identical discs are arranged in a planar pattern, so as to touch each other as shown in **52.** the figure. Each disc has mass 'm' radius R. What is the moment of inertia of system of six discs about an axis passing through the centre of central disc and normal to plane of all discs?

- (B) 55 $\frac{\text{mR}^2}{2}$
- (C) $85 \frac{\text{mR}^2}{2}$ (D) 27 mR^2

The true length of a wire is 3.678 cm. When the length of this wire is measured using 53. instrument A, the length of the wire is 3.5 cm. When the length of the wire is measured using instrument B, it is found to have length 3.38 cm. Then the

- (A) measurement with A is more accurate while measurement with B is more precise.
- (B) measurement with B is more accurate and precise.
- (C) measurement with A is more precise while measurement with B is more accurate.
- (D) measurement with A is more accurate and precise.

A body is moving along a straight line with initial velocity v_0 . Its acceleration a is constant. 54. After t seconds, its velocity becomes v. The average velocity of the body over the given time interval is time interval is

(A) $\overline{v} = \frac{v^2 + v_0^2}{2at}$ (B) $\overline{v} = \frac{v^2 + v_0^2}{at}$ (C) $\overline{v} = \frac{v^2 - v_0^2}{2at}$ (D) $\overline{v} = \frac{v^2 - v_0^2}{at}$

$$(A) \quad \overline{v} = \frac{v^2 + v_0^2}{2at}$$

A particle is in uniform circular motion. Related to one complete revolution of the particle, which among the statements is incorrect?

- (A) Displacement of the particle is zero. (C) Average velocity of the particle is zero.
- (B) Average speed of the particle is zero.
- (D) Average acceleration of the nortical is zoro

100 g of ice at 0 °C is mixed with 100 g of water at 100 °C. The final temperature of the mixture is

[Take $L_f = 3.36 \times 10^5 \text{ J kg}^{-1}$ and $S_w = 4.2 \times 10^3 \text{ J kg}^{-1}\text{k}^{-1}$]

- (D) 40 °C (A) 10 °C The P-V diagram of a Carnot's engine is shown in the graph below. The engine uses 1 mole of an ideal gas as well a carnot send in the graph below. The engine uses 1 mole of an ideal gas as well as a carnot send by the P-V diagram. of an ideal gas as working substance. From the graph, the area enclosed by the P-V diagram is [The heat supplied to the gas is 8000 J]

- (B) 3000 J
- (C) 1000 J
- (D) 1200 J
- When a planet revolves around the Sun, in general, for the planet 58.
 - (A) linear momentum and aerial velocity are constant.
 - (B) kinetic and potential energy of the planet are constant.
 - (C) angular momentum about the Sun and aerial velocity of the planet are constant.
 - (D) linear momentum and linear velocity are constant.
- A stretched wire of a material whose Young's modulus $Y = 2 \times 10^{11} \text{ Nm}^{-2}$ has Poisson's 59. ratio 0.25. Its lateral strain $\varepsilon_l = 10^{-3}$. The elastic energy density of the wire is
 - (A) $1 \times 10^5 \text{ Jm}^{-3}$ (B) $4 \times 10^5 \text{ Jm}^{-3}$ (C) $8 \times 10^5 \text{ Jm}^{-3}$
- (D) $16 \times 10^5 \, \text{Jm}^{-3}$
- A closed water tank has cross-sectional area A. It has a small hole at a depth of h from the free surface of water. The radius of the hole is r so that $r \ll \sqrt{\frac{A}{r}}$. If P_o is the pressure inside the tank above water level, and Pa is the atmospheric pressure, the rate of flow of the water coming out of the hole is [p is the density of water]

(A)
$$\pi r^2 \sqrt{2gh + \frac{2(P_o - P_a)}{\rho}}$$

$$\pi r^2 \sqrt{gh + \frac{2(P_0 - P_a)}{Q}}$$

(B)
$$\pi r^2 \sqrt{2gH}$$

(D)
$$\pi r^2 \sqrt{2gh}$$

Space For Rough Work

