CSIR UGC NET Mathematical Sciences Question Paper 2023

Part A Topics -

- Logical Venn Diagram
- Compound Interest
- Probability
- Ratio and Proportion
- Venn Diagram
- Number System
- Graph
- Mean
- Standard Divison
- Mensuration
- Speed and Distance

Questions of Part B \& C

1. How many real roots are there in polynomial $x^{3}-3 x+2023=0$
2. Matrix 3×3 is a real entity then which os the following is not true:
A. Must have real Eigenvalues
B. If one of the EV is 0 , the determinant is 0
C. If elements of the matrix are negative and 3 is EV, then all EV must be positive
D. If all elements of the matrix are positive, and 3 is EV , then all EV must be positive
3. Linear transformation on polynomial defined as Derivative then which is true?
4. Quadratic form
A. $6 x^{2}-12 x y+6 y^{2}$
B. $x^{2}-x y-2 y^{2}$
C. $x^{2}-x y+2 y^{2}$
5. $|z|=3+\mathrm{ve}$ oriented circle
$\int d z / z^{2}\left(e^{\wedge} z-e^{\wedge}-z\right)$
6. Let s be an infinite set
A. Bijection rational
B. Bijection S X S
C. Bijection real
D. Bijection with power set
7. Possible Class equation for a group of order 10
A. $1+1+1 \ldots \ldots \ldots+1(10$ times $)$
B. $1+2+1+1+5$
C. ??
D. ??
8. an $=1 / \mathrm{n}+1+1 / \mathrm{n}+2 \ldots \ldots+1 / 2 \mathrm{n}$ and $\mathrm{bn}=1 / \mathrm{n}$ are seq then
A. seq an cgt to $\log 2$, and both the seq cgt with the same rate
B. seq an is cgt to $\log 4$
C. seq bn is not cgt
D. seq an cgt $\log 2$ but a different rate
9. A is a matrix of 3 X 3 order and $\mathrm{P}(\mathrm{T})$ is ch poly of A which is divisible by T^{2} then
A. All the eigen values are real
B. A is diagonalizable
C. $\mathrm{A}^{3}=0$
D. 4 ?
10. Which is the following Maximal ideal of $Z(x)$ generated by are:
A. $<2, x^{2}+1>$
B. $\left\langle 3, x^{2}+1>\right.$
C. $\left\langle 2, x^{2}+\mathrm{x}+1\right\rangle$
D. $<3, x^{2}+\mathrm{x}+1>$
11. $u v x+v y=0$
$u(x, 0)=x$
$u(2,3)=$?
12. Let V is a vector space of poly in two variable 18 almost degree ℓ, where $\ell \geq 1$

- $\ell+1$
- $\ell(\ell+1)$
- $\ell(\ell+1) / 2$

