

RUHS Entrance Examination 2023

Question Paper

Paramedical 2023

Q. No. 1 0052001	If the work done W is represented by kW=M, where M is the mass, the dimensional formula of k is -
Option A	[M ⁰ L ⁻¹ T ²]
Option B	[M ⁰ L ⁻² T ²]
Option C	[M ⁰ L ⁻² T ⁻²]
Option D	[M ⁰ L ² T ⁻²]
Correct Option	В

Q. No. 2 0052002	: If p=y ² , then the relative error in p is -
Option A	$\frac{\Delta y}{y}$
Option B	$(\Delta y)^2$
Option C	$\frac{(\Delta y)^2}{y}$
Option D	$\frac{2\Delta y}{y}$
Correct Option	D

Q. No. 3 0052003	One body is dropped, while a second body is thrown downward with an initial velocity of 1ms ⁻¹ simultaneously. The separation between these is 18 m after a time-
Option A	18 sec
Option B	9 sec
Option C	4.5 sec
Option D	36 sec
Correct Option	Α

Q. No. 4 0052004	An athlete completes one round of a circular track of radius R in 40 sec. What will be his displacement at the end of 2 min. 20 sec.
Option A	zero
Option B	2R
Option C	2 \pi R
Option D	$7\pi R$
Correct Option	В

Q. No. 5 0052005	A body is projected at an angle of projection 35 ⁰ . To get the same range with the same velocity of projection, the body can also be fired at an angle -
Option A	55 ⁰
Option B	80 ⁰
Option C	75 ⁰
Option D	65 ⁰
Correct Option	Α

Q. No. 6 0052006	A river is flowing from west to east at a speed of 5 metre per minute. A man standing on south bank of river is capable of swimming at 10 metre per minute in still water. If he wants to swim across the river in shortest time, he should swim in a direction-
Option A	Due north
Option B	At an angle of 30 ⁰ west of north
Option C	At an angle of 30 ⁰ east of north
Option D	At an angle of 60 ⁰ west of north
Correct Option	Α

Q. No. 7 0052007	A bullet of mass 20 g is fired by a gun of mass 20 kg. If the muzzle speed of the bullet is 150 ms ⁻¹ , the recoil speed of the gun will be-
Option A	1.50 ms ⁻¹
Option B	1.5 ms ⁻¹
Option C	0.15 ms ⁻¹
Option D	.015 ms ⁻¹
Correct Option	C

Q. No. 8 0052008	In a circus, the diameter of globe of death is 30 m. The minimum height at which a cyclist must start in order to roll down the inclined and go round the globe successfully is -
Option A	3.75 m
Option B	37.5 m
Option C	475 m
Option D	35.7 m
Correct Option	В

Q. No. 9 0052009	With a vertical speed of 10 ms-1, the angle of banking for a radius of curvature 10 m (where $g=10 \text{ ms}^{-2}$) is-
Option A	30 ⁰
Option B	60 ⁰
Option C	85 ⁰
Option D	45 ⁰
Correct Option	D

Q. No. 10 0052010	The momentum of a body is increased by 26%. The K.E. is increased by about -
Option A	38.56%
Option B	58.76%
Option C	25%
Option D	5%
Correct Option	В

Q. No. 11 0052011	A body is moving unidirectionally under the influence of a source of constant power. Its displacement in time 't' is proportional to -
Option A	$t^{3/2}$
Option B	$t^{2/3}$
Option C	t^2
Option D	$t^{1/2}$
Correct Option	Α

Q. No. 12 0052012	The work done by a centripetal force F when the body completes one rotation around the circle of radius R is
Option A	RF
Option B	2RF
Option C	2πRF
Option D	zero
Correct Option	D

Q. No. 13 0052013	Two circular discs have masses in the ratio 1:2 and diameter in the ratio 2:1. The ratio of their moment of inertia is -
Option A	8
Option B	4
Option C	2
Option D	1
Correct Option	C

Q. No. 14 0052014	If a gymnast sitting on a rotational stool with his/her arms stretched suddenly lower his hands, then
Option A	His angular velocity decreases
Option B	His moment of inertia decreases
Option C	His angular velocity remains constant
Option D	His angular momentum increases
Correct Option	В

Q. No. 15	If gravitational force varies inversely as the p th power of the distance. Then the time
0052015	period of a planet in circular orbit of radius R around the sun will be proportional to -

Option A	$R^{(p-1)/2}$
Option B	$R^{(p+2)/2}$
Option C	$R^{(p+1)/2}$
Option D	$R^{(p-2)/2}$
Correct Option	C

Q. No. 16 0052016	A satellite is orbiting just above the surface of a planet having average density $^{ ho}$ and period T. If G is the universal gravitational constant, the quantity T ² $^{ ho}$ is equal to-
Option A	$3\pi/G$
Option B	1/G
Option C	$3\pi G$
Option D	$4\pi/G$
Correct Option	Α

Q. No. 17 0052017	A satellite orbits around the earth in a circular orbit with a speed v and orbital radius r. If it loses some energy, then v and r change as -
Option A	speed v decreases and radius r increases
Option B	Both v and r decrease
Option C	speed v increases and radius r decreases
Option D	Both v and r increase
Correct Option	C

Q. No. 18 0052018	The air of the atmosphere becomes cold at higher altitudes, because of-
Option A	Decrease in density
Option B	Variation in pressure
Option C	Expansion of air
Option D	Height above the surface of earth
Correct Option	В

Q. No. 19 0052019	If the r.m.s. speed of a certain diatomic gas at room temperature is found to be 1920 ms ⁻¹ , the gas will be -
Option A	H ₂
Option B	F ₂
Option C	0 ₂
Option D	Cl ₂
Correct Option	Α

Q. No. 20 0052020	The efficiency of Carnot engine working between 800 K and 500 K is -
Option A	0.4
Option B	0.5
Option C	0.375
Option D	0.625
Correct Option	C

Q. No. 21 0052021	Submarines are based on -
Option A	Pascal law
Option B	Archimedes' principle
Option C	Bernoulli's principle
Option D	Stoke's law
Correct Option	В

Q. No. 22 0052022	A sound is said to be of rich quality, when it -
Option A	contains a note of high frequency
Option B	contains a note of high amplitude
Option C	does not contain overtones
Option D	contains overtones
Correct Option	D

Q. No. 23 0052023	The total energy of a particle executing S. H. M. is proportional to -
Option A	Displacement from equilibrium position
Option B	Frequency of oscillation
Option C	Velocity in equilibrium position
Option D	Square of amplitude of motion
Correct Option	D

Q. No. 24 0052024	A boat having length 3m and breadth 2 m is floating on a lake. The boat sinks by 1 cm when a man gets on it. The mass of the man is -
Option A	60 kg
Option B	72 kg
Option C	128 kg
Option D	92 kg
Correct Option	Α

Q. No. 25 0052025	The fundamental notes produced in an open end pipe and a closed end pipe of the same length are in the ratio -
Option A	1:2
Option B	2:1

Option C	1:1
Option D	4:3
Correct Option	Α

Q. No. 26 0052026	A charge Q ['] is placed at the centre of the line joining two exactly equal positive charges Q each. The system of three charges will be in equilibrium if Q ['] is equal to -
Option A	-Q
Option B	$-\frac{Q}{4}$
Option C	+Q
Option D	$+\frac{Q}{2}$
Correct Option	В

Q. No. 27 0052027	A parallel plate air capacitor has a capacitance of 5 μ F. On introducing a conducting slab of thickness equal to one fourth of the distance between the plates, the increase in capacity will be-
Option A	1.56 μF
Option B	0.167 μF
Option C	1.67 μF
Option D	1.76 µF
Correct Option	C

Q. No. 28 0052028	An electron of mass m_e initially at rest moves through a certain distance in a uniform electric field in time t_1 . A proton of mass m_p also initially at rest takes time t_2 to move through an equal distance in this uniform electric field. Neglecting the effect of gravity, the ratio $\frac{t_2}{t_1}$ is nearly equal to -
Option A	1
Option B	1836
Option C	$\sqrt{\frac{m_e}{m_p}}$
Option D	$\sqrt{\frac{m_p}{m_e}}$
Correct Option	D

Q. No. 29 0052029	The masses of three wires of copper are in the ratio 5:3:1 and their lengths are in the ratio 1:3:5. The ratio of their electrical resistance is-
Option A	1:3:5
Option B	5:3:1

Option C	1:15:125
Option D	125:15:1
Correct Option	c

Q. No. 30 0052030	Eleven equal wires each of resistance 4Ω are joined to form an incomplete cube. The total resistance between one end of vacant edge to the other end is-
Option A	28/5 Ω
Option B	7/3Ω
Option C	10/3 Ω
Option D	5/3Ω
Correct Option	Α

Q. No. 31 0052031	If the resistivity of an alloy is ${ m ho}_{ m a}$ and that of constituent metals is ${ m ho}_{ m m}$, then-
Option A	there is no relation between ρ_a and ρ_m
Option B	$ \rho_a = \rho_m $
Option C	$\rho_a < \rho_m$
Option D	$\rho_a > \rho_m$
Correct Option	D

Q. No. 32 0052032	If a particle is moving in a uniform magnetic field, then-
Option A	total energy and momentum remain constant
Option B	both total energy and momentum change
Option C	total energy remains constant and momentum changes
Option D	total energy changes and momentum remains constant
Correct Option	C

Q. No. 33 0052033	In a map depicting the magnetic field lines at Melbourne in Australia, field lines will appear to -
Option A	go into the ground
Option B	come out of the ground
Option C	no lines at all
Option D	intersect each other
Correct Option	В

Q. No. 34 0052034	The magnetic moment associated with a circular coil with 50 turns, carrying current of 12 A and of radius 20 cm is-
Option A	75.4 Am ²
Option B	7.54 Am ²
Option C	74.5 Am ²

Option D	zero
Correct Option	Α

Q. No. 35 0052035	A bar magnet is dropped through a copper ring, then the acceleration 'a' of the magnet is-
Option A	a=g
Option B	a < g
Option C	a > g
Option D	depends on the diameter of the ring
Correct Option	В

Q. No. 36 0052036	A In a series LR circuit, X_L =3R. If a capacitor is added to it in series with X_C =R, the ratio of new to old power factor is
Option A	1
Option B	2
Option C	1/√2
Option D	$\sqrt{2}$
Correct Option	D

Q. No. 37 0052037	The area to be covered for T.V. telecast is quadrupled, then the height of transmitting antenna (T.V. tower) will have to be
Option A	halved
Option B	doubled
Option C	quadrupled
Option D	kept unchanged
Correct Option	C

Q. No. 38 0052038	The phase difference between input signal voltage and output voltage in a common base amplifier is-
Option A	zero
Option B	180 ⁰
Option C	45 ⁰
Option D	90 ⁰
Correct Option	Α

Q. No. 39 0052039	The binary subtraction of (10101) ₂ from (111001) ₂ is-
Option A	(101100) ₂
Option B	(110100) ₂
Option C	(100100) ₂
Option D	(100110) ₂
Correct Option	c

Q. No. 40 0052040	In a transistor, the collector and emitter current resistances are 100 k Ω and 100 Ω respectively. For equal values of emitter and collector currents, the power gain will be
Option A	100
Option B	1000
Option C	10000
Option D	100000
Correct Option	В

Q. No. 41 0052041	In the fission of single nucleus of $U_{92}^{235},$ 200 MeV energy is released. To produce a power of one kilowatt, the number of fissions per second will be-
Option A	3.12x10 ¹²
Option B	3.12x10 ¹⁴
Option C	3.12x10 ¹⁵
Option D	3.12x10 ¹³
Correct Option	D

Q. No. 42 0052042	If the activity of a radioactive material drops to $1/16^{th}$ of its initial value in 30 years, then its half life is-
Option A	7.5 years
Option B	75 years
Option C	45 years
Option D	65 years
Correct Option	Α

Q. No. 43 0052043	The energy 'E' of a photon of wavelength λ_1 , is equal to the K.E. of a proton. If λ_2 is the de-Broglie wavelength of proton, then the ratio λ_1/λ_2 is-
Option A	E ^{1/2}
Option B	E ^{-1/2}
Option C	E ⁻¹
Option D	E ⁰
Correct Option	В

Q. No. 44 0052044	The fastest electron (with exciting wavelength λ) in a photoemissive cell has speed v. On changing the exciting wavelength to 3 $\lambda/4$, the speed of fastest electron becomes -
Option A	$= v \sqrt{\frac{3}{4}}$
Option B	$= v \sqrt{\frac{4}{3}}$

Option C	$< v \sqrt{\frac{4}{3}}$
Option D	$> v \sqrt{\frac{4}{3}}$
Correct Option	D

Q. No. 45 0052045	If the diameter of the aperture of a camera objective is reduced to half, then the exposure time under identical conditions of light should be made -
Option A	4 fold
Option B	2 fold
Option C	$\sqrt{2}$ fold
Option D	$2\sqrt{2}$ fold
Correct Option	Α

Q. No. 46 0052046	An astronaut having pupil's diameter 6 mm, is looking down on earth's surface from a space shuttle at an altitude of 600 km. If the wavelength of visible light is 600 nm, he will be able to resolve linear objects of the size about -
Option A	0.6 m
Option B	50 m
Option C	60 m
Option D	6 m
Correct Option	C

Q. No. 47 0052047	A slit of width 'a' is illuminated by white light. The first minimum for red light (λ =6500 A ^o) will fall at an angle 30° when slit width 'a' will be-
Option A	2.3 micron
Option B	1.3 micron
Option C	13 micron
Option D	3250 A ^o
Correct Option	В

Q. No. 48 0052048	The angle of minimum deviation of a prism of refractive index $\sqrt{3}$ will be-
Option A	75°
Option B	45 [°]
Option C	30°
Option D	60°
Correct Option	D

Q. No. 49 0052049	A magnifying glass is to be used from the fixed object at a distance of 1 inch. If it is to produce an erect image magnified 5 times, its focal length should be-
Option A	12.5 inch

Option B	1.25 inch
Option C	1.55 inch
Option D	1.65 inch
Correct Option	В

Q. No. 50 0052050	The inverse square law of intensity is valid for-
Option A	Spherical wave front
Option B	Cylindrical wave front
Option C	Plane wave front
Option D	Conical wave front
Correct Option	Α

Q. No. 51 0082051	The mass of sodium acetate (CH ₃ COONa) required to make 500mL of 0.375M aqueous solution is (Given that the molar mass of sodium acetate (CH ₃ COONa) is 82.0245).
Option A	10.38 g
Option B	13.38 g
Option C	15.38 g
Option D	17.48 g
Correct Option	C

Q. No. 52 0082052	How many moles of lead(II) chloride will be formed from a reaction of between 6.5 g of PbO and 3.2 g of HCl?
Option A	0.339
Option B	0.029
Option C	0.044
Option D	0.011
Correct Option	В

Q. No. 53 0082053	Which of the following ions has electronic configuration [Ar] 3d ⁶ ?
Option A	Mn ³⁺
Option B	Fe ³⁺
Option C	Co ³⁺
Option D	Ni ³⁺
Correct Option	C

Q. No. 54 0082054	The number of p electrons in Bromine atom are?
Option A	13
Option B	15
Option C	16
Option D	17

Correct Option	D

Q. No. 55 0082055	The correct order of decreasing ionic radii among the following isoelectronic species is
Option A	$CI^{-} > S^{2-} > Ca^{2+} > K^{+}$
Option B	$S^{2-} > CI^{-} > K^{+} > Ca^{2+}$
Option C	$S^{2-} > Cl^{} > Ca^{2+} > K^+$
Option D	$K^+ > Ca^{2+} > Cl^- > S^{2-}$
Correct Option	В

Q. No. 56 0082056	In XeF ₂ , XeF ₄ and XeF ₆ , the number of lone pairs of electrons at Xe are respectively
Option A	1, 2, 3
Option B	4, 2, 1
Option C	2, 3, 1
Option D	3, 2, 1
Correct Option	D

Q. No. 57 0082057	Which of the following have bond order 2.5 ? (i) O_2 (ii) N_2^{2-} (iii) N_2^+ (iv) O_2^+
Option A	(i) & (ii)
Option B	(ii) & (iii)
Option C	(i) & (iv)
Option D	(iii) & (iv)
Correct Option	D

Q. No. 58 0082058	The state of hybridisation of oxygen in OF ₂ is
Option A	sp
Option B	sp ²
Option C	sp ³
Option D	dsp ²
Correct Option	C

Q. No. 59 0082059	The average velocity, rms velocity and the most probable velocity of gas molecules at STP increase in the order
Option A	average velocity < rms velocity < most probable velocity
Option B	average velocity < most probable velocity < rms velocity
Option C	rms velocity < most probable velocity < average velocity
Option D	most probable velocity < average velocity < rms velocity

Q. No. 60 0082060	Which of the following can be most easily liquefied?
Option A	CO ₂
Option B	Cl ₂
Option C	SO ₂
Option D	CH ₄
Correct Option	С

Q. No. 61 0082061	If the enthalpy of combustion of dihydrogen, methane and graphite at 298K are -285.8 kJ mol ⁻¹ , -890.3 kJ mol ⁻¹ and -393.5 kJ mol ⁻¹ respectively, then the enthalpy of formation of CH_4 gas will be?
Option A	-52.27 kJ mol ⁻¹
Option B	+ 52.26 kJ mol ⁻¹
Option C	-74.8 kJ mol ⁻¹
Option D	+74.8 kJ mol ⁻¹
Correct Option	C

Q. No. 62 0082062	The bond enthalpy of an O-H bond is 109 kcal mol ⁻¹ .When I mole of water is formed, then
Option A	218 kcal is released
Option B	109 kcal is absorbed
Option C	109 kcal is released
Option D	218 kcal is absorbed
Correct Option	Α

Q. No. 63 0082063	The concentration of hydrogen ions in a sample of soft drink is 3.8x10 ⁻³ M. What will be its pH?
Option A	1.42
Option B	2.42
Option C	3.42
Option D	1.82
Correct Option	В

Q. No. 64 0082064	Which salt upon hydrolysis will give basic solution?
Option A	NH ₄ Cl
Option B	CH ₄ COONH ₄
Option C	KCI
Option D	KCN
Correct Option	D

Q. No. 65 0082065	A reaction is $A + B \rightarrow C + D$. Initially we start with equal concentration of A and B. At equilibrium, it was found that the number of moles of C is two times that of A. What will be the equilibrium constant?
Option A	1/2
Option B	1/4
Option C	2
Option D	4
Correct Option	D

Q. No. 66 0082066	The increase in pressure at the following equilibrium: $H_2O(1) \rightleftharpoons H_2O(g)$ result in the (i) Formation of more $H_2O(g)$ (ii) Formation of more $H_2O(1)$ (iii) Increase in b. p. of $H_2O(1)$ (iv) Decrease in b. p. of $H_2O(1)$
Option A	(i) & (iii)
Option B	(i) & (iv)
Option C	(ii) & (iii)
Option D	(ii) & (iv)
Correct Option	C

Q. No. 67 0082067	A buffer solution is prepared in which the concentration of NH_3 is 0.30M and the concentration of NH_4^+ is 0.20 M. If the equilibrium constant Kb for NH_3 equals 1.8x10 ⁻⁵ , what is the pH of this solution.
Option A	10.73
Option B	9.43
Option C	9.08
Option D	8.73
Correct Option	В

Q. No. 68 0082068	The number of moles of $KMnO_4$ that will be needed to react with one mole of SO_3^{2-} in acidic solution.
Option A	1
Option B	2/5
Option C	3/5
Option D	4/5
Correct Option	В

Q. No. 69 0082069	Among the divalent compounds of Cr, Fe, Mn and Co, which will have the maximum magnetic moment?
Option A	Cr ²⁺ compounds
Option B	Fe ²⁺ compounds
Option C	Mn ²⁺ compounds

Option D	Co ²⁺ compounds
Correct Option	c

Q. No. 70 0082070	CO ₂ is isostructural with
Option A	SnCl ₂
Option B	HgCl ₂
Option C	NO ₂
Option D	C ₂ H ₆
Correct Option	В

Q. No. 71 0082071	In which of the following pairs, both the ions are coloured in aqueous solutions? [Given that the Atomic no. of Sc = 21, Ti = 22, Ni = 28, Co = 27, Cu = 29]
Option A	Sc ³⁺ , Ti ³⁺
Option B	Sc ³⁺ , Co ²⁺
Option C	Ni ²⁺ , Cu ⁺
Option D	Ni ²⁺ , Ti ³⁺
Correct Option	D

Q. No. 72 0082072	Which of the following series contains only paramagnetic metal ions?
Option A	La ³⁺ , Ce ³⁺ , Sm ³⁺
Option B	Sm ³⁺ , Ho ³⁺ , Lu ³⁺
Option C	Ce ³⁺ , Eu ³⁺ , Yb ³⁺
Option D	La ³⁺ , Gd ³⁺ , Eu ³⁺
Correct Option	c

Q. No. 73 0082073	When H_2S is passed through the an acidified solution of $K_2Cr_2O_7$ solution, the oxidation state of Chromium changes fromto
Option A	+6 to +3
Option B	+6 to +2
Option C	+6 to +1
Option D	+7 to +3
Correct Option	Α

Q. No. 74 0082074	Which of the following is a peroxide?
Option A	MnO ₂
Option B	KO ₂
Option C	BaO ₂
Option D	NO ₂

Correct Option **C**

Q. No. 75 0082075	When sodium metal is dissolved in liquid ammonia, a blue solution is formed. The blue colour is due to -
Option A	Solvated protons
Option B	Solvated NH ₂ ⁻ ions
Option C	Solvated electrons
Option D	Solvated Na ⁺ ions
Correct Option	C

Q. No. 76 0082076	Which of the following can act as Lewis acid?
Option A	(CH ₃) ₃ N
Option B	(CH ₃) ₃ B
Option C	(CH ₃) ₂ O
Option D	(CH ₃) ₃ P
Correct Option	В

Q. No. 77 0082077	How many oxygen atoms are shared by silicate units in forming pyrosilicates?
Option A	3
Option B	2
Option C	1
Option D	0
Correct Option	C

Q. No. 78 0082078	White fumes appear around the bottle of anhydrous AICI ₃ due to
Option A	Hydrolysis of AlCl ₃ liberating H ₂ gas
Option B	Hydrolysis of AICI ₃ liberating HCl gas
Option C	Hydrolysis of AICl ₃ liberating Cl ₂ gas
Option D	Decomposition of AICI ₃
Correct Option	В

Q. No. 79 0082079	In which of the following elements, $+1$ oxidation state is more stable than $+3$?
Option A	Boron
Option B	Alluminium
Option C	Thallium
Option D	Gallium
Correct Option	c

Q. No. 80 0082080	Identify the wrong statement in the following
Option A	Chloroflurocarbons are responsible for ozone layer depletion.
Option B	Acid rains are mostly because of oxides of sulphur and nitrogen.
Option C	Ozone layer does not permit infrared radiations from the sun to reach the earth.
Option D	Greenhouse effect is responsible for global warming.
Correct Option	C

Q. No. 81 0082081	When 25 mg of K_2SO_4 is dissolved in 2 litre of water at 25 ^o C (assuming K_2SO_4 to completely dissociated), the osmotic pressure of the solution will be
Option A	52.7x10 ⁻³ atm
Option B	5.27x10 ⁻³ atm
Option C	22.7x10 ⁻³ atm
Option D	2.27x10 ⁻³ atm
Correct Option	В

Q. No. 82 0082082	For the reaction $A \rightarrow B$, the rate of reaction becomes twenty seven times when the concentration of A is increased three times. What is the order of the reaction?
Option A	First order reaction
Option B	Second order reaction
Option C	Third order reaction
Option D	Zero order reaction
Correct Option	C

Q. No. 83 0082083	An ore after concentration was found to have basic impurities. The flux can be used is:
Option A	CaCO ₃
Option B	SiO ₂
Option C	FeO
Option D	Ca(OH) ₂
Correct Option	В

Q. No. 84 0082084	The halogen with the highest negative electron gain enthalpy is
Option A	Fluorine
Option B	Chlorine
Option C	Bromine
Option D	Iodine
Correct Option	В

Q. No. 85 0082085	The reaction : $(CH_3)_2CHCI + KOH \rightarrow (CH_3)_2CHOH + KCI is classified as$
Option A	Elimination reaction

Option B	Addition reaction
Option C	Electrophillic substitution reaction
Option D	Nucleophillic substitution reaction
Correct Option	D

Q. No. 86 0082086	If 0.5 g of hydrocarbon gave 0.9 g of water on combustion, then the percentage of carbon in the hydrocarbon is
Option A	70%
Option B	80%
Option C	85%
Option D	90%
Correct Option	В

Q. No. 87 0082087	One molecule of symmetrical alkene on ozonolysis gives two molecules of an aldehyde having a molecular mass of 44 u. The alkene is
Option A	Ethene
Option B	Propene
Option C	1- butene
Option D	2-butene
Correct Option	D

Q. No. 88 0082088	A compound X (C_5H_8) reacts with ammonical AgNO ₃ to give a white precipitate, and on oxidation with hot alkaline KMnO ₄ gives the acid (CH ₃) ₂ CHCOOH. Therefore, X is
Option A	CH ₂ =CHCH=CHCH ₃
Option B	$(CH_3)_2CH-C \equiv CH$
Option C	(CH ₃) ₂ C=C=CH ₂
Option D	$CH_3(CH_2)_2C \equiv CH$
Correct Option	В

Q. No. 89 0082089	Isopropyl bromide on Wurtzs reaction gives
Option A	2,3-dimethylbutane
Option B	Neohexane
Option C	Hexane
Option D	2,2-dimethylbutane
Correct Option	Α

Q. No. 90 0082090	Which of the following on treatment with warm dil.H ₂ SO ₄ in the presence of HgSO ₄ gives butan-2-one. (i) But-1-ene (ii) But-2-ene (iii) But-1-yne (iv) But-2-yne
Option A	(i) & (ii)

Option B	(ii) & (iii)
Option C	(i) & (iv)
Option D	(iii) & (iv)
Correct Option	D

Q. No. 91 0082091	On mixing certain alkane with chlorine and irradiating it with UV light, it forms only one monochloroalkane. The alkane could be
Option A	pentane
Option B	propane
Option C	isopentane
Option D	Neopentane
Correct Option	D

Q. No. 92 0082092	Which of the reagent in the following list can be used to distinguish between 1-butyne and 2-butyne.
Option A	Bromine, CCl ₄
Option B	dil.H ₂ SO ₄ , HgSO ₄
Option C	Ammonical Cu ₂ Cl ₂ solution
Option D	H ₂ , Lindlar catalyst
Correct Option	C

Q. No. 93 0082093	Which of the following compounds contains intramolecular H-Bond?
Option A	Phenol
Option B	Resorcinol
Option C	Acetic acid
Option D	o-Nitrophenol
Correct Option	D

Q. No. 94 0082094	In DNA the complimentary bases are?
Option A	Uracil & adenine: cytosine & guanine
Option B	Adenine & thiamine; guanine & cytosine
Option C	Adenine & thiamine; guanine & uracil
Option D	Adenine & Guanine; cytosine & thiamine
Correct Option	В

Q. No. 95 0082095	Which of the following on reduction with lithium aluminium hydride yields a secondary amine?
Option A	Methyl cyanide
Option B	Nitroethane
Option C	Methylisocyanide
Option D	Acetamide

Correct Option **C**

Q. No. 96 0082096	The relative reactivities of acyl compounds towards nucleophillic substitution reaction are in the order-
Option A	Acyl chloride > Ester > Acid anhydride > Amide
Option B	Acyl chloride > Amide > Ester > Acid anhydride
Option C	Acid anhydride > Amide > Acyl chloride > Ester
Option D	Acyl chloride > Acid anhydride > Ester > Amide
Correct Option	D

Q. No. 97 0082097	Trichloroacetaldehyde was subjected to Cannizaro's reaction by using NaOH. The mixture of products obtained are
Option A	Chloroform and sodium trichloacetate
Option B	Trichloromethanol and sodium trichloropropanoate
Option C	2,2,2-Trichloroethanol and sodium trichloroethanoate
Option D	2,2,2-Trichloropropanol and sodium trichloroethanoate
Correct Option	c

Q. No. 98 0082098	Presence of nitro group at benzene ring
Option A	Activates the ring towards the electrophilic substitution reactions
Option B	Deactivates the ring towards the electrophilic substitution reactions
Option C	Deactivates the ring toward the nucleophillic substitution reactions
Option D	Renders the ring basic
Correct Option	В

Q. No. 99 0082099	Match the following and choose the correct option-		
	Column I	Column II	
	i) Phenol	a) Neurotransmitter	
	ii) Chloramphenicol	b) Cationic detergent	
	iii) Acetylcholine	c) Antibiotic	
	iv) Cetyltrimethylammonium	d) Antiseptic	
	chloride		
Option A	(i) & (c); (ii) & (b); (iii) & (d); (iv) & (a)		
Option B	(i) & (d); (ii) & (a); (iii) & (c); (iv) & (b)		
Option C	(i) & (d); (ii) & (c); (iii) & (a); (iv) & (b)		
Option D	(i) & (c); (ii) & (d); (iii) & (b); (iv) & (a)		
Correct Option	c		

Q. No. 100 0082100	Gold numbers of protective colloids X, Y and Z are 0.5, 0.01 and 0.005 respectively. The correct order of their protective powers will be:
Option A	X > Y > Z
Option B	X < Y < Z

Option C	X > Z > Y
Option D	X < Z < Y
Correct Option	В