## Question Paper <br> CY : JAM 2023

## Section A: Q. 1 - Q. 10 Carry ONE mark each.

The structure of $\mathbf{Q}$ in the following reaction scheme is
Q. 1

(A)

(B)

M (enantiopure)


(C)

(D)


The major product of the reaction is
Q. 2

(i) $\mathrm{CH}_{2} \mathrm{I}_{2}, \mathrm{Zn}-\mathrm{Cu}$
(ii) $\mathrm{Li}, \mathrm{NH}_{3}$ (liq.)
$\xrightarrow[\text { (iii) } \mathrm{H}_{3} \mathrm{O}^{+}]{ }$
(A)

(B)

(C)


The rate of addition of 1-hexyl radical to the given molecules follows the order
Q. 3

(A) $\mathbf{P}>\mathbf{R}>\boldsymbol{Q}$
(B) $\mathbf{Q}>\mathbf{P}>\mathbf{R}$
(C) $\mathbf{R}>\mathbf{P}>\mathbf{Q}$
(D) $\mathbf{P}>\mathbf{Q}>\mathbf{R}$

The major product of the reaction is
Q. 4

(A)

(B)

(C)

Q. 5 The diagram that best describes the variation of viscosity $(\eta)$ of water with temperature at 1 atm is
(A)
(B)

(C)

(D)

Q. 6

The SI unit of the molar conductivity of an electrolyte solution is
(A)

$$
\mathrm{S} \mathrm{~m}^{-1} \mathrm{~mol}^{-1}
$$

(B)

$$
\mathrm{S} \mathrm{~mol}^{-1}
$$

(C) $\mathrm{S} \mathrm{m} \mathrm{mol}^{-1}$
(D)

The system with the lowest zero-point energy when it is confined to a onedimensional box of length $L$ is
(A)

(B)
ahydrogen atom
(C)
a helium atom
(D) a proton
Q. 8

The metal ion present in human carbonic anhydrase is
(A)
$\mathrm{Fe}^{3+}$
(B) $\mathrm{Cu}^{2+}$
(C) $\mathrm{Zn}^{2+}$
(D)

Q. 9 The oxoacid of sulfur that has $\mathrm{S}-0-5$ bond is
(A) Pyrosulfuric acid
(B) Pyrosulfurous acid
(C) Dithionous acid
(D) Dithionic acid
Q. 10 An alkaline $(\mathrm{NaOH})$ solution of a compound produces a yellow colored solution on addition of $\mathrm{NaBO}_{3}$. The compound is
(A) $\mathrm{Mn}(\mathrm{OH})_{2}$
(B) $\mathrm{Pb}(\mathrm{OH})_{2}$
(C) $\mathrm{Cr}(\mathrm{OH})_{3}$
(D) $\mathrm{Fe}(\mathrm{OH})_{3}$

## Section A: Q. 11 - Q. 30 Carry TWO marks each.

The major product of the reaction is
Q. 11
(i) $\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{Zn}$
(ii) TsOH , heat

$\xrightarrow{\text { (iii) } \mathrm{NiCl}_{2}, \mathrm{NaBH}_{4}}$
(A)

(B)

(C)


The major product in the following reaction is
Q. 12

(A)

(B)

(C)





The most stable conformation of $\mathbf{Y}$ and that of $\mathbf{Z}$ are
Q. 13

(A)


(B)

(C)

(D)


The major product $\mathbf{Y}$ in the following reaction scheme is
Q. 14


(A)

(B)

(C)


The major product of the reaction is
Q. 15

(A)

(B)

(C)




The major product of the reaction is
Q. 16

(A)

(B)

$\mathrm{MeO}_{2} \mathrm{C} \quad \mathrm{Me}$

Adsorption of a gas on a solid surface follows the Langmuir isotherm. If $k_{a} / k_{d}=1.0$
Q. 17
$\mathrm{bar}^{-1}$, the fraction of adsorption sites occupied by the gas at equilibrium under 2.0 bar pressure of the gas at $25^{\circ} \mathrm{C}$ is
( $k_{a}$ and $k_{d}$ are the rate constants for adsorption and desorption processes, respectively, at $25{ }^{\circ} \mathrm{C}$ )
(A) $1 / 4$
(B) $1 / 3$
(C) $1 / 2$
(D) $2 / 3$

The vapor pressure of a dilute solutioneof non-volatile solute and the vapor pressiure of the pure solvent at the same temperature are $P$ and $P^{*}$, respectively.

$$
\frac{P^{*}-P}{P^{*}} \text { is equal to }
$$

(Assume that the vapor phase behaves as an ideal gas)
(A) molality of the solution
(B) mole fraction of the solvent
(C) weight fraction of the solute
(D) mole fraction of the solute

The volume of water (in mL ) required to be added to a 100 mL solution (aq. 0.1 M ) of a weak acid (HA) at $25^{\circ} \mathrm{C}$ to double its degree of dissociation is [Given: $K_{a}$ of HA at $25^{\circ} \mathrm{C}=1.8 \times 10^{-5}$ ]
(A) 100
(B) 200
(C) 300
(D) 400

The following diagram is obtained in a pH-metric titration of a weak dibasic acid $\left(\mathrm{H}_{2} \mathrm{~A}\right)$ with a strong base. The point that best represents $\left[\mathrm{HA}^{-}\right]=\left[\mathrm{A}^{-2}\right]$ is

(A) $\mathbf{p}$
(B) $\mathbf{q}$
(D) s
Q. 21 Equal number of gas molecules $\mathbf{A}$ (mass $m$ and radius $r$ ) and $\mathbf{B}$ (mass $2 m$ and radius $2 r$ ) are placed in two separate containers of equal volume. At a given temperature, the ratio of the collision frequency of $\mathbf{B}$ to that of $\mathbf{A}$ is
(Assume the gas molecules as hard spheres)
(A) $\sqrt{2}: 1$
(B)
$2 \sqrt{2}: 1$
(C)
$1: \sqrt{2}$
(D)
$1: 2 \sqrt{2}$

For the given elementary reactions, the steady-state concentration of $\mathbf{X}$ is

$$
2 \mathrm{P} \xrightarrow{\substack{k_{1}}} \underset{\substack{k_{4} \\ \downarrow}}{\mathbf{X}} \underset{\substack{k_{3}}}{\stackrel{k_{2}}{\rightleftharpoons}} \mathbf{Q}+\mathbf{R}
$$

(A) $\frac{k_{1}[\mathbf{P}]^{2}+k_{3}[\mathbf{Q}][\mathbf{R}]}{k_{2}+k_{4}}$
(B) $\frac{\frac{1}{2} k_{1}[\mathbf{P}]^{2}+k_{3}[\mathbf{Q}][\mathbf{R}]}{k_{2}+k_{4}}$
(C) $\frac{k_{1}[\mathbf{P}]^{2}+k_{3}[\mathbf{Q}][\mathbf{R}]}{-k_{1}+k_{2}-k_{3}+k_{4}}$
(D) $k_{3}[\mathbf{P}]+k_{3}[\mathbf{Q}][\mathbf{R}]$

Q. 23 The separation (in nm ) of $\{134\}$ planes of an orthorhombic unit cell (with cell parameters $a=0.5 \mathrm{~nm}, b=0.6 \mathrm{~nm}$, and $c=0.8 \mathrm{~nm}$ ) is
(A) 0.036
(B) 0.136
(C) 0.236
(D) 0.336


The transition metal (M) complex thatcan have all isomers (geometric, linkage, and
Q. 24 (2)
(A) $\left[\mathbf{M}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{SCN}$
(B) $\left[\mathbf{M}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Br}_{5}$
(C) $\left[\mathbf{M}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{3}$
(D) $\left[\mathbf{M}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right](\mathrm{SCN})_{3}$
Q. 25 The geometry of $\left[\mathrm{VO}(\mathrm{acac})_{2}\right]$ is
(A) square pyramidal
(B) trigonal bipyramidal
(C) pentagonal planar
(D) distorted trigonal bipyramidal


The products $\mathbf{X}$ and $\mathbf{Y}$ in the following reaction sequence, respectively, are
Q. 26

(A) $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{Cl}_{6}$ and $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}^{\text {e }}$
(B) $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{3} \mathrm{Cl}_{3}$ and $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$
(C) $\mathrm{B}_{3} \mathrm{~N}_{3} \hat{H}_{3} \mathrm{Cl}_{3}$ and $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{12}$
(D) $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{9} \mathrm{Cl}_{3}$ and $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{12}$

The correct order of the energy of the $d$ orbitals of a square planar complex is
(A)

$$
\mathrm{d}_{\mathrm{xz}}=\mathrm{d}_{\mathrm{yz}}<\mathrm{d}_{\mathrm{xy}}<\mathrm{d}_{\mathrm{z}^{2}}<\mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}
$$

(B)

$$
\mathrm{d}_{\mathrm{xz}}=\mathrm{d}_{\mathrm{yz}}<\mathrm{d}_{\mathrm{z}^{2}}<\mathrm{d}_{\mathrm{xy}}<\mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}
$$

(C)
$\mathrm{d}_{\mathrm{yz}}<\mathrm{d}_{\mathrm{xz}}<\mathrm{d}_{\mathrm{z}^{2}}<\mathrm{d}_{\mathrm{xy}}<\mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}$
(D)

$$
\mathrm{d}_{\mathrm{xy}}<\mathrm{d}_{\mathrm{xz}}<\mathrm{d}_{\mathrm{yz}}<\mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}<\mathrm{d}_{2}^{2}
$$

$\mathbf{X}$ and $\mathbf{Y}$ in the following reactions, respectively, are
Q. 28

$$
\mathrm{EtOH}_{2} \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{X}+\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HSO}_{4}^{-}
$$

$$
\overbrace{}^{2} \mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Y}+\mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-}
$$

(A)
(B)
$\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{NO}^{+}$
(C)
$\mathrm{EtOSO}_{3} \mathrm{H}$ and $\mathrm{NO}_{2}^{+}$
(D)
$\mathrm{EtOSO}_{3} \mathrm{H}$ and $\mathrm{NO}^{+}$
Q. 29 The correct order of energy levels of the molecular orbitals of $\mathrm{N}_{2}$ is
(A)

$$
1 \sigma_{\mathrm{g}}<1 \sigma_{\mathrm{u}}<2 \sigma_{\mathrm{g}}<2 \sigma_{\mathrm{u}}<1 \pi_{\mathrm{u}}<3 \sigma_{\mathrm{g}}<1 \pi_{\mathrm{g}}<3 \sigma_{\mathrm{u}}
$$

(B)

$$
1 \sigma_{\mathrm{g}}<1 \sigma_{\mathrm{u}}<2 \sigma_{\mathrm{g}}<2 \sigma_{\mathrm{u}}<3 \sigma_{\mathrm{g}}<3 \sigma_{\mathrm{u}}<1 \pi_{\mathrm{u}}<1 \pi_{\mathrm{g}}
$$

(C)

$$
1 \sigma_{\mathrm{g}}<1 \sigma_{\mathrm{u}}<2 \sigma_{\mathrm{g}}<2 \sigma_{\mathrm{u}}<1 \pi_{\mathrm{g}}<3 \sigma_{\mathrm{g}}<3 \pi_{\mathrm{m}}, \mathrm{p}<3 \sigma_{\mathrm{u}}
$$

(D)

$$
1 \sigma_{\mathrm{g}}<1 \sigma_{\mathrm{u}}<2 \sigma_{\mathrm{g}}<2 \sigma_{\mathrm{u}}<3 \sigma_{\mathrm{g}}<1 \pi_{\mathrm{u}}<1 \pi_{\mathrm{g}}<3 \sigma_{\mathrm{u}}
$$

Q. $30 \quad$ Free heme in aqueous solution when exposed to dioxygen is finally converted to (circle around iron in the given choices represents the protoporphyrin IX)
(A)

(B)
(C)

D)

## Section B: Q. 31 - Q. 40 Carry TWO marks each.

Correct statement(s) about $\mathbf{Q}$ and $\mathbf{R}$ is/are



(A) Both $\mathbf{Q}$ and $\mathbf{R}$ give positive Fehling's test
(B) $\mathbf{Q}$ gives positive iodoform test and its ${ }^{1} \mathrm{H}$ NMR spectrum shows singlets at $1.0 \mathrm{ppm}(3 \mathrm{H})$ and at $1.3 \mathrm{ppm}(3 \mathrm{H})$
$\boldsymbol{R}^{2}$ gives positive iodoform test and its ${ }^{1} H$ NMR spectrum shows singlets at $1.0 \mathrm{ppm}(3 \mathrm{H})$ and ${ }^{2}$ at $2.2 \mathrm{ppm}(3 \mathrm{H})$
(D) A bright yellow precipitate is formed when $\mathbf{Q}$ and $\mathbf{R}$ treated separately with 2,4-dinitrophenyl hydrazine
Q. 32 The correct statement(s) is/are
(A) The $\mathrm{p} K_{a 1}$ of cis-cyclohexane 1,3-diol is greater than that of the trans isomer.
(B) The trans-4-(tert-butyl)cyclohexanamine is more bâsic than its cis isomer.
(C) 2,6-Dihydroxybenzoic acid is more acidicthan salicylic acid.
(D) 2,4,6-Trinitrophenol is moreacidic than 2,4,6-trinitrobenzoic acid.
Q. 33 The reaction(s) that yield(s) $\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CO}_{2} \mathrm{Me}$ ais the major product is/are
(A)

(B)

(C)

(D)

(i) $(\mathrm{COCl})_{2}$
(ii) $\mathrm{CH}_{2} \mathrm{~N}_{2}$
(iii) $\mathrm{Ag}_{2} \mathrm{O}, \mathrm{MeOH}$

The correct option(s) of the reagents required for the following reaction is/are
Q. 34


(A) (i) $\mathrm{Et}_{3} \mathrm{~B}, \mathrm{O}_{2}$ (cat), THF; (ii) $\mathrm{H}_{2} \mathrm{O}$
(B) (i) $\mathrm{Et}_{2} \mathrm{CuLi}, \mathrm{Me}_{3} \mathrm{SiCl}$; (ii) $\mathrm{H}_{3} \mathrm{O}^{\text {さ }}$
(C)
(i) $\mathrm{EtMgBr}, \mathrm{Et}_{2} \mathrm{O}$;(ii) $\mathrm{H}_{2} \mathrm{O}$
(D) (i) ${ }^{n} \mathrm{BuLi}$, THF; (ii) EtI
Q. 35 The reaction(s) that yield(s) 1-naphthol as the major product is/are
(A)

(B)
 (i) $\mathrm{Zn}-\mathrm{Hg}, \mathrm{HCl}$
(ii) Pd-C, heat
(C)

(D)
(i) $m-\mathrm{CPBA}$
(ii) hydrolysis
Q. 36 The correct relation(s) for an ideal gas in a closed system is/are
(A) $\left(\frac{\partial H}{\partial V}\right)_{T}=0$
(B) $\left(\frac{\partial T}{\partial P}\right)_{H}=0$
(C) $\left(\frac{\partial H}{\partial P}\right)_{T}=0$
(D) $\left(\frac{\partial H}{\partial T}\right)_{P}=0$

The molecule(s) that follow(s) $I_{a}<I_{b}=I_{c}\left(I_{a}, I_{b}\right.$, and $I_{c}$ are the principal moments
Q. 37 of inertia) is/are
(A) HCN
(B) $\mathrm{CH}_{3} \mathrm{Cl}$
(C) $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH}$
(D) $\mathrm{C}_{6} \mathrm{H}_{6}$
Q. 38 The role(s) of fluorspar in the electrolytic reduction of $\mathrm{Al}_{2} \mathrm{O}_{3}$ is/are to
(A) decrease the melting point of $\mathrm{Al}_{2} \mathrm{O}_{3}$
(B) improve the electrical conductivity of the melt
(C) prevent $\mathrm{h}_{\text {e }}$ corrosion of anode
(D)
prevent the radiation loss of heat
Q. 39 The correct statement(s) about the complexes I $\left(\mathrm{K}_{3}\left[\mathrm{CoF}_{6}\right]\right)$ and $\mathbf{I I}\left(\mathrm{K}_{3}\left[\mathrm{RhF}_{6}\right]\right)$ is/are
(A) Both complexes are high spin.
(B) Complex I is paramagnetic.
(C) Complex II is diamagnetic.
(D) The crystal field stabilizationenergy of complex II is more than that of complex I.
Q. 40

The diatomic molecule(s) that has/have bond order of one is/are
(B) $\mathrm{N}_{2}^{2-}$
(C) $\mathrm{Li}_{2}$
(D)


## Section C: Q. 41 - Q. 50 Carry ONE mark each.

The molecular weight of the major product of the reaction is $\qquad$ (in integer).
Q. 41

[Given: atomic weight of $\mathrm{H}=1, \mathrm{C}=\mathrm{N}=14$, and $\mathrm{Br}=80$ ]
Q. $42 \quad$ A $0.06 \mathrm{~g} / \mathrm{mL}$ solution of $(S)$-1-phenylethânol placed in a 5 cm long polarimeter tube shows an optical rotation of $1.2^{\circ}$. The specific rotation is $\qquad$ ${ }^{\circ}$.

The isoelectric point of glutamic acid is
Q. 43

(round off to two decimat pfaces)
Q. 44 Consider the following reaction:

$$
2 \mathrm{C}_{6} \mathrm{H}_{6}+15 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \quad \Delta_{\mathrm{r}} H_{298}^{0} \approx-3120 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

A closed system initially contains 5 moles of benzene and 25 moles of oxygen under standard conditions at 298 K . The reaction was stopped when 17.5 moles of oxygen is left. The amount of heat evolved during the reaction is $\qquad$ kJ .
(round off to the nearest integer)

For the elementary reaction $\mathbf{C} \stackrel{k_{2}}{\leftarrow} \mathbf{A} \xrightarrow{k_{1}} \mathbf{B}, k_{1}=2 k_{2}$ At time $t=0,[\mathbf{A}]=A_{0}$ and $[\mathbf{B}]=$ $[\mathbf{C}]=0$. At a later time $t$, the value of $[\mathbf{B}] /[\mathbf{C}]$ is $\qquad$ -.
(roûnd off to the nearest integer)

The highest possible energy of a photon in the emission spectrum of hydrogen atom
Q. 46 is $\qquad$ ev
[Given: Rydberg constant $=13.61 \mathrm{eV}$ ]
(round off to two decimal places)

The standard reduction potential $\left(E^{0}\right)$ of $\mathrm{Fe}^{3+} \rightarrow \mathrm{Fe}$ is $\qquad$ V.
[Given: $\mathrm{Fe}^{3+} \rightarrow \mathrm{Fe}^{2+} E^{0}=0.77 \mathrm{~V}$ and $\left.\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe} E^{0}=-0.44 \mathrm{~V}\right]$
(round off to three decimal places)
Q. 48 The number of valencéelectrons in $\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ (the Colman's reagent) is $\qquad$ .
Q. 49 ces $\qquad$ $\mathrm{kJ} / \mathrm{mol}$.
[Given: Heat of atomization of $\mathrm{Cu}=+338 \mathrm{~kJ} / \mathrm{mol}$, Ionization energy of $\mathrm{Cu}=+746 \mathrm{~kJ} / \mathrm{mol}$,
Heat of atomization of $\mathrm{Cl}_{2}=+121 \mathrm{~kJ} / \mathrm{mol}$, Electron affinity of $\mathrm{Cl}=-349 \mathrm{~kJ} / \mathrm{mol}$, and Lattice energye of $\mathrm{CuCl}=-973 \mathrm{~kJ} / \mathrm{mol}]$
(round offto the nearest integer)
Q. 50 The spin-only magnetic moment of $\mathrm{B}_{2}$ molecule is $\qquad$ $\mu_{B}$.

## Section C: Q. 51 - Q. 60 Carry TWO marks each.

The sum of the total number of stereoisomers (including enantiomers) present in the following molecules is $\qquad$ -



The number of singlets observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P}$ is

## Q. 52


closed system. The value of $\Delta G$ is $\quad \mathrm{k}$
[Given: $R=8.314 \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ ]
(round off to two decimal places)

The harmonic vibrational frequeney of a diatomic molecule is 2000 cm its zeropoint energy is $\qquad$ eV.
[Given: Planck's constant $=6.62 \times 10^{-34} \mathrm{~J} \mathrm{~s} ; 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$ ]
(round off to twe decimal places)

[^0]The following diagram shows the kinetic energy of the ejected photoelectrons against the energy of incident radiation for two metal surfaces $\mathbf{M}_{\mathbf{1}}$ and $\mathbf{M}_{\mathbf{2}}$. If the energy of the incident radiation on $\mathbf{M}_{\mathbf{1}}$ is equal to the work function of $\mathbf{M}_{\mathbf{2}}$, the de Broglie wavelength of the ejected photoelectron is $\qquad$ nm .

[Given: Mass of electron $=9.11 \times 10^{-31} \mathrm{~kg}$; Planck's constant $=6.62 \times 10^{-34} \mathrm{~J}$ s, $\mathrm{f}^{2} \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$.]
(round off to two decimal places)

The spin-only magnetic moment of $\left[\mathrm{Fe}(\mathrm{acac})_{3}\right]$ is $\qquad$ $\mu_{B}$.
(round off to two decimal places)

The amount of ethane produced in the following reaction is $\qquad$ kg.

$$
\mathrm{C}_{2} \mathrm{H}_{4}(2 \mathrm{~kg})+\mathrm{H}_{2}(2 \mathrm{~kg}) \xrightarrow{\text { Wilkinson's Catalyst }} \mathrm{C}_{2} \mathrm{H}_{6} \text { (90\% catalytic conversion) }
$$

(round off to two decimal places)

In a gravimetric estimation of Al , a sample of $0.1000 \mathrm{~g} \mathrm{AlCl} \mathrm{C}_{3}$ is precipitated with
[Given: atomic weight of Al is 26.98; molecular weight of $\mathrm{AlCl}_{3}$ is 133.34; and molecular weight of 8-hydroxyquinoline is 145.16]


[^0]:    An elementary reaction $2 \mathbf{A} \rightarrow \mathbf{P}$ follows a second order rate law with rate constant $2.5 \times 10^{-3} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$. The timérequired for the concentration of $\mathbf{A}$ to change from $0.4 \mathrm{~mol} \mathrm{dm}^{-3}$ to 0.2 mol dm $\qquad$ s.

