SECTION - A
 MULTIPLE CHOICE QUESTIONS (MCQ)

Q. 1 - Q. 10 carry one mark each.

Q. 1 Let G be a finite group. Then G is necessarily a cyelic group if the order of G is
(A) 4
(B) 7
(C) 6
(D) 10
Q. 2 Let $\mathbf{v}_{1}, \ldots \mathbf{v}_{9}$ be the column vectors of a non-zero 9×9 real matrix A. Let $a_{1}, \ldots, a_{9} \in \mathbb{R}$, nof all zero, be such that $\sum_{i=1}^{9} a_{i} \mathbf{v}_{i}=\mathbf{0}$ Then the system $A \mathbf{x}=\sum_{i=1}^{9} \mathbf{v}_{i}$ has
(A) no solution
(B) a unique solution
(C) more than one but only finitely many solutions
(D) infinitelyemany solutions
Q. 3 Which of the following is a subspace of the real vector space \mathbb{R}^{3} ?
(A) $\quad\left\{(x, y, z) \in \mathbb{R}^{3}:(y+z)^{2}+(2 x-3 y)^{2}=0\right\}$
(B) $\quad\left\{(x, y, z) \in \mathbb{R}^{3}: y \in \mathbb{Q}\right\}$
(C) $\quad\left\{(x, y, z) \in \mathbb{R}^{3}: y z=0\right\}$
(D) $\quad\left\{(x, y, z) \in \mathbb{R}^{3}: x+2 y-3 z+1=0\right\}$
Q. 4 Consider the initial value problems

$$
\begin{array}{r}
\frac{d y}{d x}+\alpha y=0 \\
y(0)=1
\end{array}
$$

where $\alpha \in \mathbb{R}$. Then
(A) es there is an α such that $y(1)=0$
$\left(\mathrm{B}_{2} \alpha^{2}\right.$ ac there is a unique α such that $\lim _{x \rightarrow \infty} y(x)=0$
(C) there is NO α such thât $y(2)=1$
(D) there is a unique α such that $y(1)=2$
Q. $5 \quad$ Let $p(x)=x^{57}+3 x^{10}-21 x^{3}+x^{2}+21$ and

$$
q(x)=p(x)+\sum_{j=1}^{57} p^{(j)}(x) \quad \text { for all } x \in \mathbb{R}
$$

where $p^{(j)}(x)$ denotes the $j^{\text {th }}$ derivative of $p(x)$. Then the function q admits
(A) NEITHER a global maximum NOR a global minimum on \mathbb{R}
(B) a global maximum but NOT aglobal minimum on \mathbb{R}
(C) a global minimum but NQT a global maximum on \mathbb{R}
(D) a global minimumand a global maximum on \mathbb{R}

Q. 6 The limit

$$
\lim _{a \rightarrow 0}\left(\frac{\int_{0}^{a}\left(\sin \left(x^{2}\right) d x\right.}{\int_{0}^{a}(\ln (x+1))^{2} d x}\right)
$$

is
(A) 0
(B) 1
(C)
(D)
non-existent
Q. 7 The value of

$$
\int_{0}^{1} \int_{0}^{1-x} \cos \left(x^{3}+y^{2}\right) d y d x-\int_{0}^{1} \int_{0}^{1-y} \cos \left(x^{3}+y^{2}\right) d x d y
$$

is
(A) 0
(B) $\frac{\cos (1)}{2}$
(C) $\frac{\sin (1)}{2}$
(D) $\quad \cos \left(\frac{1}{2}\right)-\sin \left(\frac{1}{2}\right)$
Q. 8 Let $f: \mathbb{R}^{2}>\mathbb{R}^{2}$ be defined by $f(x, y)=\left(e^{x \cos (y)}, e^{x} \sin (y)\right)$. Then the number of points in \mathbb{R}^{2} that do NOT lie in the range of f is
(B) 1
(C) 2
(D) infinites
Q. $9 \quad$ Let $a_{n}=\left(1+\frac{1}{n}\right)^{n}$ and $b_{n}=n \cos \left(\frac{n!\pi}{2^{10}}\right)$ for $n \in \mathbb{N}$. Then
(A) $\quad\left(a_{n}\right)$ is convergent and $\left(b_{n}\right)$ is bounded
(B) $\quad\left(a_{n}\right)$ is NOT convergent and $\left(b_{n}\right)$ is bounded
(C) $\quad\left(a_{n}\right)$ is convergent and $\left(b_{n}\right)$ is unbounded
(D) $\quad\left(a_{n}\right)$ is NOT convergent and (b_{n}) is unbounded
Q. 10 Let $\left(a_{n}\right)$ be a sequence of real numbers defined by

$$
a_{n}= \begin{cases}1 & \text { if } n \text { is prime } \\ -1 & \text { if } n \text { isnist prime. }\end{cases}
$$

$\operatorname{Let} b_{n}=\frac{a_{n}}{n}$ for $n \in \mathbb{N}$. Then
both $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are convergent
(B) $\quad\left(a_{n}\right)$ is convergent but $\left(b_{n}\right)$ is NOT convergent
(C) $\quad\left(a_{n}\right)$ is NOT conyergent but $\left(b_{n}\right)$ is convergent
(D) both $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are NOT convergent

Q. 11 - Q. 30 carry two marks each.

Q. 11 Let $a_{n}=\sin \left(\frac{1}{n^{3}}\right)$ and $b_{n}=\sin \left(\frac{1}{n}\right)$ for $n \in \mathbb{N}$. Then
(A) both $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are convergent
(B) $\quad \sum_{n=1}^{\infty} a_{n}$ is convergent but $\sum_{n=1}^{\infty} b_{n}$ is NQA convergent
(C) $\quad \sum_{n=1}^{\infty} a_{n}$ is NOT convergent but $\sum_{n=1}^{\infty} b_{n}$ is convergent
(D) both $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are NOT convergent

Q. 12 Consider the following statements:

I. ε° There exists a linear transformation from \mathbb{R}^{3} to itself such that its range space and null space are the same.
II. There exists a linear transformation from \mathbb{R}^{2} to itself such that its range space and null space are the same.

Then
(A) both Lẫ II are TRUE
(B) Fis金RUE but II is FALSE
(C) In II is TRUE but I is FALSE
(D) both I and II are FALSE
Q. 13 Let

$$
A=\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 0 & 0 \\
-2 & 2 & 2
\end{array}\right)
$$

and $B=A^{5}+A^{4}+I_{3}$. Which of the following is NOT an eigenvalue of B ?
(A) 1
(B) 2
(C) 49
(D) 3
Q. 14 The system of linear equations in x_{1}, x_{2}, x_{3}

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & -1 & 9 \\
2 & 3 & \alpha
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
3 \\
1 \\
\beta
\end{array}\right)
$$

where $\alpha, \beta \in \mathbb{R}$, has
(A) at least one solution for any α and β
(B) a unique solution for any β when $\alpha \neq 1$
(C) $\quad \mathrm{N} Q$ sofution for any α when $\beta \neq 5$
(D) Anfinitely many solutions for any α when $\beta=5$
Q. $15 \quad$ Let S and T be non-empty subsets of \mathbb{R}^{2}, and W be a non-zero proper subspace of \mathbb{R}^{2}. Consider the following statements:
I. If $\operatorname{span}(S)=\mathbb{R}^{2}$, then $\operatorname{span}(S \cap W)=W$.

II. $\quad \operatorname{span}(S \cup T)=\operatorname{span}(S) \cup \operatorname{span}(T)$.

Then
(A) both I and II are TRUE
(B) I is TRUE but II is FALSE
(C) II is TRUE but I is FALSE
(D) both I and H are FALSE
Q. 16 Let $f(x, y)=e^{x^{2}+y^{2}}$ for $(x, y) \in \mathbb{R}^{2}$, and a_{n} be the determinant of the matrix

evaluated at the poink $(\cos (n), \sin (n))$. Then the limit $\lim _{n \rightarrow \infty} \theta_{n}$ is
(A) noncexistent
(B)

(D) $12 e^{2}$
Q. 17 Let $f(x, y)=\ln \left(1+x^{2}+y^{2}\right)$ for $(x, y) \in \mathbb{R}^{2}$. Define

$$
\begin{aligned}
P=\left.\frac{\partial^{2} f}{\partial x^{2}}\right|_{(0,0)} & Q=\left.\frac{\partial^{2} f}{\partial x \partial y}\right|_{(0,0)} \\
R=\left.\frac{\partial^{2} f}{\partial y \partial x}\right|_{(0,0)} & S=\left.\left.\frac{\partial^{2} f}{}\right|_{(0,0)} ^{\partial y^{2}}\right|_{(0,0)}
\end{aligned}
$$

Then
(A) $\quad P S-Q R>0$ and $P<0$
(B) $\quad P S-Q R>0$ and $P>\theta$
(C) $P S-Q R<0$ रิ่ ${ }^{2} P>0$
(D) $\quad P S-Q R<0$ and $P<0$
Q. 18 The area of the curved surface

$$
S=\left\{(x, y,<) \in \mathbb{R}^{3}: z^{2}=(x-1)^{2}+(y-2)^{2}\right\}
$$

lying between the planes $z=2$ and $z=3$ is
(A) $4 \pi \sqrt{2}$
(B)
$5 \pi \sqrt{2}$
(C) 9π
(D) $9 \pi \sqrt{2}$
Q. 19 Let $a_{n}=\frac{1+2^{-2}+\cdots+n^{-2}}{n}$ for $n \in \mathbb{N}$. Then
(A) both the sequence $\left(a_{n}\right)$ and the series $\sum_{n=1}^{\infty} a_{n}$ are convergent
(B) the sequence $\left(a_{n}\right)$ is convergent but the series $\sum_{n=1}^{\infty} a_{n}$ is NOT convergent
(C) both the sequence $\left(a_{n}\right)$ and the sevies $\sum_{n=1}^{\infty} a_{n}$ are NOT convergent
(D) the sequence $\left(a_{n}\right)$ is NOT convergent but the series $\sum_{n=1}^{\infty} a_{n}$ is convergent
Q. 20 Let $\left(a_{n}\right)$ be assequence of real numbers such that the series $\sum_{n=0}^{\infty} a_{n}(x-2)^{n}$ converges at $x=-5$. Then this series also converges at
$(A) \quad x=9$
(B) $\quad x=12$
(C) $\quad x=5$
(D) $\quad x=-6 x^{2}$
Q. 21 Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be sequences of real numbers such that

$$
\left|a_{n}-a_{n+1}\right|=\frac{1}{2^{n}} \quad \text { and } \quad\left|b_{n}-b_{n+1}\right|=\frac{1}{\sqrt{n}} \quad \text { for } n \in \mathbb{N}
$$

Then
(A) both $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are Cauchy sequences
(B) $\quad\left(a_{n}\right)$ is a Cauchy sequence but $\left(b_{n}^{c}\right)$ need NOT be a Cauchy sequence
(C) $\quad\left(a_{n}\right)$ need NOT be a Cauchy sequence but $\left(b_{n}\right)$ is a Cauchy sequence
(D) both $\left(a_{n}\right)$ and $\left(b_{n}\right)$ need NOT be Cauchy sequences
Q. 22 Consider the family of curves $x^{2}+y^{2}=2 x+4 y$, k with a real parameter $k>-5$. Then the ofthogonal trajectory to this family of curves passing through $(2,3)$ also passes thrøügh
(B) $(-1,1)$
(C) $(1,0)$
(D) $(3,5)$
Q. 23 Consider the following statements:
I. Every infinite group has infinitely many subgroups.
II. There are only finitely many non-isomorphic groups of a given finite order.

Then
(A) both I and II are TRUE
(B) I is TRUE but II is FALSE
(C) I is FALSE but II is TRUE
(D) both I and Hare FALSE
Q. 24 Suppose $f:(-1,1) \rightarrow \mathbb{R}$ is an infinitely differentiable function such that the series

for $j \geq 0$. Then
(A) $\quad f(x)$ 天 0 for all $x \in(-1,1)$
(B)

采 is a non-constant even function on $(-1,1)$
(C) $\quad f$ is a non-constant odd function $(-1,1)$
(D) $\quad f$ is NEITHER an odd function NOR an even function on $(-1,1)$
Q. 25 Let $f(x)=\cos (x)$ and $g(x)=1-\frac{x^{2}}{2}$ for $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then
(A) $\quad f(x) \geq g(x)$ for all $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(B) $\quad f(x) \leq g(x)$ for all $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(C) $\quad f(x)-g(x)$ changes sign exactly once $\rho \frac{\pi}{2}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(D) $\quad f(x)-g(x)$ changes sign mote than once on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
Q. 26 Let

$$
\int(x, y)=\int_{(u-x)^{2}+(v-y)^{2} \leq 1} e^{\left.-\sqrt{(u-x)^{2}+\left(y v^{2} y\right)}\right)^{2}} d u d v .
$$

Then $\lim _{n \rightarrow \infty} f\left(n, n^{2}\right)$ is
(A) non-existent
(B) 0
(C) $\quad \pi\left(1-e^{-1}\right)$
(D) $\quad 2 \pi\left(1-2 e^{-1}{ }^{2}\right)$
Q. 27 How many group homomorphisms are there from \mathbb{Z}_{2} to S_{5} ?
(A) 40
(B) 41
(C) 26
(D) 25
Q. 28 Let $y: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function such that $y^{\prime \prime}$ is continuous on $[0,1]$ and $y(0)=y(1)=0$. Suppose $y^{\prime \prime}(x)+x^{2}<0$ for all $x \in[0,21]$. Then
(A) $\quad y(x)>0$ for all $x \in(0,1)$
(B) $y(x)<0$ for all $x \in(0,1)$
(C) $y(x)=0$ has exactly one solutionin $(0,1)$
(D) $\quad y(x)=0$ has more than one solution in $(0,1)$
Q. 29 From the additiye group \mathbb{Q} to which one of the following groups does there exist a non-trivial group iomomorphism?
(A) old
(B) \mathbb{Z}, the additive group of integers
(C) $\quad \mathbb{Z}_{2}$, the additive group of integers modulo 2
(D) \mathbb{Q}^{\times}, the multiplicative group of non-zero rational numbers
Q. 30 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an infinitely differentiable function such that $f^{\prime \prime}$ has exactly two distinct zeroes. Then
(A) $\quad f^{\prime}$ has at most 3 distinct zeroes
(B) $\quad f^{\prime}$ has at least 1 zero
(C) $\quad f$ has at most 3 distinct zeroes
(D) $\quad f$ has at least 2 distinct zeroes

SECTION - B

MULTIPLE SELECT QUESTIONS (MSQ)

Q. 31 - Q. 40 carry two marks each.

Q. 31 For each $t \in(0,1)$, the surface P_{t} in \mathbb{R}^{3} is defined by

$$
P_{t}=\left\{(x, y, z):\left(x^{2}\right.\right.
$$

Let $a_{t} \in \mathbb{R}$ be the surface areaof $\downarrow \hat{P}_{t}$. Then
(A) $\quad a_{t}=\iint_{t^{2} \leq x^{2}+y^{2}} \sqrt{\left(1+\frac{4 x^{2}}{\left(x^{2}+y^{2}\right)^{4}}+\frac{4 y^{2}}{\left(x^{2}+y^{2}\right)^{4}}\right.} d x d y$
(B) $\quad a_{t}=\int_{t^{2} \leq x^{2}+y^{2} \leq 1} \sqrt{1+\frac{4 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{4 y 2}{\left(x^{2}+y^{2}\right)^{2}}} d x d y$
(C) the limit $\lim _{t \rightarrow 0^{+}} a_{t}$ does NOT exist
(D) the limit $\lim _{t \rightarrow 0^{+}} a_{t}$ exists
Q. 32 Let $A \subseteq \mathbb{Z}$ with $0<A$. For $r, s \in \mathbb{Z}$, define

$$
\{\hat{A}=\{r a: a \in A\}, \quad r A+s A=\{r a+s b: a, b \in A\} \text {. }
$$

Whioh of the following conditions imply that A is a subgroup of the additive group \mathbb{Z} ?
(A) $-2 A \subseteq A, A+A=A$
(B) $\quad A=-A, \quad A+2 A=A$
(C) $\quad A=-A, \quad A+A+S$
(D) $\quad 2 A \subseteq A, \quad A+A=A$
Q. 33 Let $y:(\sqrt{2 / 3}, \infty) \rightarrow \mathbb{R}$ be the solution of

$$
\begin{aligned}
(2 x-y) y^{\prime}+(2 y-x) & =0 \\
y(1) & =3_{0}
\end{aligned}
$$

Then
(A) $\quad y(3)=1$
(B) $\quad y(2)=4+\sqrt{10}$
(C) $\quad y^{\prime}$ is bounded on $(\sqrt{2 / 3}, 1)$
(D) $\quad y^{\prime}$ is bounded $(1, \infty)$
Q. 34 Let $f:(, 1) \rightarrow \mathbb{R}$ be a differentiable function satisfying $f(0)=0$. Suppose there exists an $M>0$ such that $\left|f^{\prime}(x)\right| \leq M-1$, for all $x \in(-1,1)$. Then
(A) $\quad f^{\prime}$ is continuous at $x=0$
(B) $\quad f^{\prime}$ is differentiable at $x=0$
(C) $\quad f f^{\prime}$ is differentiable at $x=0$
(D) $\quad\left(f^{\prime}\right)$ is ifferentiable at $x=0$
Q. 35 Which of the following functions is/are Riemann integrable on $[0,1]$?
(A) $\quad f(x)=\int_{0}^{x}\left|\frac{1}{2}-t\right| d t$
(B) $\quad f(x)= \begin{cases}x \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$
(C) $\quad f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \leqslant(0,1] \\ -1 & \text { otherwise }\end{cases}$
(D) $\quad f(x)= \begin{cases}x & \text { if } x \in[0,1) \\ 0 & \text { if } x=1\end{cases}$
Q. 36 Asubset $S \subseteq \mathbb{R}^{2}$ is said to be boanded if there is an $M>0$ such that $|y| \leq M$ for all $(x, y) \in S$. Which of the following subsets of \mathbb{R}^{2} is/are bounded?
(A) $\quad\left\{(x, y) \in \mathbb{R}^{2}: e^{x^{2}}+y^{2} \leq 4\right\}$
(B) $\quad\left\{(x, y) \in \mathbb{R}_{2}^{2} \cdot x^{4}+y^{2} \leq 4\right\}$
(C) $\quad\left\{(x, y) \in \mathbb{R}^{2}:|x|+|y| \leq 4\right\}$
(D) $\left\{(x, y) \in \mathbb{R}^{2}: e^{x^{3}}+y^{2} \leq 4\right\}$
Q. 37 Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined as follows:

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{4} y^{3}}{x^{6}+y^{6}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

Then
(A) $\lim _{t \rightarrow 0} \frac{f(t, t)-f(0,0)}{t}$ exists and equals $\frac{t}{2}$
(B) $\left.\quad \frac{\partial f}{\partial x}\right|_{(0,0)}$ exists and equals 0
(C) $\left.\frac{\partial f}{\partial y}\right|_{(0,0)}$ exists and equals 0
(D) $\lim _{t \rightarrow 0} \frac{f(t, 2 t)-f(0,0)}{t}$ exists and equals $\frac{1}{3}$
Q. 38 Which of the following is/are true?
(A) Every linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} maps lines onto points or lines
(B) Every surjective linear transformation from \mathbb{R}^{2} to- \mathbb{R}^{2} maps lines onto lines
(C) Evers bigective linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} maps pairs of parallel lines to pairs of parallel lines
Every bijective linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} maps pairs of perpendicular lines to pairs of perpendicular fines
Q. 39 Which of the following is/are linear transformations?
(A) $\quad T: \mathbb{R} \rightarrow \mathbb{R}$ given by $T(x)=\sin (x)$
(B) $\quad T: M_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ given by $T(A)=\operatorname{trace}(A)$
(C) $\quad T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $T(x, y)=x+y+1$,
(D) $\quad T: P_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ given by $T(p(x))=p(1)$
Q. 40 Let R_{1} and R_{2} be the radiioficconvergence of the power series $\sum_{n=1}^{\infty}(-1)^{n} x^{n-1}$ and $\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n+1}}{n(n+1)}$, respectively. Then
(A) $\quad R_{1}=R_{2}$
(B) ${ }_{{ }^{<}} R_{2}>1$
(C) $\sum_{n=1}^{\infty}(-1)^{n} x^{n-1}$ converges for alr $x \in[-1,1]$
(D) $\quad \sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n+1}}{n(n+d)}$ converges for all $x \in[-1,1]$

SECTION - C

NUMERICAL ANSWER TYPE (NAT)

Q. 41 - Q. 50 carry one mark each.

Q. 41 Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function defined as follows:

$$
f(x, y)= \begin{cases}\left(x^{2}-1\right)^{2} \cos ^{2}\left(y^{2}\right) \\ 0 & \text { if } x \neq \pm 1 \\ \text { if } x= \pm 1 .\end{cases}
$$

The number of points of discontinuity of $f(x, y)$ is equal to \qquad .
Q. 42 Let $T: P_{2}(\mathbb{R}) \rightarrow P_{4}(\mathbb{R})$ be the linear transformation given by $T(p(x))=p\left(x^{2}\right)$. Then the rank of T is equal to \qquad .
Q. 43 If y is the solution of

$$
\begin{gathered}
y^{\prime \prime}-2 y^{\prime}+y=e^{x}, \\
y(0)=0, \quad y^{\prime}(0)=-1 / 2,
\end{gathered}
$$

then $y(1)$ is equal to \qquad . (rounded off to two decimal places)
Q. 44 The value of

$$
\lim _{n \rightarrow \infty}\left(n \int_{0}^{1} \frac{x^{n}}{x+1} d x\right)
$$

is equal to \qquad . (rounded off to two decimal places)
Q. 45 For $\sigma \in S_{8}$, let $o(\sigma)$ denote the orvter of σ. Then $\max \left\{o(\sigma): \sigma \in S_{8}\right\}$ is equal to
\qquad .
Q. $46 \quad$ For $g \in \mathbb{Z}$, let $\bar{g} \in \mathbb{Z}_{8}$ denote the residue class of g modulo 8. Consider the group $\mathbb{Z}_{8}^{\times}=\left\{\bar{x} \in \mathbb{Z}_{8}: 1 \leq x \leq 7, \operatorname{gcd}(x, 8)=1\right\}$ with respect to multiplication modulo 8. The number of group isomorphisms from \mathbb{Z}_{8}^{\times}onto itself is equal to \qquad .
Q. 47 Let $f(x)=\sqrt[3]{x}$ for $x \in(0, \infty)$, and $\theta(h)$ be a function such that

$$
f(3+h)-f(3)=h f^{\prime}(3+\theta(h) h)
$$

for all $h \in(-1,1)$. Then $\lim _{h \rightarrow 0} \theta(h)$ is equal to
 . (rounded off to two decimal places)
Q. 48 Let V be the volume of the region $S \mathbb{N}^{\varepsilon} \mathbb{R}^{32}$ defined by

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: x y \leq z \leq 4,0 \leq x^{2}+y^{2} \leq 1\right\}
$$

Then $\frac{V}{\pi}$ is equal to \qquad . (rounded off to two decimal places)
Q. 49 The sum of the series $\sum_{n=1}^{\infty} \frac{2 n+1}{\left(n^{2}+1\right)\left(n^{2}+2 n+2\right)}$ \qquad . (rounded off to two decimal places)
Q. 50 , (rounded off to two decimal places)
 -

Q. 51 - Q. 60 carry two marks each.

Q. $51 \quad$ Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined as $f(x, y, z)=x^{3}+y^{3}+z^{3}$, and let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be the linear map satisfying

$$
\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{f(1+x, 1+y, 1+z)-f(1,1,1)-L(x, y, z)}{\sqrt{x^{2}+y_{0}^{2}+z^{2}}}=0 .
$$

Then $L(1,2,4)$ is equal to \qquad (rounded off to two decimal places)
Q. 52 The global minimum value of

$$
f(x)=|x-1|+|x-2|^{2}
$$

on \mathbb{R} is equal to \qquad . (rounded off to two decimal places)
Q. 53 Let $y:(1, \infty) \rightarrow \mathbb{R}$ be the solution of the differential equation

$$
y^{\prime \prime} \nabla \frac{2 y}{(1-x)^{2}}=0
$$

satisfying $y(2)=1$ and $\lim _{x \rightarrow \infty} y(x)=0$. Then $y(3)$ is equal to \qquad . (rounded off to two decimal places)
Q. 54 The number of permutations in S_{4} that have exactly two cycles in their cycle decompositions is e equal to \qquad .
Q. 55 Let S be the triangular region whose vertices are $(0,0),\left(0, \frac{\pi}{2}\right)$, and $\left(\frac{\pi}{2}, 0\right)$. The value of $\iint_{S} \sin (x) \cos (y) d x d y$ is equal \qquad . (rounded off to two decimal places)
Q. 56 Let

$$
A=\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 3 \\
1 & 1 & 4 & 4 & 4
\end{array}\right)
$$

and B be a 5×5 real matrix such that $A B$ is the zero matrix. Then the maximum possible rank of B is equal to \qquad .
Q. 57 Let W be the subspace of $M_{3}(\mathbb{R})^{c o n}$ isisting of all matrices with the property that the sum of the entries in each rowis zero and the sum of the entries in each column is zero. Then the dimension of W is equal to \qquad .
Q. 58 The maximum nupber of linearly independent eigenvectors of the matrix
$\left(\begin{array}{llll}1 & 1 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 1 & 3\end{array}\right)$
is equal to \qquad .
Q. 59 Let S be the set of all real numbers α such that the solution y of the initial value problem

$$
\begin{aligned}
\frac{d y}{d x} & =y(2-y) \\
y(0) & =\alpha,
\end{aligned}
$$

exists on $[0, \infty)$. Then the minimum of the set S is equal to \qquad . (rounded off to two decimal places)
Q. $60 \quad$ Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a bijeetive function such that for all $x \in \mathbb{R}, f(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$ and $f^{-1}(x)=\sum_{n=1}^{\infty} b_{n} x^{n}$, where f^{-1} is the inverse function of f. If $a_{1}=2$ and $a_{2}=4$, then b_{1} is equal to \qquad .

