Section A: Q. 1 - Q. 10 Carry ONE mark each.

Q. 1

Let $\quad M=\left(\begin{array}{rrr}1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1\end{array}\right)$. If a non-zero vector $X=(x, y, z)^{T} \in \mathbb{R}^{3}$ satisfies $M^{6} X=X$, then a subspace of \mathbb{R}^{3} that contains the vector X is
(A) $\quad\left\{(x, y, z)^{T} \in \mathbb{R}^{3}: x=0, y+z=0\right\}$
(B) $\quad\left\{(x, y, z)^{T} \in \mathbb{R}^{3}: y=0, x_{0} \neq 0\right\}$
(C) $\left\{(x, y, z)^{T} \in \mathbb{R}^{3}: \frac{1}{\nabla^{2}} 0, x+y=0\right\}$
(D) $\quad\left\{(x, y, z)^{T} \in \mathbb{R}^{3}: x=0, y-z=0\right\}$
Q. 2 Let $M=M_{1} M_{2}$, where M_{1} and M_{2} are two 3×3 distinct matrices. Consider the following two statements:
(I) The rows of M are linear combinations of rows of M_{2}.
(II) The columns of M are linear combinations of columns of M_{1}.

Then,
(A) only (I) is TRUE
(B) only (II) is TRUE
(C) both (I) and (II) are TRUE
(D) neither (I) nor (II) is TRUE
Q. 3

Let $X \sim F_{6,2}$ and, $\sim F_{2,6}$. If $P(X \leq 2)=\frac{216}{343}$ and $P\left(Y \leq \frac{1}{2}\right)=\alpha$, then 686α equals
(A)

246
(B)

254
(C) 260
(D) 264
Q. 4 Let $Y \sim F_{4,2}$. Then, $P(Y \leq 2)$ equals
(A) 0.60
(B) 0.62
(C) 0.64
(D) 0.66

Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables each having $U(0,1)$ distribution.
Q. 5

Let Y be a random variable havingthedistribution function G. Suppose that

$$
\lim _{n \rightarrow \infty} P\left(\frac{X_{1}+X_{2}+X_{n}}{P^{4}} \leq x\right)=G(x) \text {, for all } x \in \mathbb{R}^{n}
$$

Then, $\operatorname{Var}(Y)$ equals ${ }^{5}$
(A) $\frac{1}{12}$
(B)

(C) $\frac{1}{48}$
(D) $\frac{1}{64}$
Q. 6 Let X_{1}, X_{2}, X_{3} be a random sample from an $N(\theta, 1)$ distribution, where $\theta \in \mathbb{R}$ is an unknown parameter. Then, which one of the following conditional expectations does NOT depend on θ ?
(A) $E\left(X_{1}+X_{2}-X_{3} \mid X_{1}+X_{2}\right)$
(B) $\quad E\left(X_{1}+X_{2}-X_{3} \mid X_{2}+X_{3}\right)$
(C) $E\left(X_{1}+X_{2}-X_{3} \mid X_{1}-X_{3}\right)$
(D) $E\left(X_{1}+X_{2}-X_{3} \mid X_{1}+{ }^{-1} X_{2}+X_{3}\right)$

For the function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by

the point $(1,1)$ is
(A) a point of local maximum
(B) a point of local minimum
(C) a saddle point
(D) NOT a critical point
Q. 8 Let E_{1}, E_{2} and E_{3} be three events such that

$$
P\left(E_{1} \cap E_{2}\right)=\frac{1}{4}, \quad P\left(E_{1} \cap E_{3}\right)=P\left(E_{2} \cap E_{3}\right)=\frac{1}{5} \quad \text { and } \quad P\left(E_{1} \cap E_{2} \cap E_{3}\right)=\frac{1}{6} .
$$

Then, among the events E_{1}, E_{2} and E_{3}, the probability that at least two events occur, equals
(A) $\frac{17}{60}$
(B) $\frac{23}{60}$
(C) $\frac{19}{60}$
(D) $\frac{29}{60}$
Q. $9 \quad$ Let X be a continuous random variable such that $P(X \geq 0)=1$ and $\operatorname{Var}(X)<\infty$. Then, $E\left(X^{2}\right)$ is
(A) $2 \int_{0}^{\infty} x^{2} P(X>x) d x$
(B) $\int_{0}^{\infty} x^{2} P(X>x) d x$
(C) $2 \int_{0}^{\infty} x P(X>x) d x$
(D) $\int_{0}^{\infty} x P(X>x) d x$
Q. 19 Let X be a random variable having a probability density function

$$
f(x ; \theta)= \begin{cases}(3-\theta) x^{2-\theta}, & \text { if } 0<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

where $\theta \in\{0,1\}$. For testing the null hypothesis $H_{0}: \theta=0$ against $H_{1}: \theta=1$, the power of the most powerful test, at the level of significance $\alpha=0.125$, equals
(A)

(B) 0.25
(C) 0.35
(D) 0.45

Section A: Q. 11 - Q. 30 Carry TWO marks each.

Q. 11 Let X_{1} and X_{2} be i.i.d. random variables having the common probability density function

$$
f(x)=\left\{\begin{array}{lc}
e^{-x}, & x \geq 0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Define $X_{(1)}=\min \left\{X_{1}, X_{2}\right\} \quad$ and $\quad X_{(2)}=\max \left\{X_{1}, X_{2}\right\}$. Then, which one of the following statements is FALSE?
(A) $\frac{2 X_{(1)}}{X_{(2)}-X_{(1)}} \sim F_{2,2}$
(B)

(C)

(D) ${ }^{2}$
Q. 12 Let X and Y be random variables such that $X \sim N(1,2)$ and $P\left(Y=\frac{X}{2}+1\right)=1$. Let $\alpha=\operatorname{Cov}(X, Y), \beta=E(Y)$ and $\gamma=\operatorname{Var}(Y)$. Then, the value of $\alpha+2 \beta+4 \gamma$ equals
(A) 5
(B) 6
(C) 7
(D) 8

A point (a, b) is chosen at random from the rectangular region $[0,2] \times[0,4]$. Then, the probability that the area of the region

$$
R=\{(x, y) \in \mathbb{R} \times \mathbb{R}: \quad b x+a y \leq a b, \quad x, y \geq 0\}
$$

(A) $\frac{1+\ln 2}{4}$
(B)

(C) $\frac{2+\ln 2}{4}$
(D) $\frac{1+2 \ln 2}{4}$
Q. 14 Let X_{1}, X_{2}, \ldots be a sequence of independent random variables such that

$$
P\left(X_{i}=i\right)=\frac{1}{4} \quad \text { and } \quad P\left(X_{i}=2 i\right)=\frac{3}{4}, \quad i=1,2, \ldots
$$

For some real constants c_{1} and c_{2}, suppose that

$$
\frac{c_{1}}{\sqrt{n}} \sum_{i=1}^{n} \frac{X_{i}}{i}+c_{2} \sqrt{n} \xrightarrow{d} \operatorname{Zos} N(0,1), \quad \text { as } n \rightarrow \infty .
$$

Then, the value of $\sqrt{3}\left(3 c_{1}+c_{2}\right)$ equals
(A) 2
(B) 3
(C) 4

Q. 15 Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables such that

$$
P\left(X_{1}=0\right)=P\left(X_{1}=1\right)=P\left(X_{1}=2\right)=\frac{1}{3}
$$

Let $S_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ and $T_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}, n=1,2, . . S$ uppose that

$$
\begin{aligned}
& \alpha_{1}=\lim _{n \rightarrow \infty} P\left(\left|S_{n}-\frac{1}{2}\right|<\frac{3}{4}\right), \\
& \alpha_{3}=\lim _{n \rightarrow \infty} P\left(\left|T_{n}-\frac{1}{3}\right|<\frac{3}{2} \text {. } 2 \text { and } \quad \alpha_{4}=\lim _{n \rightarrow \infty} P\left(\left|T_{n}-\frac{2}{3}\right|<\frac{1}{2}\right) .\right.
\end{aligned}
$$

Then, the value of $\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+4 \alpha_{4}$ equals
(A) 6
(B) 5
(C) 0^{2}

Q. 16 For $x \in \mathbb{R}$, the curve $y=x^{2}$ intersects the curve $y=x \sin x+\cos x$ at exactly n points. Then, n equals
(A) 1
(B) 2
(C) 4
(D) 8
Q. 17 Let (X, Y) be a random vector having the joint probability density function

$$
f(x, y)=\left\{\begin{array}{lr}
\alpha|x|, & \text { if } x^{2} \leq y \leq 2 x^{2}, \\
0, & -1 \leq x \leq 1 \\
\text { otherwise }
\end{array}\right.
$$

where α is a positive constant. Then, $P(X>Y)$ equals
(A) $\frac{5}{48}$
(B) $\frac{7}{48}$
(C) $\frac{5}{24}$
(D) $\frac{7 e^{〔}}{\frac{24}{24}}$

Q. 18 Let $X_{1}, X_{2}, X_{3}, X_{4}$ be a random sample of size 4 from an $N(\theta, 1)$ distribution, where $\theta \in \mathbb{R}$ is an unknown parameter. Let $\bar{X}=\frac{1}{4} \sum_{i=1}^{4} X_{i}, g(\theta)=\theta^{2}+2 \theta$ and $L(\theta)$ be the Cramer-Rao lower bound on variance of unbiased estimators of $g(\theta)$. Then, which one of the following statements is FALSE?
(A) $L(\theta)=(1+\theta)^{2}$
(B) $\bar{X}+e^{\bar{X}}$ is a sufficient statistic for θ
(C) $\quad(1+\bar{X})^{2}$ is the uniformly minimum variance unbiased estimatorof $g(\theta)$
(D) $\quad \operatorname{Var}\left((1+\bar{X})^{2}\right) \geq \frac{(1+\theta)^{2}}{2}$
Q. 19 Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a population having the probability density function

$$
f(x ; \mu)= \begin{cases}\frac{1}{2} e^{-\left(\frac{x-2 \mu}{2}\right)}, & \text { if } x>2 \mu \\ 0, & \text { otherwise }\end{cases}
$$

where $-\infty<\mu<\infty$. For estimating μ, consider estimators

$$
T_{1}=\frac{\bar{X}-2}{2} \quad T_{2}=\frac{n X_{(1)}-2}{2 n},
$$

where $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ and $X_{(\mathrm{f})} \min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$. Then, which one of the following statements is TRUE?
(A) T_{1} is consistent but T_{2} is NOT consistent
(B) T_{2} is consistent but T_{1} is NOT consistent
(C) α^{2} Both T_{1} and T_{2} are consistent
(D) Neither T_{1} nor T_{2} is consistent
Q. 20 Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $U\left(\theta+\frac{\sigma}{\sqrt{3}}, \theta+\sqrt{3} \sigma\right)$ distribution, where $\theta \in \mathbb{R} \quad$ and $\quad \sigma>0$ are unknown parameters. Let $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad$ and $S=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}$. Let $\hat{\theta}$ and $\hat{\sigma}$ be the method of moment estimators of θ and σ, respectively. Then, which one of the following statements is FALSE?
(A) $\hat{\sigma}+\sqrt{3} \hat{\theta}=\sqrt{3} \bar{X}-3 S$
(B) $2 \sqrt{3} \hat{\sigma}+\hat{\theta}=\bar{X}-4 \sqrt{3} S$
(C) $\sqrt{3} \hat{\sigma}+\hat{\theta}=\bar{x}+\sqrt{3} S$
(D) $\quad \hat{\sigma}-\sqrt{3} \hat{\theta}=9 S-\sqrt{3} \bar{X}$
Q. 21

Let (X, Y, Z) be a random vector having the joint probability density function

$$
f(x, y, z)=\left\{\begin{array}{lr}
\frac{1}{2 x y}, & \text { if } 0<z<y<x<1 \\
\frac{1}{2 x^{2}}, & \text { if } 0<z<x<y<2 x<2 \\
0, & \text { otherwise }
\end{array}\right.
$$

Then, which one of the following statements is FALSE?
(A) $\quad P(Z<Y<X)=\frac{1}{2}$
(B)
(C)

Q. 22 Let X be a random variable such that the moment generating function of X exists in a neighborhood of zero and

$$
E\left(X^{n}\right)=(-1)^{n} \frac{2}{5}+\frac{2^{n+1}}{5}+\frac{1}{5}, \quad n=1,2,3, \ldots
$$

Then, $P\left(\left|X-\frac{1}{2}\right|>1\right)$ equals
(A) $\frac{1}{5}$
(B) $\frac{2}{5}$
(C) $\frac{3}{5}$
(D)

Q. 23 Let X be a random variable having a probability mass function $p(x)$ which is positive only for non-negative integers. If

$$
p(x+1)=\left(\frac{\ln 3}{x+1}\right) p(x), \quad x=0,1,2, \ldots,
$$

then $\operatorname{Var}(X)$ equals
(A) $\ln 3$
(B) $\ln 6$
(C) $\ln 9$
(D) $\quad \ln 18$

Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence such that $a_{1}=1$ and $4 a_{n+1}=\sqrt{45+16 a_{n}}, n=1,2,3, \ldots$. Then, which one of the following statements is TRUE?
(A)

(B) $\left\{a_{n}\right\}_{n \geq 1}$ is monotonically increasing and converges to $\frac{9}{4}$
(C) $\left\{a_{n}\right\}_{n \geq 1}$ is bounded above by $\frac{17}{8}$
(D) $\quad \sum_{n=1}^{\infty} a_{n}$ is convergent
Q. 25 Let the series S and T be defined by

$$
\sum_{n=0}^{\infty} \frac{2 \cdot 5 \cdot 8 \cdots(3 n+2)}{1 \cdot 5 \cdot 9 \cdots(4 n+1)} \quad \text { and } \quad \sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{-n^{2}}
$$

respectively. Then, which one of the following statements is TRUE?
(A) S is convergent and T is divergent
(B) $\quad S$ is divergent and T is convergent
(C) Both S and T are convergent
(D) Both S and T are divergent
Q. 26 The volume of the region

 $R=\left\{(x, y, z) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}: x^{2}+y^{2} \leq 4, \gamma^{0} \leq z \leq 4-y\right\}$
is
(A) $16 \pi \cdot 16$
(B) 16π
(C) 8π
(D) $16 \pi+4$
Q. 27 For real constants α and β, suppose that the system of linear equations

$$
x+2 y+3 z=6 ; \quad x+y+\alpha z=3 ; \quad 2 y+z=\beta
$$

has infinitely many solutions. Then, the value of $4 \alpha+3 \beta$ equals
(A) 18
(B) 23
(C) 28
(D) 32

Let x_{1}, x_{2}, x_{3} and x_{4} be observed values of a random sample from an $N\left(\theta, \sigma^{2}\right)$ distribution, where $\theta \in \mathbb{R}$ and $\sigma>0$ are unknown <parameters. Suppose that $\bar{x}=\frac{1}{4} \sum_{i=1}^{4} x_{i}=6.6$ and $\frac{1}{3} \sum_{i=1}^{4}\left(x_{i}-\bar{x}\right)^{2}=20.25$. For testing the null hypothesis $H_{0}: \theta=0$ âgainst $H_{1}: \theta \neq 0$, the p-value of the likelihood ratio test equals
(A)
(B) 0.208
(C) 0.104
(D) 0.052
Q. 29 Let X and Y be jointly distributed random variables such that, for every fixed $\lambda>0$, the conditional distribution of X given $Y=\lambda$ is the Poisson distribution with mean λ. If the distribution of Y is $\operatorname{Gamma}\left(2, \frac{1}{2}\right)$, then the value of $P(X=0)+P(X=1)$ equals
(A) $\frac{7}{27}$
(B) $\frac{20}{27}$
(C) $\frac{8}{27}$
(D) $\frac{16}{27}$

Among all the points on the sphere $x^{2}+y^{2}+z^{2}=24$, the point (α, β, γ) is closest to the point $(1,2,4)^{2}$. Then, the value of $\alpha+\beta+\gamma$ equals
(A)
(B)

(C) 2
(D) -2

Section B: Q. 31 - Q. 40 Carry TWO marks each.

Q. 31 Let M be a 3×3 real matrix. If $P=M+M^{T}$ and $Q=M-M^{T}$, then which of the following statements is/are always TRUE?
(A) $\quad \operatorname{det}\left(P^{2} Q^{3}\right)=0$
(B) $\quad \operatorname{trace}\left(Q+Q^{2}\right)=0$
(C) $\quad X^{T} Q^{2} X=0$, for all $X \in \mathbb{R}^{3}$
(D) $\quad X^{T} P X=2 X^{T} M X$, for all $X \in \mathbb{R}^{3}$
Q. 32 Let X_{1}, X_{2}, X_{3} be i.i.d. random variables, each having the $N(0,1)$ distribution. Then, which of the following statements is/are TRUE?
(A)
$\frac{\sqrt{2}\left(X_{1}-X_{2}\right)}{\sqrt{\left(X_{1}+X_{2}\right)^{2}+2 X_{3}^{2}}} \sim t_{1}$
(B)
$\frac{\left(X_{1}+X_{2}\right)^{2}}{\left(X_{1}-X_{2}\right)^{2}+2 X_{3}^{2}} \sim F_{1,2}$
(C) $E\left(\frac{X_{1}}{X_{2}^{2}+X_{3}^{2}}\right)=0$
(D) $\quad P\left(X_{1}<X_{2}+X_{3}\right)=\frac{1}{3}$
Q. 33 Let $x_{1}, x_{2}, \ldots, x_{10}$ be the observed values of a random sample of size 10 from an $N\left(\theta, \sigma^{2}\right)$ distribution, where $\theta \in \mathbb{R}$ and $\sigma>0$ are unknown parameters. If

$$
\bar{x}=\frac{1}{10} \sum_{i=1}^{10} x_{i}=0 \quad \text { and } \quad s=\sqrt{\frac{1}{9} \sum_{i=1}^{10}\left(x_{i}-\bar{x}\right)^{2}}=2
$$

then based on the values of \bar{x} and s and using Student's t-distribution with 9 degrees of freedom, 90% confidence interval (s) for θ is/are
(A) $(-0.8746, \infty)$
(B) $(-0.8746,0.8746)$
(C) $(-1.1587,1.1587)$
(D)
Q. 34 Let $\left(X_{1}, X_{2}\right)$ be a random vector having the probability mass function

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}\frac{c}{x_{1}!x_{2}!\left(12-x_{1}-x_{2}\right)!}, & \text { if } x_{1}, x_{2} \in\{0,1, \ldots, 12\}, \\ x_{1}+x_{2} \leq 12 \\ 0, & \text { otherwise }\end{cases}
$$

where c is a real constant. Then, which of the following statements is/are TRUE?
(A) $\quad E\left(X_{1}+X_{2}\right)=8$
(B) $\operatorname{Var}\left(X_{1}+X_{2}\right)=\frac{8}{3}$
(C)

(D) $\operatorname{Vact}\left(X_{1}+2 X_{2}\right)=8$
Q. 35 Let P be a 3×3 matrix having the eigenvalues 1,1 and 2 . Let $(1,-1,2)^{T}$ be the only linearly independent eigenvector corresponding to the eigenvalue 1 . If the adjoint of the matrix $2 P$ is denoted by Q, then which of the following statements is/are TRUE?
(A) $\operatorname{trace}(Q)=20$
(B) $\operatorname{det}(Q)=64$
(C) $(2,-2,4)^{T}$ is an eigenvectorof the matrix Q
(D) $Q^{3}=20 Q^{2}-124 Q+256 I_{3}$
Q. $36 \quad$ Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x, y)= \begin{cases}\frac{x y(x+y)}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

Then, which of the following statements is/are TRUE?
(A) f is continuous on $\mathbb{R} \times \mathbb{R}$
(B) The partial derivative of f with respect to y exists at $(0,0)$, and is θ
(C) The partial derivative of f with respect to x is continuous on $\mathbb{R} \times \mathbb{R}$
(D) f is NOT differentiable at $(0,0)$
Q. 37 Let X and Y be i.i.d. random variables each having the $N(0,1)$ distribution. Let $U=\frac{X}{Y_{s}}$ and ${ }^{2}=|U|$. Then, which of the following statements is/are TRUE?
(A) Was Cauchy distribution
(B) $\quad E\left(Z^{p}\right)<\infty$, for some $p \geq 1$
(C) $\quad E\left(e^{t Z}\right)$ does not exist for all $t \in(-\infty, 0)$
(D) $\quad Z^{2} \sim F_{1,1}$
Q. 38 Which of the following is/are TRUE?
(A) $\int_{0}^{1} \int_{0}^{1} e^{\max \left\{x^{2}, y^{2}\right\}} d x d y=e-1$
(B) $\int_{0}^{1} \int_{0}^{1} e^{\min \left\{x^{2}, y^{2}\right\}} d x d y=\int_{0}^{1} e^{t^{2}} d t-(e-1)$
(C) $\int_{0}^{1} \int_{0}^{1} e^{\max \left\{x^{2}, y^{2}\right\}} d x d y=2 \int_{0}^{1} \int_{y}^{1} e^{x^{2}} d x d y$
(D) $\int_{0}^{1} \int_{0}^{1} e^{\min \left\{x^{2}, y^{2}\right\}} d x d y=2 \int_{0}^{1} \int_{1}^{y} e^{y^{2}} d x d y$
Q. 39 Lo Let X be a random variable having the probability density function

$$
f(x)=\left\{\begin{array}{lc}
\frac{5}{x^{6}}, & \text { if } x>1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Then, which of thefollowing statements is/are TRUE for the distribution of X ?
(A) The coefficiênt of variation is $\frac{4}{\sqrt{15}}$
(B) The first quartile is $\left(\frac{3}{4}\right)^{\frac{1}{5}}$
(C) The median is $(2)^{\frac{1}{5}}$
(D) The upper bound obtained by Chebyshev's inequality for $P\left(X \geq \frac{5}{2}\right)$ is $\frac{1}{15}$
Q. $40 \quad$ Based on 10 data points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{10}, y_{10}\right)$ on a variable (X, Y), the simple regression lines of Y on X and X on Y are obtained as $2 y-x=8$ and $y-x=-3$, respectively. Let $\bar{x}=\frac{1}{10} \sum_{i=1}^{10} x_{i}$ and $\bar{y}=\frac{1}{10} \sum_{i=1}^{10} y_{i}$. Then, which of the following statements is/are TRUE?
(A) $\quad \sum_{i=1}^{10} x_{i}=140$
(B) $\quad \sum_{i=1}^{10} y_{i}=110$
(C)

$$
\frac{\sum_{i=1}^{10}\left(x_{i}-\bar{x}\right) y_{i}}{\sqrt{\left(\sum_{i=1}^{10}\left(x_{i}-\bar{x}\right)^{2}\right)\left(\sum_{i=1}^{10}\left(y_{i}-\bar{y}\right)^{2}\right)}}=-\frac{1}{\sqrt{2}}
$$

(D) $\frac{\sum_{i=1}^{10}\left(x_{i}-\bar{x}\right)^{2}}{\sum_{i=1}^{10}\left(y_{i}-\bar{y}\right)^{2}}=2$

Section C: Q. 41 - Q. 50 Carry ONE mark each.

Q. $41 \quad$ Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=x^{2}-x, x \in \mathbb{R}$. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function such that $g(x)=0$ has exactly three distinct roots in the open interval $(0,1)$. Let $h(x)=f(x) g(x), x \in \mathbb{R}$, and $h^{\prime \prime}$ be the second order derivative of the function h. If n is the number of roots of $h^{\prime \prime}(x)=0$ in $(0,1)$, then the minimum possible value of n equals \qquad
Q. 42 Let X_{1}, X_{2}, be a sequence of i.i.d. random variables, each having the probability density function

$$
f(x)=\left\{\begin{array}{lr}
\frac{x^{2} e^{-x}}{2 \nu}, & \text { if } x \geq 0 \\
0, & \text { otherwise } .
\end{array}\right.
$$

For some real constants β, γ and k, suppose that

$$
\lim _{x \rightarrow \infty} P\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} \leq x\right)=\left\{\begin{array}{lr}
0, \\
k x, & \text { if } x<\beta \\
k \gamma,
\end{array}\right.
$$

Then, the value of $2 \beta+3 \gamma+6 k$ equals \qquad
Q. 43 Let α and β be real constants such that

$$
\lim _{x \rightarrow 0^{+}} \frac{\int_{0}^{x}\left(\frac{\alpha t^{2}}{1+t^{4}}\right) d t}{\beta x-\sin x}=1
$$

Then, the value of $\alpha+\beta$ equals \qquad
Q. 44 Let $X_{1}, X_{2}, \ldots, X_{10}$ be a random sample from an $N\left(0, \sigma^{2}\right)^{2}$ distribution, where $\sigma>0$ is an unknown parameter. For some real constant $c_{\text {, }}$ 㶲 $F=\frac{c}{10} \sum_{i=1}^{10}\left|X_{i}\right|$ be an unbiased estimator of σ. Then, the value of c equals \qquad (round off to two decimal places)

Let X be a random variable having the probability density function

$$
f(x)=\left\{\begin{array}{l}
\frac{x}{2} \\
0
\end{array}\right.
$$

$$
\text { if } 0<x<2
$$

Then, $\operatorname{Var}\left(\ln \left(\frac{2}{x}\right)\right)$ equals \qquad
Q. 46 Let X_{1}, X_{2}, X_{3} be i.i.d. random variables, each having the $N(2,4)$ distribution. If

$$
P\left(2 X_{1}-3 X_{2}+6 X_{3}>17\right)=1-\Phi(\beta)
$$

then β equals \qquad

Q. 47 Let the probability mass function of a random variable X be given by
where k is positive constant. Then, $P\left(X \geq 17 \chi^{\prime} X \geq 5\right)$ equals \qquad
Q. 48 Let

$$
P(X=n)=\frac{k}{(n-1) n}, \frac{n=2}{} 2,3, \ldots
$$

$$
\text { where } k \text { is a positive constant. Then, } P(X \geq 17 \mid X \geq b) \text { equals }
$$

Then, $\lim _{n \rightarrow \infty} S_{n}$ equals \qquad (round off to two decimal places)
Q. 49 A box contains a certain number of balls out of which 80% are white, 15% are blue and 5% are red. All the balls of the same color are indistinguishable. Among all the white balls, $\alpha \%$ are marked defective, among all the blue balls, 6% are marked defective and among all the red balls, 9% are marked defective. A bafl is chosen at random from the box. If the conditional probability that the chosen ball is white, given that it is defective, is 0.4 , then α equals \qquad
Q. 50 Let X_{1}, X_{2} be a random sample from a distribution having a probability density function

$$
f(x ; \theta)=\left\{\begin{array}{lc}
\frac{1}{\theta} e^{-\frac{x}{\theta}}, & \text { if } x>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

z^{2} where $\theta \in(0, \infty)$ is an unknown parameter. For testing the null hypothesis $H_{0}: \theta=1$ against $H_{1}: \theta \neq 1$, consider atest that rejects H_{0} for small observed values of the statistic $W=\frac{X_{1}+X_{2}}{2}$. If the observed values of X_{1} and X_{2} are 0.25 and 0.75 , respectively, then the p-value equals (round off to two decimal places)

Section C: Q. 51 - Q. 60 Carry TWO marks each.

Q. $51 \quad$ Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)=x^{2} \sin (x-1)+x e^{(x-1)} ; x \in \mathbb{R} .
$$

Then,

$$
\lim _{n \rightarrow \infty} n\left(f\left(1+\frac{1}{n}\right)+f\left(1+\frac{2}{2}\right)^{2}+\cdots+f\left(1+\frac{10}{n}\right)-10\right)
$$

equals \qquad
Q. 52 Let the random vector $\left(X_{1}, X_{2}\right)$ follow the bivariate normal distribution with Nar $E\left(X_{2}\right)=E\left(X_{2}\right)=1, \quad \operatorname{Var}\left(X_{1}\right)=4 \quad$ and $\quad \operatorname{Cov}\left(X_{1} X_{2}\right)=1$. Then, $\operatorname{Var}\left(X_{1}+X_{2} \left\lvert\, X_{1}=\frac{1}{2}\right.\right)$ equals
Q. 53 If, forsome $\alpha \in(0, \infty)$,

then α equals \qquad (kound off to two decimal places)
Q. 54 Let $x_{1}=2.1, x_{2}=4.2, x_{3}=5.8$ and $x_{4}=3.9$ be the observed values of a random sample X_{1}, X_{2}, X_{3} and X_{4} from a population having a probability density function

$$
f(x ; \theta)= \begin{cases}\frac{x}{\theta^{2}} e^{-\frac{x}{\theta}}, & \text { if } x>0 \\ 0, & \text { otherwise }\end{cases}
$$

where $\theta \in(0, \infty)$ is an unknown parameter of then, the maximum likelihood estimate of $\operatorname{Var}\left(X_{1}\right)$ equals \qquad
Q. 55 Let $x_{1}=2, x_{2}=5$ and $x_{3}=4$ be the observed values of a random sample froma population having a probability mass fupction

$$
f(x ; \theta)=\left\{\begin{array}{lr}
\theta(\mathbb{1}-\theta)^{x}, & \text { if } x=0,1,2, \ldots \\
0, & \text { otherwise }
\end{array}\right.
$$

where $\theta \in(0,1)$ is an unknown parameter. If $\hat{\tau}$ is the uniformly minimum variance unbiased estimate of θ^{2}, then $156 \hat{\tau}$ equals
Q. 56 Let $X_{1}, X_{2}, \ldots, X_{5}$ be $i . i . d$. random variables, each having the $\operatorname{Bin}\left(1, \frac{1}{2}\right)$ distribution. Let $K=X_{1}+X_{2}+\cdots+X_{5}$ and

$$
U=\left\{\begin{array}{lr}
0, & \text { af } K=0 \\
X_{1}+X_{2}+\cdots+X_{K}, & \text { if } \hat{K}=1,2, \ldots, 5
\end{array}\right.
$$

Then, $E(U)$ equals \qquad
Q. 57 Let $X_{1} \sim \operatorname{Gamma}(1,4), \quad X_{2} \sim \operatorname{Gamma}(2,2)$ and $X_{3} \sim \operatorname{Gamma}(3,4)$ be three independent random variables. If $Y=X_{1}+2 X_{2}+X_{3}$, then $E\left(\left(\frac{Y}{4}\right)^{4}\right)$ equals \qquad

Let X_{1}, X_{2} bear random sample from a $U(0, \theta)$ distribution, where $\theta>0$ is an unknown parameter For testing the null hypothesis $H_{0}: \theta \in(0,1] \cup[2, \infty)$ against $H_{1}: \theta \in(1,2)$, consider the critical region

$$
R=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R} \times \mathbb{R}: \frac{5}{4}<\max \left\{x_{1}, x_{2}\right\}<\frac{7}{4}\right\} .
$$

Then, the size of the critical region equals \qquad
Q. 59 Let $X_{1}, X_{2}, \ldots, X_{5}$ be a random sample from a $\operatorname{Bin}(1, \theta)$ distribution, where $\theta \in(0,1)$ is an unknown parameter. For testing the null hypothesis $H_{0}: \theta \leq 0.5$ against $H_{1}: \theta>0.5$, consider the two tests T_{1} and T_{2} defined as:
T_{1} : Reject H_{0} if, and only if, $\sum_{i=1}^{5} X_{i}=5$.
T_{2} : Reject H_{0} if, and only if, $\sum_{i=1}^{5} X_{i} \geq 3$.

Let β_{i} be the probability of making Typesis used. Then, the value of $\beta_{1}+\beta_{2}$ equals \qquad (round off to two decimal places)
Q. 60 Let $X_{1} \sim N(2,1), X_{2} \sim N(-1,4)$ and $X_{3} \sim N(0,1)$ be mutually independent random variables. Then, the probability that exactly two of these three random variables are less than 1, equals \qquad (round off fotwo decimal places)

