JNUEE PHD Mathematical Sciences

Topic: - MATH897 JNUS21

- A. Every uncountable subsets of R \ Z is Lebesgue measurable.
 - B. Every uncountable subset of $\mathbb{R} \setminus \mathbb{Q}$ is Lebesgue measurable and has nonzero Lebesgue measure.
 - C. Every infinite subset of **Z** which contains only odd numbers is Lebesgue measurable.
 - D. $\left\{\frac{a}{2^b} \mid a \in \mathbb{Z}, b \in \mathbb{N}, b \text{ is odd}\right\}$ is Lebesgue measurable.

Which of the above statements is/are true? Choose the *correct* answer from the options given below:

[Question ID = 20203][Question Description = S1_MATH_897_PhD_Q001]

- 1. A and B only
 - [Option ID = 146125]
- 2. C and D only
 - [Option ID = 146126]
- 3. A and D only
 - [Option ID = 146127]
- 4. C only
 - [Option ID = 146128]
- We define a relation \sim on \mathbb{R}^2 as follows: For $a,b\in\mathbb{R}^2$, $a\sim b$ if 2a-3b lies on the graph of a continuous function $f:\mathbb{R}\to\mathbb{R}$, which may depend on a and b.

Which of the following assertions is correct?

[Question ID = 20204][Question Description = \$1_MATH_897_PhD_Q002]

- ~ is not reflexive.
 - [Option ID = 146129]
- ~ is reflexive but neither symmetric nor transitive.
 - [Option ID = 146130]
- $^{3.}$ \sim is an equivalence relation with finitely many equivalence classes.
 - [Option ID = 146131]
- ✓ is an equivalence relation with infinitely many equivalence classes.
 - [Option ID = 146132]
- Let $f:\mathbb{C}\to\mathbb{R}$ be any continuous function such that $f(e^{2i}z)=f(z)$ for all $z\in\mathbb{C}$, where $i=\sqrt{-1}$. Consider the following statements:
 - A. The image of f is a compact set.
 - B. The image of f is an infinite countable set.

Which of the following is necessarily correct?

[Question ID = 20205][Question Description = S1_MATH_897_PhD_Q003]

- 1. A is true but B is false.
- [Option ID = 146133]
- 2. B is true but A is false
- [Option ID = 146134]
- 3. Both A and B are true.
- [Option ID = 146135]
- 4. Both A and B are false.
- [Option ID = 146136]

$$\varrho(x) = \begin{cases} \sin 2x & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{|x|+1} & \text{if } x \in \mathbb{Q} \end{cases}$$

Consider the following statements:

- A. Q is Lebesgue measurable.
- B. Q is Lebesgue integrable.
- C. $\varrho(E)$ is measurable for every nonempty bounded subset E of \mathbb{R} .

Which of the following is correct?

- A.Q is Lebesgue measurable:
- B.Q is Lebesgue measurable:
- C. $Q^{(E)}$ is measruble for every nonempty bounded subset E or R.

Which of the following is correct?

```
[Question ID = 20206][Question Description = S1_MATH_897_PhD_Q004]
1. Both A and B are true but C is false.
   [Option ID = 146137]
2. Both A and B are false but C is true.
   [Option ID = 146138]
3. Both B and C are false but A is true.
   [Option ID = 146139]
4. Both A and C are true but B is false.
   [Option ID = 146140]
5)
      Let X=\mathbb{R}^2, Y=\mathbb{Q}\times\mathbb{Q}, Z=(\mathbb{R}\setminus\mathbb{Q})\times(\mathbb{R}\setminus\mathbb{Q}) and W=(\mathbb{R}\setminus\mathbb{Q})\times\mathbb{Q}. Consider the
      following statements:
      A. X \setminus Y is connected.
      B. (X \setminus Y) \setminus W is connected.
      C. Both X \setminus Z and X \setminus W are connected.
      Which of the following is correct?
[Question ID = 20207][Question Description = S1_MATH_897_PhD_Q005]
1. Both A and B are true but C is false.
   [Option ID = 146141]
2. Both B and C are false but A is true.
   [Option ID = 146142]
3. Both A and C are true, but B is false.
   [Option ID = 146143]
4. All A, B and C are false.
   [Option ID = 146144]
6) Let \tau be the cofinite topology on \mathbb{Z}. Consider the following statements:
      A. (\mathbb{Z}, \tau) is second countable.
      B. (\mathbb{Z}, \tau) is separable.
     C. (\mathbb{Z}, \tau) is compact.
      D. (\mathbb{Z}, \tau) is path connected.
      Which of the following is correct?
[Question ID = 20208][Question Description = S1_MATH_897_PhD_Q006]
1. A and B are true but C and D are false.
   [Option ID = 146145]
2. A, B and C are true but D is false.
   [Option ID = 146146]
3. C is true but A, B and D are false.
   [Option ID = 146147]
4. B and D are true but A and C are false.
   [Option ID = 146148]
7) Let \mathcal T be the topology on \mathbb N which has a subbasis \{n,n+3\mid n\in\mathbb N\} . Consider the following
     A. (\mathbb{N}, \tau) is a Hausdorff space.
     B. (\mathbb{N}, \tau) is a compact space.
     C. 	au is countable.
     Which of the following is correct?
[Question ID = 20209][Question Description = S1_MATH_897_PhD_Q007]
1. A is true but both B and C are false.
    [Option ID = 146149]
2. Both A and B are false but C is true.
   [Option ID = 146150]
3. Both A and C are false but B is true.
   [Option ID = 146151]
4. All A, B and C are false.
   [Option ID = 146152]
     Let f: S^1 \to \mathbb{R} be any continuous function, where S^1 is the unit circle centered at (0,0) in \mathbb{R}^2 with the
     subspace topology inherited from the usual topology on \mathbb{R}^2. Consider the following statements:
     A. f is not injective.
```

```
B. The image of f is a closed interval [a,b] for some a,b \in \mathbb{R} with a < b.
      Which of the following is necessarily correct?
[Question ID = 20210][Question Description = S1_MATH_897_PhD_Q008]
    [Option ID = 146153]
2. B is true but A is false
    [Option ID = 146154]
3. Both A and B are true
    [Option ID = 146155]
4. Both A and B are false
   [Option ID = 146156]
9) Let C_1=\{\,]-2r,2r[\,|\,r>0\} C_2=\{[-2r,2r]\,|\,r>0\} and let C_3=\{\mathbb{R},\emptyset\}.
      Which of the following assertions is correct?
[Question ID = 20211][Question Description = S1_MATH_897_PhD_Q009]
{\rm 1.}\quad {\rm Given}\ \delta>0\ {\rm there}\ {\rm exists}\ \epsilon>0\ {\rm such\ that}\ d(x,y)<\delta\Rightarrow d(f(x),f(y))>\epsilon
   [Option ID = 146157]
2. C_2 is a basis for a topology on \mathbb R but C_1 is not.
   [Option ID = 146158]
3. C_2 \cup \{\mathbb{R} \setminus X \mid X \in C_1\} is a basis for the usual topology on \mathbb{R}
   [Option ID = 146159]
4. C_1 \cup C_2 \cup C_3 is a topology on \mathbb{R}
   [Option ID = 146160]
       Let (X,d) be a metric space and let f:X\to X be any function. Which of the following is equivalent to
        the statement that "f is not uniformly continuous"?
[Question ID = 20212][Question Description = S1_MATH_897_PhD_Q010]
1. Given \delta > 0 there exists \epsilon > 0 such that d(x,y) < \delta \Rightarrow d(f(x),f(y)) > \epsilon
    Given \epsilon>0, there exists \delta>0 and a pair of elements x,y in X, which depends on \epsilon, such that
    d(x,y) < \delta and d(f(x),f(y)) > \epsilon.
    [Option ID = 146162]
3. There exists \delta>0 such that for every \epsilon>0, d(x,y)>\delta\Rightarrow d(f(x),f(y))>\epsilon
    [Option ID = 146163]
    There exists \epsilon > 0 such that for every \delta > 0, there exists a pair of elements x, y in X which depends
    on \delta, with d(x,y) < \delta and d(f(x),f(y)) > \epsilon.
   [Option ID = 146164]
 11) Consider the following matrices
        A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 0 & 0 \\ 4 & 5 & 0 \end{pmatrix} \in M_3(\mathbb{Q}).
        Which of the following is correct?
[Question ID = 20213][Question Description = S1_MATH_897_PhD_Q011]
1. A, B are similar in M_3(\mathbb{Q})
    [Option ID = 146165]
2. A, B are similar in M_3(\mathbb{R}) but not in M_3(\mathbb{Q})
    [Option ID = 146166]
3. A, B are similar in M_3(\mathbb{C}) but not in M_3(\mathbb{R}).
4. A, B are not similar in M_3(F) for any field F containing \mathbb{Q}.
   [Option ID = 146168]
 12)
        Let \mathbb{F}_2 be the field of order 2 and S = \left\{ A \in M_3(\mathbb{F}_2) : A^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\}
        What is the cardinality of the set S ?
[Question ID = 20645][Question Description = $1_MATH_897_PhD_Q012]
   [Option ID = 146169]
    [Option ID = 146170]
   [Option ID = 146171]
```

```
[Option ID = 146172]
Let \mathbb{F}_q denote the finite field with q elements.
       What is the number of finite degree separable extensions of \mathbb{F}_q that are not normal?
[Question ID = 20646][Question Description = S1_MATH_897_PhD_Q013]
   [Option ID = 146173]
   [Option ID = 146174]
   [Option ID = 146175]
4. infinite
   [Option ID = 146176]
 14) Consider the inner product space \mathbb{R}[X] of the polynomials over \mathbb{R} with the inner product given by
      \langle f(X), g(X) \rangle := \int_{-1}^{1} f(X)g(X)dX \text{ for } f(X), g(X) \in \mathbb{R}[X].
      f_0(X) = X,
      \begin{split} f_1(X) &= 1 - X + X^2 + \frac{5}{3}X^3, \\ f_2(X) &= 1 - X + X^2 - X^3, \\ f_3(X) &= 1 + \frac{3}{5}X + X^2 - X^3. \end{split}
      Which of the above polynomials are orthogonal to f_0(X)?
[Question ID = 20647][Question Description = S1_MATH_897_PhD_Q014]
1. Only f_1(X), f_2(X)
   [Option ID = 146177]
2. Only f_2(X), f_3(X)
   [Option ID = 146178]
3. Only f_1(X), f_3(X)
   [Option ID = 146179]
4. All of f_1(X), f_2(X), f_3(X)
   [Option ID = 146180]
 15) Let V be a finite dimensional vector space over a field F and B: V \times V \to F any symmetric
      For a subspace W, let W^{\perp} := \{ v \in V : B(v, w) = 0 \text{ for all } w \in W \}
      Which of the following is necessarily correct?
[Question ID = 20648][Question Description = S1_MATH_897_PhD_Q015]
<sup>1.</sup> \dim W^{\perp} = \dim V - \dim W
[Option ID = 146181] 2. \dim W^{\perp} > \dim V - \dim W
   [Option ID = 146182]
3. \dim W^{\perp} \leq \dim V - \dim W
   [Option ID = 146183]
4. \dim W^{\perp} \ge \dim V - \dim W
   [Option ID = 146184]
 16) Let T be a linear operator on the two dimensional vector space \mathbb{C}^2 over \mathbb{C} which preserves the
       bilinear form B on \mathbb{C}^2 defined by B((x_1, x_2), (y_1, y_2)) = x_1y_2 - x_2y_1. Let S be a linear operator on
       \mathbb{C}^2 which preserves the quadratic form Q on \mathbb{C}^2 defined by Q((x_1,x_2))=x_1^2-x_2^2 Which of the
       following is correct?
[Question ID = 20649][Question Description = S1_MATH_897_PhD_Q016]
1. \det(T) = 1 and \det(S) = 1
   [Option ID = 146185]
2. \det(T) = \pm 1 and \det(S) = 1
   [Option ID = 146186]
3. \det(T) = 1 and \det(S) = \pm 1
   [Option ID = 146187]
4. \det(T) = \pm 1 and \det(S) = \pm 1
   [Option ID = 146188]
 Let L=\mathbb{Q}(2^{\frac{1}{4}}) and K=\mathbb{Q}(2^{\frac{1}{5}}) be field extensions of \mathbb{Q}.
      For any field extension K/F, write Aut(K/F) for the group of F-automorphisms of K. Then,
 [Question ID = 20650][Question Description = S1_MATH_897_PhD_Q017]
```

4. 4

```
1. |Aut(L/\mathbb{Q})| = 1 and |Aut(K/\mathbb{Q})| = 1
   [Option ID = 146189]
<sup>2.</sup> |Aut(L/\mathbb{Q})| = 2 and |Aut(K/\mathbb{Q})| = 5
   [Option ID = 146190]
3. |Aut(L/\mathbb{Q})| = 2 and |Aut(K/\mathbb{Q})| = 1
   [Option ID = 146191]
4. |Aut(L/\mathbb{Q})| = 4 and |Aut(K/\mathbb{Q})| = 1
   [Option ID = 146192]
 18) Let L and K be the splitting fields of the polynomials (X^2-2)(X^2-3)(X^2-5) and
       (X^2-2)(X^2-3)(X^2-6) over \mathbb Q, respectively. For any field extension K/F write Aut(K/F) for the
       group of F-automorphisms of K. Then,
[Question ID = 20651][Question Description = S1_MATH_897_PhD_Q018]
1. |Aut(L/\mathbb{Q})| = 8 and |Aut(K/\mathbb{Q})| = 8
    [Option ID = 146193]
2. |Aut(L/\mathbb{Q})| = 8 and |Aut(K/\mathbb{Q})| = 4
   [Option ID = 146194]
3. |Aut(L/\mathbb{Q})| = 4 and |Aut(K/\mathbb{Q})| = 8
[Option ID = 146195] 4. |Aut(L/\mathbb{Q})|=4 and |Aut(K/\mathbb{Q})|=4
   [Option ID = 146196]
 19) For any positive integer n, let \Phi_n(X) denote the n-th cyclotomic polynomial, i.e.
        \Phi_n(X) := \Pi_{\mathcal{E}}(X-\zeta) where the product varies over all the n-th primitive roots of unity.
       Which of the following is correct?
[Question ID = 20652][Question Description = $1_MATH_897_PhD_Q019]
1. \Phi_6(X) = X^6 - 1 and \Phi_8(X) = X^8 - 1
[Option ID = 146197] 2. \Phi_6(X)=X^3+1 and \Phi_8(X)=X^4+1
3. \Phi_6(X) = X^2 - X + 1 and \Phi_8(X) = X^4 + 1
[Option ID = 146199] 4. \Phi_6(X) = X^2 + X + 1 and \Phi_8(X) = X^4 + 1.
   [Option ID = 146200]
      Let \mathbb{F}_3 be a field containing 3 elements and \mathbb{F}_3(t) the quotient field of the polynomial ring \mathbb{F}_3[t]
       Let S := \{ \phi : \mathbb{F}_3(t) \to \mathbb{F}_3(t) \mid \phi \text{ is a field homorphism } \}.
       What is the cardinality of the set S?
[Question ID = 20653][Question Description = S1_MATH_897_PhD_Q020]
1. 1 [Option ID = 146201]
2. 2 [Option ID = 146202]
3. greater than 2 but finite [Option ID = 146203]
4. infinte [Option ID = 146204]
 21) Consider \ell^2 = \{(x_n)_{n=1}^{\infty} \mid x_n \in \mathbb{C} \text{ and } \sum_{n=1}^{\infty} |x_n|^2 < \infty\} Endow \ell^2 with |\cdot|_2 norm defined by
       ||(x_n)_{n=1}^{\infty}||_2 = \left[\sum_{n=1}^{\infty} \left|x_n\right|^2\right]^{\frac{1}{2}} for all (x_n)_{n=1}^{\infty} \in \ell^2
      \operatorname{Let} X = \left\{ \begin{pmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{pmatrix} \mid f_{ij} \in \ell^2 \text{ for all } i,j=1,2 \right\}_{\cdot} \operatorname{Define} ||\cdot|| \colon X \to \mathbb{R}_{\text{ by}}
       \left\| \begin{pmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{pmatrix} \right\| = max \left\{ \left| \left| f_{ij} \right| \right|_2 \mid i, j = 1, 2 \right\}  Then which of the following statements is correct?
[Question ID = 20654][Question Description = S1_MATH_897_PhD_Q021]
1. ||\cdot|| is not a norm on X
   [Option ID = 146205]
2. ||\cdot|| is a norm on X but (X, ||\cdot||) is not a Banach space.
3. (X, ||\cdot||) is Banach space but not a Hilbert space.
   [Option ID = 146207]
4. (X, ||\cdot||) is a Hilbert space.
   [Option ID = 146208]
22) Let V denote the vector space of all polynomials in one variable with real coefficients over \mathbb{R} of degree less
       than or equal to 10. Then which of the following functions ||\cdot||: V \to \mathbb{R} is not a norm on V?
```

```
[Question ID = 20655][Question Description = S1_MATH_897_PhD_Q022]
1. ||p|| = \int_0^1 |p(x)| dx for all p \in V.
    [Option ID = 146209]
2. ||p|| = \sup\{|p(x)| \mid 0 \le x \le 1\}, for all p \in V.
    [Option ID = 146210]
3. ||p|| = \sup\{|p(x)| \mid 0 \le x \le 1\} + |p(0)| + |p(1)|, for all p \in V.
    [Option ID = 146211]
4. ||p|| = \left[ \int_0^1 |p(x)| dx \right]^{\frac{1}{2}} for all p \in V
    [Option ID = 146212]
23) Consider C[0,1] = \{f: [0,1] \to \mathbb{R} \mid \text{f is continuous}\} Endow C[0,1] with the ||\cdot||_{\infty} norm defined
        by ||f||_{\infty}=sup\{|f(x)|\mid 0\leq x\leq 1\} for all f\in C[0,1] . Define T\colon C[0,1]\to C[0,1] by
        (Tf)(t)=\int_0^t f(s)ds for all f\in C[0,1], t\in [0,1]. Then which of the following statements is correct?
[Question ID = 20656][Question Description = S1_MATH_897_PhD_Q023]
||T^{2021}|| = 2021
[Option ID = 146213] 2. ||T^{2021}|| = \frac{1}{2021}
[Option ID = 146214] 3. ||T^{2021}|| = \frac{1}{2021!}
    [Option ID = 146215]

    T<sup>2021</sup> is an unbounded operator.

    [Option ID = 146216]
        C_{S,n}=\{h:S	o\mathbb{R}\mid\sum_{s\in S}|h(s)|^n<\infty\} . Also, for every positive integer n and f:S	o\mathbb{R} define
        ||f||_n = \left[\sum_{s \in S} |f(s)|^n\right]^{\frac{1}{n}}. Then which of the following statements is correct?
[Question ID = 20657][Question Description = S1_MATH_897_PhD_Q024]
1. (C_{S,2021}, ||\cdot||_{2021}) is a Banach space.
    [Option ID = 146217]
2. (C_{S,2021},||\cdot||_{2021}) is a Banach space if and only if S is a finite set.
    [Option ID = 146218]
3. (C_{S,2021}, ||\cdot||_{2021}) is a Hilbert space.
    [Option ID = 146219]
4. (C_{S,2021}, ||\cdot||_{2020}) is a Banach space.
    [Option ID = 146220]
25) Consider \ell^{50} = \{(x_n)_{n=1}^{\infty} \mid x_n \in \mathbb{C} \text{ and } \sum_{n=1}^{\infty} |x_n|^{50} < \infty \} Endow \ell^{50} with ||\cdot||_{50} norm
        defined by ||(x_n)_{n=1}^\infty||_{50} = \left[\sum_{n=1}^\infty |x_n|^{50}\right]^{\frac{1}{50}} for all (x_n)_{n=1}^\infty \in \ell^{50}. Fix a bounded sequence (y_n)_{n=1}^\infty
        of complex numbers. Define T: \ell^{50} \to \ell^{50} by T\left((x_n)_{n=1}^{\infty}\right) = (x_n y_n)_{n=1}^{\infty} for all (x_n)_{n=1}^{\infty} \in \ell^{50}.
        Then which of the following statements is correct?
[Question ID = 20658][Question Description = S1_MATH_897_PhD_Q025]

    T is not continuous.

    [Option ID = 146221]
2. ||T|| > \sup\{|y_n| \mid \text{ for all positive integers } n\}
    [Option ID = 146222]
3. ||T|| < \sup\{|y_n| \mid \text{ for all positive integers } n\}
    [Option ID = 146223]
4. ||T|| = \sup\{|y_n| \mid \text{ for all positive integers } n\}
   [Option ID = 146224]
 Let X be a normal, second countable topological space. Consider a family \mathfrak{F} of continuous functions from
        X to [0,1] that separates points and closed sets in X. Then which of the following statements is correct?
[Question ID = 20695][Question Description = S1_MATH_897_PhD_Q026]

    No such family $\vec{\vec{v}}$ exists.

    [Option ID = 146513]
2. Any such family \mathfrak{F} is necessarily finite.
    [Option ID = 146514]
3. There exists such a family $\vec{3}$ which is countable.
    [Option ID = 146515]
4. Any such family \mathfrak{F} is necessarily uncountable.
    [Option ID = 146516]
```

```
27) Let X be the disjoint union of open intervals I_1 and I_2 in \mathbb{R}. Endow \mathbb{R} with the usual topology and X with
       the subspace topology. Then the one point compactification of \boldsymbol{X}
[Question ID = 20659][Question Description = S1_MATH_897_PhD_Q027]
1. does not exist.
   [Option ID = 146225]
2. is homeomorphic to a circle.
   [Option ID = 146226]
3. is homeomorphic to the disjoint union of two circles.
   [Option ID = 146227]
    is homeomorphic to
4. \{(x,y) \in \mathbb{R}^2 \mid (x-1)^2 + y^2 = 1\} \cup \{(x,y) \in \mathbb{R}^2 \mid (x+1)^2 + y^2 = 1\} equipped with
   the usual topology on \mathbb{R}^2.
   [Option ID = 146228]
 28) Consider the set of natural numbers N (equipped with the discrete topology) as a subset of its Stone-
       Čech compactification denoted by \beta \mathbb{N} If A and B are non-empty disjoint subsets of \mathbb{N}, then their closures
       in \beta N
[Question ID = 20660][Question Description = S1_MATH_897_PhD_Q028]
1. are disjoint.
   [Option ID = 146229]
2. contain exactly one point in common.
   [Option ID = 146230]
3. contain countably infinitely many points in common.
   [Option ID = 146231]
4. contain uncountably many points in common.
   [Option ID = 146232]
29) Suppose X is a normal topological space containing an infinite discrete closed subset A. Then which of the
       following statements is correct?
[Question ID = 20661][Question Description = S1_MATH_897_PhD_Q029]
1. Every continuous function f: X \to \mathbb{R} is constant.
   [Option ID = 146233]
<sup>2.</sup> Every continuous function f: X \to \mathbb{R} is bounded.
   [Option ID = 146234]
3. Every continuous function f: A \to \mathbb{R} is bounded.
   [Option ID = 146235]
4. There exists an unbounded continuous function f \colon X 	o \mathbb{R}
   [Option ID = 146236]
\textbf{30)} \quad \text{Let } X = \{(x,y) \in \mathbb{R}^2 \mid 2x^2 + 3y^2 = 1\}. \text{ Endow } \mathbb{R}^2 \text{ with the discrete topology. Then which of the following } \mathbb{R}^2 \text{ with the discrete topology.}
[Question ID = 20662][Question Description = S1_MATH_897_PhD_Q030]
1. X is a compact subset of \mathbb{R}^2 in this topology.
   [Option ID = 146237]
2. X is a connected subset of \mathbb{R}^2 in this topology.
   [Option ID = 146238]
3. X is an open subset of \mathbb{R}^2 in this topology.
   [Option ID = 146239]
4. X is neither open nor closed subset of \mathbb{R}^2 in this topology.
   [Option ID = 146240]
31) Let c > a > 0 be fixed. The set of complex numbers z satisfying 0 < |z - a| + |z + a| \le 2c is
[Question ID = 20663][Question Description = S1_MATH_897_PhD_Q031]
1. neither open nor closed.
   [Option ID = 146241]
2. closed but not bounded.
   [Option ID = 146242]
3. open.
   [Option ID = 146243]
4. compact.
   [Option ID = 146244]
       The radius of convergence of the power series
         \sum_{n=0}^{\infty} \frac{(2n)!}{n!n!} z^n
         is
[Question ID = 20664][Question Description = S1_MATH_897_PhD_Q032]
1. 1
   [Option ID = 146245]
2. 1/2
   [Option ID = 146246]
3.
```

```
[Option ID = 146247]
   [Option ID = 146248]
33) Which of the following inequalities is true for all z \in \mathbb{C}?
[Question ID = 20532][Question Description = S1_MATH_897_PhD_Q033]
|\sin z| \leq 1
   [Option ID = 146249]
|\sin z| \le e^{|z|}
   [Option ID = 146250]
3. |\sin z| \leq |e^z|
   [Option ID = 146251]
4. |\sin z| \leq |z|
   [Option ID = 146252]
34) Let w and z be complex numbers. What are the necessary and sufficient conditions for the equality
       |z+w| = |z| - |w|
[Question ID = 20533][Question Description = S1_MATH_897_PhD_Q034]
1. w = 0 \text{ or } \frac{z}{w} \le 0
   [Option ID = 146253]
w = 0 \text{ or } \frac{z}{w} \le -1
   [Option ID = 146254]
3. w = 0
   [Option ID = 146255]
4. w = z = 0
   [Option ID = 146256]
 35) Given below are two statements
       Statement A:
       A branch of the square root function can be defined on \mathbb{C}\setminus\{z\in\mathbb{C}|z\text{ is real and }z\geq0\}.
       A branch of logarithm can be defined on \mathbb{C}\setminus\{z\in\mathbb{C}|z \text{ is real and } z\geq 0\}.
       Choose the correct answer from the options given below.
[Question ID = 20534][Question Description = S1_MATH_897_PhD_Q035]
1. Both Statements A and B are true.
   [Option ID = 146257]
2. Both Statements A and B are false.
   [Option ID = 146258]
3. Statement A is true but Statement B is false.
   [Option ID = 146259]
4. Statement A is false but statement B is true.
   [Option ID = 146260]
 \text{Let} \ \ \mathbb{D} = \{z \in \mathbb{C} | \ |z| < 1 \} \ \text{be the open unit disk. Suppose that} \ f,g: \mathbb{D} \to \mathbb{C} \ \text{are analytic and satisfy} 
       f(\frac{1}{n}) = \frac{1}{n^2} and g(1 - \frac{1}{n}) = 1 - \frac{1}{n} for all n \in \mathbb{N}.
       Which of the following two statements is/are necessarily true?
       Statement A:
       f(z) = z^2 for all z \in \mathbb{D}.
       Statement B:
       g(z) = z for all z \in \mathbb{D}.
[Question ID = 20535][Question Description = S1_MATH_897_PhD_Q036]
1. Both Statements A and B
   [Option ID = 146261]
2. Statement A only
   [Option ID = 146262]
3. Statement B only
   [Option ID = 146263]
4. Neither Statement A nor Statement B
   [Option ID = 146264]
 37) If f: \mathbb{C} \to \mathbb{C} is a parameter antire function, which of the following is necessarily correct?
```

```
[Question ID = 20536][Question Description = S1_MATH_897_PhD_Q037]
\lim_{|z|\to\infty}|f(z)|=\infty
   [Option ID = 146265]
2. |f^{(n)}(0)| \leq \frac{n!}{100^n} for all sufficiently large n
   [Option ID = 146266]
3. |f^{(n)}(0)| \leq 100^n for all sufficiently large n
   [Option ID = 146267]
<sup>4.</sup> f has infinitely many zeros.
   [Option ID = 146268]
38) The integral \int_0^\infty \frac{\sin 2x}{x} dx
[Question ID = 20537][Question Description = S1_MATH_897_PhD_Q038]
1. does not converge.
   [Option ID = 146269]
2. converges and equals 0
   [Option ID = 146270]
3. converges and equals \pi/2.
   [Option ID = 146271]
4. converges and equals 2.
   [Option ID = 146272]
39) Suppose that f, g: \mathbb{C} \rightarrow \mathbb{C} are entire functions such that
       Re f(z) + Im f(z) \neq 0 for any z \in \mathbb{C}
       (\text{Re } g(z))^2 + (\text{Im } g(z))^2 \neq 0 \text{ for any } z \in \mathbb{C}.
[Question ID = 20538][Question Description = S1_MATH_897_PhD_Q039]
      f must be a constant and g must be a constant.
   [Option ID = 146273]
^{2.} f must be a constant but g need not be a constant.
   [Option ID = 146274]
^{3.}\,\,f need not be a constant but g must be a constant.
4. f need not be a constant and g need not be a constant.
   [Option ID = 146276]
 40)
        If f is analytic in the disk \{z \in \mathbb{C} | |z| < 3\}, then \sup_{|z|=2} |f(z) - \frac{1}{z}|
[Question ID = 20696][Question Description = S1_MATH_897_PhD_Q040]
1. can be at most 1/2. [Option ID = 146517]
2. is at least 1/2. [Option ID = 146518]
^{3.} can take any positive real value for suitably chosen f.
   [Option ID = 146519]
4. can take any positive real value less than or equal to 2 but cannot be more than 2. [Option ID = 146520]
 41) Let E = \{ p \in \mathbb{Q} | 2 < p^2 < 3 \}
      A. E is closed in \mathbb{Q}
      B. E is bounded in \mathbb Q
      C. E is compact.
       Choose the correct answer from the options given below.
[Question ID = 20539][Question Description = S1_MATH_897_PhD_Q041]
1. A, B and C are true.
   [Option ID = 146277]
2. B is true, but A and C are false.
   [Option ID = 146278]
3. A and B are true, but C is false.
   [Option ID = 146279]
4. A, B and C are false.
   [Option ID = 146280]
42) For z = a + ib, w = c + id, we say z \prec w if either a < c or a = c, b \le d
       A. (\mathbb{C}, \prec) is an ordered field.
```

B. (\mathbb{C}, \prec) has least upper bound property.

Choose the *correct* answer from the options given below:

[Question ID = 20540][Question Description = S1_MATH_897_PhD_Q042] 1. Both A and B are true.

[Option ID = 146281]

2. A is true but B is false.

[Option ID = 146282]

3. A is false but B is true.

[Option ID = 146283]

4. Both A and B are false.

[Option ID = 146284]

43) Let $\phi: \mathbb{R} \to \mathbb{R}$ be defined as

$$\phi(x) = \begin{cases} \pi & \text{if } x \le 0\\ \pi + \exp\left(\frac{-2}{5x}\right) & \text{if } x > 0. \end{cases}$$

Let the nth order derivative of ϕ at x be denoted by $\phi^{(n)}(x)$ if it exists.

A. ϕ is infinitely differentiable at every point in $\mathbb{R}\setminus\{0\}$

B. ϕ is infinitely differentiable at 0, and for each natural number n, $\phi^{(n)}(0)=0$

Choose the correct answer from the options given below:

[Question ID = 20541][Question Description = S1_MATH_897_PhD_Q043]

1. A and B are true.

[Option ID = 146285]

2. A is true, but B is false.

[Option ID = 146286]

3. B is true, but A is false.

[Option ID = 146287]

4. A and B are false.

[Option ID = 146288]

44) Let
$$x,y,z\in\mathbb{R}^n$$
 be linearly independent vectors. For $x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$, let $\|x\|=\left(\sum_{i=1}^n|x_i|^2\right)^{1/2}$

A. For every
$$m \in \mathbb{N}$$
, there exist $a_1^{(m)}, a_2^{(m)}, a_3^{(m)} \in \mathbb{R}$ with $|a_1^{(m)}| + |a_2^{(m)}| + |a_3^{(m)}| = 1$ such that $||a_1^{(m)}x + a_2^{(m)}y + a_3^{(m)}z|| < \frac{1}{m}$

B. There is a
$$C>0$$
 such that if $a_1,a_2,a_3\in\mathbb{R}$ and $|a_1|+|a_2|+|a_3|=1$, then $||a_1x+a_2y+a_3z||\geq C$.

Choose the correct answer from the options given below:

[Question ID = 20542][Question Description = S1_MATH_897_PhD_Q044]

1. Both A and B are true.

[Option ID = 146289]

2. A is false and B is true.

[Option ID = 146290]

3. A is true and B is false

[Option ID = 146291]

4. Both A and B are false

[Option ID = 146292]

Define
$$f:\mathbb{R}^2 o \mathbb{R}_{\mathrm{as}}$$

$$f(x,y) = egin{cases} 0 & ext{if } (x,y) = (0,0) \ (x^2 + y^2) \sin rac{1}{\sqrt{x^2 + y^2}} & ext{if } (x,y)
eq (0,0). \end{cases}$$

A. f is differentiable at (0,0)

B. The directional derivatives of f are continuous at (0,0)

Choose the *correct* answer from the options given below:

[Question ID = 20543][Question Description = S1_MATH_897_PhD_Q045]

- 1. Both A and B are true. [Option ID = 146293]
- 2. A is false but B is true. [Option ID = 146294]
- 3. A is true but B is false. [Option ID = 146295]
- 4. Both A and B are false. [Option ID = 146296]

46) Let $f: \mathbb{M}_n(\mathbb{R}) \to \mathbb{M}_n(\mathbb{R})$ be defined as $f(A) = 2A + 5A^I$, where A^I denotes the transpose of A. Let f'(A) denote the total derivative of f at A, if it exists.

Choose the *correct* answer from the options given below:

[Question ID = 20544][Question Description = S1_MATH_897_PhD_Q046]

```
1. f is not continuous on \mathbb{M}_n(\mathbb{R})
   [Option ID = 146297]
2. f is continuous but not differentiable on \mathbb{M}_n(\mathbb{R}).
   [Option ID = 146298]
3. f is differentiable at every A \in \mathbb{M}_n(\mathbb{R}) and f'(A)(X) = 2A + 5A^t
4. f is differentiable at every A\in \mathbb{M}_n(\mathbb{R}) and f'(A)(X)=2X+5X^t
 47) Let U\subseteq\mathbb{R}^n be an open set and let f:U\to\mathbb{R}^n be a continuously differentiable injective function such
        that \det f'(x) \neq 0 for each x.
        A. f is an open map
        B. f(U) is open but f may not be an open map.
        f^{-1}: f(U) \to U is differentiable.
        Choose the correct answer from the options given below:
[Question ID = 20545][Question Description = S1_MATH_897_PhD_Q047]
1. A and C are true.
   [Option ID = 146301]
2. B and C are true
   [Option ID = 146302]
   [Option ID = 146303]
4. A, B and C can be false
   [Option ID = 146304]
       Let \{r_1,r_2,\ldots\} be an enumeration of \mathbb{Q}\cap[0,1] . For each n\in\mathbb{N} , define f_n:[0,1]\to\mathbb{R} as
      f_n(t) = egin{cases} 1 & 	ext{if } t \in \{r_1, r_2, \dots, r_n\}, \ 0 & 	ext{otherwise} \ . \end{cases}
       A, (f_n) is pointwise convergent
       _{\rm B} (f_n) is uniformly convergent
       C. The pointwise limit of (f_n) if it exists, is Riemann integrable.
       Choose the correct answer from the options given below:
[Question ID = 20546][Question Description = S1_MATH_897_PhD_Q048]
1. A, B and C are true.
   [Option ID = 146305]
2. A is true, but B and C are false.
   [Option ID = 146306]
3. A and C are true, but B is false.
   [Option ID = 146307]
4. A, B and C are false
   [Option ID = 146308]
       Let f:[0,1] \rightarrow [0,1] be defined as
       f(t) = egin{cases} 1 & 	ext{if } t = 0 \ rac{1}{q} & 	ext{if } t = rac{p}{q} 	ext{ with } p,q \in \mathbb{N}, \ \gcd(p,q) = 1, \ 0 & 	ext{if } t \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}
        A. f is Riemann integrable on [0, 1].
        B. f is continuous at every irrational point.
        C. f is discontinuous at every rational point.
        Choose the correct answer from the options given below:
[Question ID = 20547][Question Description = $1_MATH_897_PhD_Q049]
1. A, B and C are true. [Option ID = 146309]
2. A is false, but B and C are true. [Option ID = 146310]
3. B is false, but A and C are true. [Option ID = 146311]
4. C is false, but A and B are true. [Option ID = 146312]
50) _{\Lambda} \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\} and \{(x,y) \in \mathbb{R}^2 \mid xy = 1\} are homeomorphic.
       \mathbb{R}^2 \setminus \{x,y\} \in \mathbb{R}^2 \setminus \{xy\} = 0 and \{(x,y) \in \mathbb{R}^2 \mid xy = 1\} are homeomorphic
```

```
Choose the correct answer from the options given below:
[Question ID = 20548][Question Description = S1_MATH_897_PhD_Q050]
1. A, B and C are true.
   [Option ID = 146313]
2. A is true, but B and C are false.
   [Option ID = 146314]
3. B is true, but A and C are false.
   [Option ID = 146315]
4. C is true, but A and B are false.
   [Option ID = 146316]
51) Let X = (\mathbb{C}^2, \|\cdot\|_1), where \|(a,b)\|_1 = |a| + |b| for a,b \in \mathbb{C}. Let X_0 = \{(a,0) : a \in \mathbb{C}\}
       Define f_0: X_0 \to \mathbb{C} by f_0(a,0) = a for all a \in \mathbb{C}. Let \theta \in \mathbb{R} \setminus \{0\} be fixed. Define
       f_1, f_2: X \to \mathbb{C} by
         f_1(a,b) = a + e^{i\theta}b, \ a,b \in \mathbb{C},
         f_2(a,b)=a-e^{i	heta}b,\ a,b\in\mathbb{C}.
       Which of the following statements is correct?
[Question ID = 20549][Question Description = S1_MATH_897_PhD_Q051]
1. Only f_1 is a Hahn-Banach extension of f_0.
   [Option ID = 146317]
<sup>2.</sup> Only f_2 is a Hahn-Banach extension of f_0.
   [Option ID = 146318]
3. Neither of f_1 and f_2 are Hahn-Banach extensions of f_0.
<sup>4</sup> Both f_1 and f_2 are Hahn-Banach extensions of f_0.
       For n \in \mathbb{N}, define L_n = \{(x_k) \in \ell^2 : \sum_{k=1}^n x_k = 0\}. Let e_1 = (1, 0, 0, \dots, ).
       What is the distance between e_1 and L_{5?}
[Question ID = 20665][Question Description = S1_MATH_897_PhD_Q052]
\sqrt{5}
   [Option ID = 146321]
   [Option ID = 146322]
   [Option ID = 146323]
4. 5
   [Option ID = 146324]
 53) Let (X,\|\cdot\|) be a finite dimensional complex normed linear space. Let T:X	o X be a non-zero
       linear map. Define \|x\|_T:=\|Tx\|,\,\,x\in \hat{X}.
       Consider the following statements:
[Question ID = 20666][Question Description = S1_MATH_897_PhD_Q053]
1. A and B only.
   [Option ID = 146325]
2. C and D only.
   [Option ID = 146326]
3. All of the statements are correct.
   [Option ID = 146327]
4. None of the statements is correct.
   [Option ID = 146328]
       Define f:\ell^2	o\mathbb{C} by f((x_n))=\sum_{n=1}^\infty rac{1}{n}x_n,\;(x_n)\in\ell^2.
        What is the value of ||f||_{?}
```

[Question ID = 20667][Question Description = S1_MATH_897_PhD_Q054]

C. The open interval]-1,1[and the set $\{(x,y)\in\mathbb{R}^2\mid y=x^2\}$ are homeomorphic.

```
[Option ID = 146329]
2.
   [Option ID = 146330]
   [Option ID = 146331]
   [Option ID = 146332]
      Let C=\{(x_n)\in \ell^2: |x_n|\leq rac{1}{n^{rac{3}{n}}}, 	ext{ for all } n\in \mathbb{N}\} Then C is
[Question ID = 20668][Question Description = S1_MATH_897_PhD_Q055]
1. closed and bounded but not compact.
   [Option ID = 146333]
2. compact.
   [Option ID = 146334]
3. bounded but not closed
   [Option ID = 146335]
4. closed but not bounded
   [Option ID = 146336]
       The sum of the series \sum_{n=0}^{\infty} \frac{\cos(2^n x)}{3^n} (x \in \mathbb{R})
[Question ID = 20669][Question Description = S1_MATH_897_PhD_Q056]
1. converges uniformly to a bounded continuous function on \mathbb{R}.
<sup>2.</sup> converges uniformly to an unbounded continuous function on \mathbb{R}.
   [Option ID = 146338]
3. does not converge uniformly but converges pointwise to a continuous function.
   [Option ID = 146339]
4. does not converge uniformly but converges pointwise to a discontinuous function.
   [Option ID = 146340]
Define f:[0,1] 	o \mathbb{R} by f(x)= \begin{cases} \sin(rac{1}{x}), & 	ext{if } x 
eq 0 \\ 0, & 	ext{if } x=0. \end{cases}
       Which of the following statements is correct?
[Question ID = 20670][Question Description = S1_MATH_897_PhD_Q057]
1. The graph of f is a connected subset of \mathbb{R}^2 and f is not continuous.
   [Option ID = 146341]
2. The graph of f is a disconnected subset of \mathbb{R}^2 and f is not continuous.
   [Option ID = 146342]
3. The graph of f is a disconnected subset of \mathbb{R}^2 and f is continuous.
   [Option ID = 146343]
4. The graph of f is a connected subset of \mathbb{R}^2 and f is continuous.
       Let (X,d) be a compact metric space and f:X\to X be an isometry, that is, d(f(x),f(y))=d(x,y)
       for all x, y \in X
       Which of the following statements is necessarily true?
[Question ID = 20671][Question Description = S1_MATH_897_PhD_Q058]
f must be surjective but need not be injective.
   [Option ID = 146345]
2. f must be injective but need not be surjective.
   [Option ID = 146346]
^{3}. f is neither injective nor surjective.
   [Option ID = 146347]
4. f is both injective and surjective.
   [Option ID = 146348]
59) Let 0 < K < \infty and 0 < \alpha \le 1. Define
       L_{K,\alpha} = \Big\{ f \in C([0,1],\mathbb{R}) : |f(x) - f(y)| \leq K|x - y|^{\alpha}, \ x,y \in [0,1] \Big\}.
       Then, the family L_{K,\alpha} is
```

```
[Question ID = 20672][Question Description = S1_MATH_897_PhD_Q059]
1. equicontinuous but not totally bounded.
   [Option ID = 146349]
2. not equicontinuous but totally bounded.
   [Option ID = 146350]
3. neither equicontinuous nor totally bounded.
   [Option ID = 146351]
4. both equicontinuous and totally bounded.
   [Option ID = 146352]
60)
      Let (X,d) be a metric space such that every sequence (x_n) in X with \sum_{n=1}^{\infty} d(x_n,x_{n+1}) < \infty converges in X. Consider the following statements;
      A. X is complete.
      B. Every bounded sequence in X must have a convergent subsequence.
      C. There exists a Cauchy sequence without any convergent subsequence.
      Which of the above statements is/are correct?
[Question ID = 20673][Question Description = S1_MATH_897_PhD_Q060]
   [Option ID = 146353]
2. Only B and C are correct.
   [Option ID = 146354]
3. All are correct.
   [Option ID = 146355]
4. None of the statements is correct.
   [Option ID = 146356]
What is the largest order of an element in the group S_8 of permutations of eight symbols?
[Question ID = 20674][Question Description = S1_MATH_897_PhD_Q061]
1. 8 [Option ID = 146357]
2. 10 [Option ID = 146358]
3. 15 [Option ID = 146359]
4. 20 [Option ID = 146360]
62) A finite group G has two subgroups H and K such that the order of H is 8 and the index of K is 9. If K is
      normal in G then which of the following statements is true?
[Question ID = 20675][Question Description = S1_MATH_897_PhD_Q062]

    H is contained in K

   [Option ID = 146361]
2. K is contained in H
   [Option ID = 146362]
3. H \cap K = \{1\}
   [Option ID = 146363]
<sup>4.</sup> HK = G
   [Option ID = 146364]
63) Which of the following three statements is/are true for the dihedral group D_n whose order is 2n?
      A. The center of D_n is the trivial group \{1\}
      B. The center of D_n has exactly two elements.
      C. There is exactly one normal subgroup of D_n
      Choose the correct answer from the options given below:
[Question ID = 20676][Question Description = S1_MATH_897_PhD_Q063]
1. A only
   [Option ID = 146365]
2. B only
   [Option ID = 146366]
   [Option ID = 146367]
4. None of A, B and {\sf C}
   [Option ID = 146368]
<sup>64)</sup> If A is a 2 \times 2 matrix with real entries and 2i is a characteristic root of A. Then A^{-1} is given by
[Question ID = 20677][Question Description = $1_MATH_897_PhD_Q064]
1. \frac{1}{2}A
   [Option ID = 146369]
```

```
2. -\frac{1}{2}A
  [Option ID = 146370]
   [Option ID = 146371]
4. -\frac{1}{4}A
   [Option ID = 146372]
 65)
       Let F be the field having exactly 8 elements. Then the number of subspaces of dimension 1 in F^3 is
[Question ID = 20678][Question Description = S1_MATH_897_PhD_Q065]
1. 3 [Option ID = 146373]
2. 64 [Option ID = 146374]
3. 73 [Option ID = 146375]
4. 511 [Option ID = 146376]
 66)
      Suppose H is a subgroup of a finite group G. Which of the following is true about the ac on of G on the set \frac{G}{H} of
      lecosets given by x \star gH = xgH for x, g \in G?
[Question ID = 20679][Question Description = S1_MATH_897_PhD_Q066]
1. The number of orbits depends upon the index [G: H] of H in G
   [Option ID = 146377]
2. The size of the orbit that contains gH depends upon the choice of g
   [Option ID = 146378]
3. The size of the stabilizer group at the point gH depends upon the choice of g
   [Option ID = 146379]
4. The stabilizer group at the point gH depends upon the of choice of g
   [Option ID = 146380]
       Which of A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix} and B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix} is/are diagonalizable over the field of complex numbers?
[Question ID = 20680][Question Description = S1_MATH_897_PhD_Q067]
1. A only
   [Option ID = 146381]
2. B only
   [Option ID = 146382]
3. Both A and B
   [Option ID = 146383]
4. Neither A nor B
   [Option ID = 146384]
 68) Set u = (1, 1, 1), v = (1, 2, 3), w = (0, 1, 1), z = (0, 1, 2). Let S = \{u, v, w\} and T = \{u, v, z\}. Suppose f: S \to T
       and g: T \to S are given by f(u) = z, f(v) = u, f(w) = v and g(u) = v, g(v) = w, g(z) = u. Then which of f and
      g can be extended to a linear transformation from \mathbb{R}^3 to itself?
[Question ID = 20681][Question Description = $1_MATH_897_PhD_Q068]
1. f but not g
   [Option ID = 146385]
2. g but not f
   [Option ID = 146386]
3. Both f and g
   [Option ID = 146387]
4. Neither f nor g
   [Option ID = 146388]
         Which of the following are sizes of the conjugacy classes of the permutation group S_4 on four symbols?
[Question ID = 20682][Question Description = S1_MATH_897_PhD_Q069]
1. 1, 1, 1, 3, 4, 6, 8 [Option ID = 146389]
2. 1, 4, 5, 6, 8 [Option ID = 146390]
3. 1, 4, 4, 7, 8 [Option ID = 146391]
4. 1, 3, 6, 6, 8 [Option ID = 146392]
70) Suppose T is a linear operator of a finite dimensional complex vector space. If the semi-simple (diagonalizable) and
      nilpotent parts of T are respectively D and N so that T = D + N. Then the nilpotent part of T^2 + 2T is given by
[Question ID = 20683][Question Description = S1_MATH_897_PhD_Q070]
1. N^2 + 2N
   [Option ID = 146393]
   [Option ID = 146394]
3. N^2 + 2N + 2DN
```

```
[Option ID = 146395]
4. N^2 + 2DN
   [Option ID = 146396]
71) Let G=< g> be a cyclic group of order 105. Which of the following is an incorrect statement?
[Question ID = 20684][Question Description = S1_MATH_897_PhD_Q071]
1. G has 8 distinct subgroups.
   [Option ID = 146397]
2. The number of generators of G is 48.
   [Option ID = 146398]
3. The number of generators of G in the list g^{21}, \dots, g^{30} is 5.
   [Option ID = 146399]
4. Order of the element g^{-100} in G is 21.
   [Option ID = 146400]
72) I_{Let}G=[0,1[=\{x\in\mathbb{R}:0\leq x<1\}] . Define a binary operation on G as follows: For x,y\in G,
      x*y = \begin{cases} x+y & \text{if} \quad x+y < 1 \\ x+y-1 & \text{if} \quad x+y \geq 1. \end{cases}
       With this operation, G is an abelian group. Consider the following statements:
       A. Any finite subgroup of G is cyclic.
       B. For integers 1 < m < n, the subgroup of G generated by \frac{m}{n} is of order n.
       C. The subgroup of G generated by x \in G is finite only if x is rational.
[Question ID = 20569][Question Description = S1_MATH_897_PhD_Q072]
1. 1, 1, 1, 3, 4, 6, 8
   [Option ID = 146401]
2. 1, 4, 5, 6, 8
   [Option ID = 146402]
3. 1, 4, 4, 7, 8
   [Option ID = 146403]
4. 1, 3, 6, 6, 8
   [Option ID = 146404]
73) Let |G| = p^3 q with odd primes p, q satisfying p^2 \le q \le p^2 + p. Consider the following statements:
      A. G has a normal Sylow p—subgroup.
      B. G has a normal Sylow q—subgroup.
[Question ID = 20570][Question Description = S1_MATH_897_PhD_Q073]
   [Option ID = 146405]
2. both A and B are true
   [Option ID = 146406]
3. B is true and A is false.
   [Option ID = 146407]
4. both A and B are false.
   [Option ID = 146408]
74) Let p > 3 be a prime and n = p^3 + p - 3. Suppose that G is a
       subgroup of the symmetric group S_n with |G|=p^3 . Let
       S = \{1 \le i \le n : \sigma(i) = i \text{ for all } \sigma \in G\} \text{ and } |S| = s.
[Question ID = 20571][Question Description = S1_MATH_897_PhD_Q074]
s = 0.
   [Option ID = 146409]
2. s = 1.
   [Option ID = 146410]
3. p | s_{\text{with } s} > 0.
   [Option ID = 146411]
4. p \nmid s with s > 1.
   [Option ID = 146412]
75) Let G be a finite group and p be a prime such that p^3 divides |G|. Which of the
       following is a possible value of the number of elements of order P in G?
[Question ID = 20572][Question Description = S1_MATH_897_PhD_Q075]
p-1
   [Option ID = 146413]
```

p+1

```
[Option ID = 146414]
   [Option ID = 146415]
4. p^2 + p
   [Option ID = 146416]
       Let d be a squarefree integer. Recall that \mathbb{Z}[\sqrt{d}]=\{m+n\sqrt{d}:m,n\in\mathbb{Z}\} is a ring under standard
       addition and multiplication. For x=m+n\sqrt{d}\in\mathbb{Z}[\sqrt{d}] , let N(x)=|m^2-dn^2| . Consider the
       following statements about \mathbb{Z}[\sqrt{d}]:
       A. N(x) = N(y) for associates x, y \in \mathbb{Z}[\sqrt{d}]
       B. 2 + \sqrt{-3} is a unit in \mathbb{Z}[\sqrt{-3}]
       C. N(x) \ge 4 for x \in \mathbb{Z}[\sqrt{5}], x \ne 0 and x not an unit.
[Question ID = 20573][Question Description = S1_MATH_897_PhD_Q076]
1. A and C are true and B is false.
   [Option ID = 146417]
2. B and C are true and A is false.
   [Option ID = 146418]
3. A, B, C are all true.
   [Option ID = 146419]
4. A and B are true and {\sf C} is false.
   [Option ID = 146420]
77) The number of distinct ideals of \mathbb{Z}/360\mathbb{Z} the ring of integers modulo 360, is
[Question ID = 20574][Question Description = $1_MATH_897_PhD_Q077]
1. 360
   [Option ID = 146421]
2. 24
   [Option ID = 146422]
   [Option ID = 146423]
4. 8
   [Option ID = 146424]
78) Let R be a commutative ring with identity. Consider the following statements about R:
      A. If x \in R is nilpotent, then 1 + x^2 is a unit.
      B. There are nilpotent elements x,y \in R such that x+y is not nilpotent.
      C. \{1-x:x^3 \text{ is nilpotent in } R\} is a subgroup of the unit group of R.
[Question ID = 20575][Question Description = S1_MATH_897_PhD_Q078]
   [Option ID = 146425]
2. A and B are true and C is false.
   [Option ID = 146426]
3. A, B, C are all true.
   [Option ID = 146427]
4. A and C are true and B is false.
   [Option ID = 146428]
79) Let f(x) = x^n + x + p \in \mathbb{Q}[x] where p > 5 is a prime and n > p. Consider the following
      A. All the roots of f(x) over \mathbb{C} have absolute value > 1.
      B. f(x) is irreducible over \mathbb{Q}.
[Question ID = 20576][Question Description = S1_MATH_897_PhD_Q079]
1. both A and B are true.
   [Option ID = 146429]
2. A is true and B is false.
   [Option ID = 146430]
3. both A and B are false.
   [Option ID = 146431]
```

4. B is true and A is false.

```
[Option ID = 146432]
 80) Consider the following statements in \mathbb{Z}[x]. Here f(x),g(x)\in\mathbb{Z}[x]
       A. 3x - 15 is irreducible in \mathbb{Z}[x].
       B. f(x+3) is irreducible iff f(x-15) is irreducible.
       C. Let \deg(f(x)) = n^3 > 8 and f(0) \neq 0. Then x^{n^3} f(\frac{1}{x}) is irreducible iff f(x) is irreducible.
       D. If f(x^2) is irreducible, then f(x) is irreducible.
       E. If the monic irreducible polynomials f(x) and g(x) have a common root \alpha \in \mathbb{C}, then f(x) = g(x).
       The number of correct statements above is
[Question ID = 20577][Question Description = $1_MATH_897_PhD_Q080]
1. 2
   [Option ID = 146433]
2 3
   [Option ID = 146434]
3.
   [Option ID = 146435]
4. 5
   [Option ID = 146436]
Let \sigma(m) denote the sum of positive divisors of m and \varphi(m) denote the number of positive integers
       \leq m and coprime to m. For m \in \mathbb{N}, let f(m) = rac{\sigma(m)}{\varphi(m)}. Consider the following statements:
       A. f(p^rq^s) = f(p^r)f(q^s) for distinct primes p,q and, r,s \in \mathbb{N}.
       B. f(p^r) < f(p^s) for a prime p and positive integers r < s.
       C. f(p^r) \leq f(q^s) for primes 2  and, <math>r, s \in \mathbb{N}
[Question ID = 20578][Question Description = S1_MATH_897_PhD_Q081]
1. A and B are true and C is false.
   [Option ID = 146437]
2. A and C are true and B is false.
   [Option ID = 146438]
3. B and C are true and A is false.
   [Option ID = 146439]
4. A, B, C are all true.
   [Option ID = 146440]
82) If
       \binom{n}{0} + \binom{n}{1} \binom{n}{1} + \binom{n}{2} \binom{n}{1} + \binom{n}{2} \cdots \binom{n}{n-1} + \binom{n}{n} = \kappa \binom{n}{0} \binom{n}{1} \cdots \binom{n}{n-1}
       then \kappa equals
[Question ID = 20579][Question Description = S1_MATH_897_PhD_Q082]
1. <u>n</u><sup>n</sup>
     n!
   [Option ID = 146441]
2. (n+1)^n
   [Option ID = 146442]
3. (n+1)^n
   [Option ID = 146443]
4. (n+1)^{n+1}
   [Option ID = 146444]
83) Let s(n) be the sum of decimal digits of a positive integer n. Then the number of solutions of the equation
       n+s(n)=2021 with n\geq 2000 is
[Question ID = 20580][Question Description = $1_MATH_897_PhD_Q083]
   [Option ID = 146445]
2. 3
   [Option ID = 146446]
   [Option ID = 146447]
```

[Option ID = 146448]

```
84) Let n=2021^2. For any permutation \sigma=(a_1,a_2,\cdots,a_n)\in S_n, let
      \mathcal{P}(\sigma) = \prod_{i=1}^n (j-a_j) = (1-a_1)(2-a_2)\cdots (n-a_n).
[Question ID = 20581][Question Description = S1_MATH_897_PhD_Q084]
1. \mathcal{P}(\sigma) = 0 for all \sigma \in S_n.
   [Option ID = 146449]
2. \mathcal{P}(\sigma) is even for all \sigma \in S_n.
   [Option ID = 146450]
3. \mathcal{P}(\sigma) is odd for half of all \sigma \in S_n.
   [Option ID = 146451]
4. there exist \sigma_1, \sigma_2 \in S_n for which \mathcal{P}(\sigma_1) is even and \mathcal{P}(\sigma_2) is odd.
   [Option ID = 146452]
85) Let n \geq 2021 be odd and 1 \leq a_1 < a_2 < \dots < a_k \leq n be k integers. The least value of k for which
      there is always a pair (i,j) with 1 \leq i < j \leq k such that a_j - a_i = a_1 is
[Question ID = 20582][Question Description = S1_MATH_897_PhD_Q085]
   [Option ID = 146453]
2. \frac{n+1}{2}
   [Option ID = 146454]
   [Option ID = 146455]
   [Option ID = 146456]
      Consider the fields F = \mathbb{Q}[\sqrt{2}] and L = \mathbb{Q}[\sqrt{-2}]. Then F and L are
[Question ID = 20697][Question Description = S1_MATH_897_PhD_Q086]
1. isomorphic as rings [Option ID = 146521]
2. isomorphic as vector spaces over Q but not as rings
3. isomorphic as groups but not as vector spaces over Q
   [Option ID = 146523]
4. not isomorphic as groups [Option ID = 146524]
The extension degree of the splitting field of f(x) = x^8 + 1 over \mathbb{Q}_{in}
[Question ID = 20583][Question Description = S1_MATH_897_PhD_Q087]
1. 8!
   [Option ID = 146457]
2. 24
   [Option ID = 146458]
3. 16
   [Option ID = 146459]
4. 8
   [Option ID = 146460]
Let K=F[lpha] be a finite extension of F with [K:F]=n The F -linear map
       T\colon K 	o K is given by x \mapsto \alpha x for all x \in K Which of the following statements is/are
[Question ID = 20584][Question Description = S1_MATH_897_PhD_Q088]
   [Option ID = 146461]
2. C only
   [Option ID = 146462]
3. A and B only
   [Option ID = 146463]
4. None of A, B and C
   [Option ID = 146464]
       Let F be a field and let f(x), g(x), h(x) \in F[x] be non-constant monic polynomials. Suppose
      f(x) divides g(x) and f(x) divides h(x) in F[x]. Consider the following statements.
       A. Any root of h(x) + g(x) is a root of f(x).
```

```
C. Any common root of h(x) and g(x) is a root f(x). Choose
       the correct answer from the options given below:
[Question ID = 20585][Question Description = $1_MATH_897_PhD_Q089]
1. B is true but A and C are false
   [Option ID = 146465]
2. A and B are both true if and only if h(x) and g(x) have a common root in F
   [Option ID = 146466]
3. C is true but A and B are false
   [Option ID = 146467]
4. Insufficient information to determine whether or not A, B and C are true
   [Option ID = 146468]
      Let F be the field with 729 elements. Then the number of subfields of F that are different from F is
[Question ID = 20586][Question Description = S1_MATH_897_PhD_Q090]
   [Option ID = 146469]
2. 2
   [Option ID = 146470]
3. 1
   [Option ID = 146471]
4. 0
   [Option ID = 146472]
      Consider the ring R = \mathbb{Z}[\sqrt{10}]. Which of the following is correct?
[Question ID = 20685][Question Description = S1_MATH_897_PhD_Q091]
1. R is a UFD but not a PID
   [Option ID = 146473]
<sup>2</sup>. R is a PID but not a Euclidean domain
   [Option ID = 146474]
3. R is a Euclidean domain
   [Option ID = 146475]
   R is not a UFD
   [Option ID = 146476]
92) Consider the ring R = \mathbb{Z}\left[\frac{1}{2}\right]. Which of the following statements is/are correct?
       A. R is an integral domain.
       C. R is generated by 1 and \frac{1}{2} as a group.
      Choose the correct answer from the options given below
[Question ID = 20686][Question Description = S1_MATH_897_PhD_Q092]
1. B only
   [Option ID = 146477]
2. A and B only
   [Option ID = 146478]
3. A and C only
   [Option ID = 146479]
4. All are true
   [Option ID = 146480]
      Let q=p^{28} for a prime p and let \mathbb{F}_q be the field with q elements. Consider the map \varphi on
      \mathbb{F}_a given by x \mapsto x^{p^7}. Which of the following statements is/are true?
[Question ID = 20687][Question Description = S1_MATH_897_PhD_Q093]
1. A only
   [Option ID = 146481]
2. B only
   [Option ID = 146482]
3. A and B only
   [Option ID = 146483]
4. All of A, B and C
   [Option ID = 146484]
```

B. Any root of f(x) is a root of h(x) + g(x)

```
[Question ID = 20688][Question Description = S1_MATH_897_PhD_Q094]
   Consider \mathbb{R} and \mathbb{R}^3 as vector spaces over \mathbb{Q}. Then, every basis of \mathbb{R} over \mathbb{Q} has the same cardinality as a
       basis of \mathbb{R}^3 over \mathbb{Q}.
   [Option ID = 146485]
    The set S := \{(x,y,z) \in \mathbb{R}^3 : \max\{|x|,|y|,|z|\} \le 1\} and the open interval I = \{x \in \mathbb{R} : 0 < x < 1\}
    have same cardinality.
3. If E denotes the set of even natural numbers, then the set of all functions from E into the group \mathbb{Z}_2
   containing two elements is a countable set.
   [Option ID = 146487]
There exists a surjective map from the set X = \{x \in \mathbb{R} : -1 < x < 0 \text{ or } 0 < x < 1\} onto the set
   Y = \{w \in \mathbb{C} : p(w) = 0 \text{ for some polynomial } p(t) \in \mathbb{Z}[t]\}
   [Option ID = 146488]
 95) Consider the sets
      S = \{(x, y) \in \mathbb{R}^2 : y = x\};
      T = \{(x, y) \in \mathbb{R}^2 : y = -x\};
      U = \{(x, y) \in \mathbb{R}^2 : y = 0\} and
      W=\{(x,y)\in\mathbb{R}^2:x=0\}.
      Which of the following statements is not correct?
[Question ID = 20689][Question Description = S1_MATH_897_PhD_Q095]
<sup>1</sup> S \cup T is an equivalence relation on \mathbb{R}.
   [Option ID = 146489]
<sup>2</sup> S \cup U \cup W is an equivalence relation on \mathbb{R}.
   [Option ID = 146490]
<sup>3.</sup> U \cup W is a symmetric relation on \mathbb{R}.
   [Option ID = 146491]
<sup>4</sup> S \cup W is not a symmetric relation on \mathbb{R}.
   [Option ID = 146492]
96) Let V be a 5 dimensional vector space over the field \mathbb{Z}_5 and let
      \mathcal{Z} := \{T \in L(V) : T \circ S = S \circ T \text{ for all } S \in L(V)\}, \text{ where } L(V) \text{ denotes the space of all linear}
      maps from \boldsymbol{V} into itself. Consider the following statements:
      A. Z is a subspace of L(V).
      B. Z has only one element
      C. Z has precisely 5 elements
      D. Z has precisely 55 elements.
      Which of the above statements is/are correct?
[Question ID = 20690][Question Description = S1_MATH_897_PhD_Q096]
   [Option ID = 146493]
2. A and C only
   [Option ID = 146494]
3. A and B only
   [Option ID = 146495]
4. A and D only
   [Option ID = 146496]
97) Let V, W, Y and Z be finite dimensional vector spaces over the real field and let
      T:V\rightarrow W, S:W\rightarrow Z, P:V\rightarrow Y and Q:Y\rightarrow Z
      be linear maps such that T and Q are injective, S and P are surjective and S \circ T = Q \circ P.
      Consider the following statements:
      A. dim(W) = dim(Y)
      B. \dim(Z) > \dim(V).
      Which of the above two statements is/are always true?
[Question ID = 20691][Question Description = S1_MATH_897_PhD_Q097]
1. A only
   [Option ID = 146497]
   [Option ID = 146498]
3. Both A and B
```

94) Which of the following statements is not correct?

[Option ID = 146499] 4. Neither A nor B [Option ID = 146500] 98) Let X be an infinite set and Y be a finite set. Consider the following statements related to X and Y: A. If $f: X \to Y$ is a surjective map, then $|f^{-1}(y)| = |X|$ for some y in Y. B. If $f,g:X\to Y$ are two surjective maps such that $f^{-1}(y)=g^{-1}(y)$ for every y in Y, then f=g. C. There exists an injective map from X into $\mathbb Z$ and a surjective map from $\mathbb Q$ onto Y. D. If $f: X \to \mathbb{Z}, \ g: \mathbb{Z} \to Y$ and $h: Y \to X$ are three maps such that f is surjective, then has $h \circ g \circ f$ finite range Which of the above statements is/are necessarily correct? [Question ID = 20692][Question Description = S1_MATH_897_PhD_Q098] 1. B and C only [Option ID = 146501] 2. B and D only [Option ID = 146502] 3. A and D only [Option ID = 146503] 4. D only [Option ID = 146504] 99) $d_1((z_1,z_2),(w_1,w_2)) = |z_1-z_2| + |w_1-w_2|$ Let d_1 and d_2 be two metrics on \mathbb{C}^2 given by $d_2((z_1,z_2),(w_1,w_2)) = \sqrt{|z_1-z_2|^2 + |w_1-w_2|^2}$ for all $(z_1, z_2), (w_1, w_2) \in \mathbb{C}^2$. Consider the following statements: A. The set $\{(z_1,z_2)\in\mathbb{C}^2:d_2((z_1,z_2),(1,1))\leq 1\}$ is complete with respect to the metric d_1 . B. The set $\{(z,w)\in\mathbb{C}^2: |z|+|w|\leq 5\}$ is complete with respect to the metric d_2 . C. There exists a linear isometry from (\mathbb{C}^2,d_1) into (\mathbb{C}^2,d_2) : Which of the above statements is/are correct? [Question ID = 20693][Question Description = S1_MATH_897_PhD_Q099] 1. All are correct. [Option ID = 146505] 2. A and B only [Option ID = 146506] 3. C only [Option ID = 146507] 4. B and C only [Option ID = 146508] **100)** For p=2,3, consider the metric $d_p:\mathbb{R}^3\times\mathbb{R}^3\to[0,\infty)$ given by $d_p((x_1, x_2, x_3), (y_1, y_2, y_3)) = \left[\sum_{i=1}^3 |x_i - y_i|^p\right]^{\frac{1}{p}}$. Let $K = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : |x_i| \le i \text{ for all } 1 \le i \le 3\} \subset \mathbb{R}^3$. Consider the following statements: A. K is complete with respect to the metric d_3 . B. Every sequence in K has a convergent subsequence with respect to the metric d_2 . C. K is bounded with respect to the metric d_3 . D. If a subset S of \mathbb{R}^3 is bounded with respect to the metric d_3 , then S is compact with respect to the metric d_2 . Which of the above statements is/are correct? [Question ID = 20694][Question Description = S1_MATH_897_PhD_Q100] 1. All are correct. [Option ID = 146509] 2. A, B and C only [Option ID = 146510] 3. B and C only [Option ID = 146511] 4. A and C only [Option ID = 146512]