

General Aptitude (GA)

Q.1 – Q.5 Carry ONE mark Each

Q.1	"I cannot support this proposal. My will not permit it."
(A)	conscious
(B)	consensus
(C)	conscience
(D)	consent

Q.2	Courts : : : Parliament : Legislature (By word meaning)
(A)	Judiciary
(B)	Executive
(C)	Governmental
(D)	Legal

٦

Q.3	What is the smallest number with distinct digits whose digits add up to 45?
(A)	123555789
(B)	123457869
(C)	123456789
(D)	99999

Q.4	 In a class of 100 students, (i) there are 30 students who neither like romantic movies nor comedy movies, (ii) the number of students who like romantic movies is twice the number of students who like comedy movies, and (iii) the number of students who like both romantic movies and comedy movies is 20.
	How many students in the class like romantic movies?
(A)	40
(B)	20
(C)	60
(D)	30

Q.5	How many rectangles are present in the given figure?
(A)	8
(B)	9
(C)	10
(D)	12

Q.6 – Q.10 Carry TWO marks Each

Q.6	Forestland is a planet inhabited by different kinds of creatures. Among other creatures, it is populated by animals all of whom are ferocious. There are also creatures that have claws, and some that do not. All creatures that have claws are ferocious. Based only on the information provided above, which one of the following options can be logically inferred with <i>certainty</i> ?
(A)	All creatures with claws are animals.
(B)	Some creatures with claws are non-ferocious.
(C)	Some non-ferocious creatures have claws.
(D)	Some ferocious creatures are creatures with claws.

Q.7	Which one of the following options represents the given graph?
	f(x) $f(x)$
(A)	$f(x) = x^2 2^{- x }$
(B)	$f(x) = x 2^{- x }$
(C)	$f(x) = x 2^{-x}$
(D)	$f(x) = x 2^{-x}$

Q.8	Which one of the following options can be inferred from the given passage alone?When I was a kid, I was partial to stories about other worlds and interplanetary travel. I used to imagine that I could just gaze off into space and be whisked to another planet.
	[Excerpt from <i>The Truth about Stories</i> by T. King]
(A)	It is a child's description of what he or she likes.
(B)	It is an adult's memory of what he or she liked as a child.
(C)	The child in the passage read stories about interplanetary travel only in parts.
(D)	It teaches us that stories are good for children.

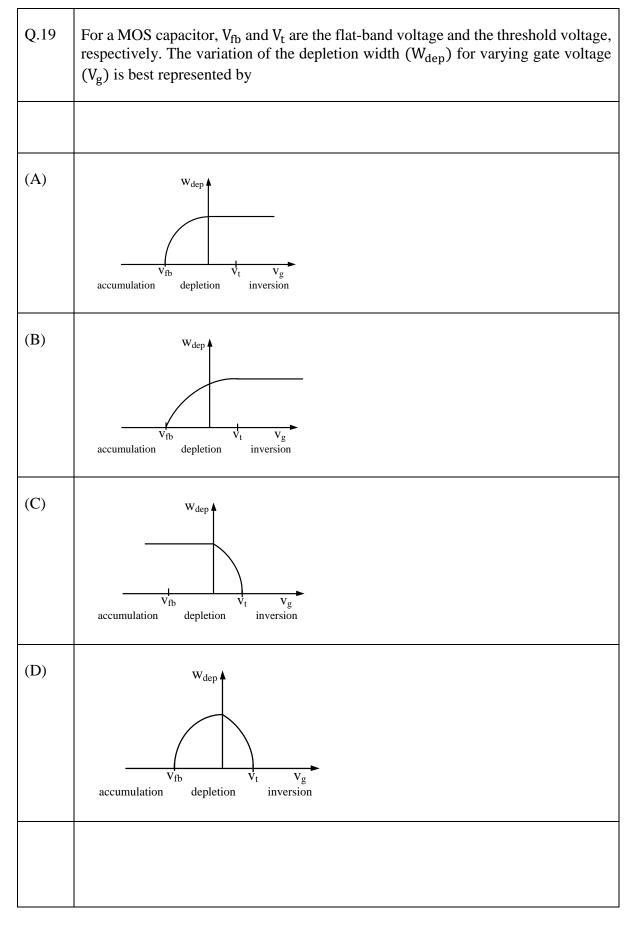
Q.9	Out of 1000 individuals in a town, 100 unidentified individuals are covid positive Due to lack of adequate covid-testing kits, the health authorities of the town devised a strategy to identify these covid-positive individuals. The strategy is to:		
	(i)	Collect saliva samples from all 1000 individuals and randomly group them into sets of 5.	
	(ii)	Mix the samples within each set and test the mixed sample for covid.	
	(iii)	If the test done in (ii) gives a negative result, then declare all the 5 individuals to be covid negative.	
	(iv)	If the test done in (ii) gives a positive result, then all the 5 individuals are separately tested for covid.	
		s strategy, no more than testing kits will be required to identify 0 covid positive individuals irrespective of how they are grouped.	
(A)	700		
(B)	600		
(C)	800		
(D)	1000		

Q.10	A 100 cm \times 32 cm rectangular sheet is folded 5 times. Each time the sheet is folded, the long edge aligns with its opposite side. Eventually, the folded sheet is a rectangle of dimensions 100 cm \times 1 cm. The total number of creases visible when the sheet is unfolded is
(A)	32
(B)	5
(C)	31
(D)	63

Q.11 – Q.35 Carry ONE mark Each

Q.11	Let $\boldsymbol{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ and $\boldsymbol{v}_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$ be two vectors. The value of the coefficient α in the expression $\boldsymbol{v}_1 = \alpha \boldsymbol{v}_2 + \boldsymbol{e}$, which minimizes the length of the error vector \boldsymbol{e} , is
(A)	$\frac{7}{2}$
(B)	$\frac{-2}{7}$
(C)	$\frac{2}{7}$
(D)	$\frac{-7}{2}$
Q.12	The rate of increase, of a scalar field $f(x, y, z) = xyz$, in the direction $v = (2,1,2)$ at a point (0,2,1) is
(A)	$\frac{2}{3}$
(B)	$\frac{4}{3}$
(C)	2
(D)	4

Q.13	Let $w^4 = 16j$. Which of the following cannot be a value of w ?
(A)	$2e^{\frac{j2\pi}{8}}$
(B)	$2e^{\frac{j\pi}{8}}$
(C)	$2e^{\frac{j5\pi}{8}}$
(D)	$2e^{\frac{j9\pi}{8}}$
Q.14	The value of the contour integral, $\oint_C \left(\frac{z+2}{z^2+2z+2}\right) dz$, where the contour C is
	$\left\{z: \left z+1-\frac{3}{2}j\right =1\right\}$, taken in the counter clockwise direction, is
(A)	$-\pi(1+j)$
(B)	$\pi(1+j)$
(C)	$\pi(1-j)$
(D)	$-\pi(1-j)$



Q.15	Let the sets of eigenvalues and eigenvectors of a matrix <i>B</i> be $\{\lambda_k \mid 1 \le k \le n\}$ and $\{v_k \mid 1 \le k \le n\}$, respectively. For any invertible matrix <i>P</i> , the sets of eigenvalues and eigenvectors of the matrix <i>A</i> , where $B = P^{-1}AP$, respectively, are
(A)	$\{\lambda_k \det(A) \mid 1 \le k \le n\}$ and $\{P\boldsymbol{v}_k \mid 1 \le k \le n\}$
(B)	$\{\lambda_k \mid 1 \le k \le n\}$ and $\{v_k \mid 1 \le k \le n\}$
(C)	$\{\lambda_k \mid 1 \le k \le n\}$ and $\{Pv_k \mid 1 \le k \le n\}$
(D)	$\{\lambda_k \mid 1 \le k \le n\}$ and $\{P^{-1}\boldsymbol{v}_k \mid 1 \le k \le n\}$
Q.16	In a semiconductor, if the Fermi energy level lies in the conduction band, then the semiconductor is known as
(A)	degenerate n-type.
(B)	degenerate p-type.
(C)	non-degenerate n-type.
(D)	non-degenerate p-type.

Q.17	For an intrinsic semiconductor at temperature $T = 0 K$, which of the following statement is true?
(A)	All energy states in the valence band are filled with electrons and all energy states in the conduction band are empty of electrons.
(B)	All energy states in the valence band are empty of electrons and all energy states in the conduction band are filled with electrons.
(C)	All energy states in the valence and conduction band are filled with holes.
(D)	All energy states in the valence and conduction band are filled with electrons.
Q.18	A series <i>RLC</i> circuit has a quality factor Q of 1000 at a center frequency of 10 ⁶ rad/s. The possible values of <i>R</i> , <i>L</i> and C are
(A)	$R = 1 \Omega, L = 1 \mu H$ and $C = 1 \mu F$
(B)	$R = 0.1 \Omega, L = 1 \mu H$ and $C = 1 \mu F$
(C)	$R = 0.01 \Omega, L = 1 \mu H$ and $C = 1 \mu F$
(D)	$R = 0.001 \Omega, L = 1 \mu H \text{ and } C = 1 \mu F$

Q.20	Consider a narrow band signal, propagating in a lossless dielectric medium ($\varepsilon_r = 4, \mu_r = 1$), with phase velocity v_p and group velocity v_g . Which of the following statement is true? (<i>c</i> is the velocity of light in vacuum.)
(A)	$v_p > c, v_g > c$
(B)	$v_p < c, v_g > c$
(C)	$v_p > c, v_g < c$
(D)	$v_p < c, v_g < c$

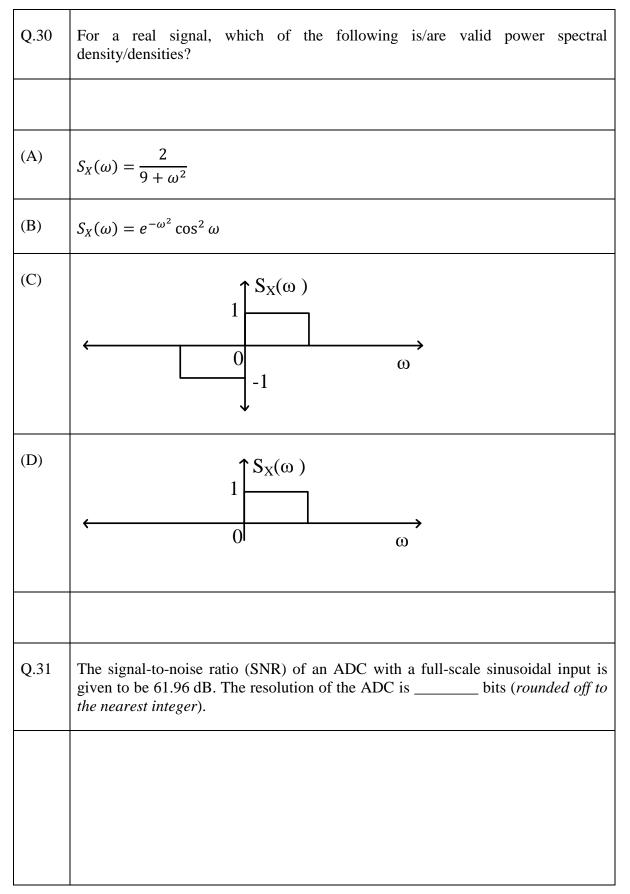
٦

Q.21	In the circuit shown below, V_1 and V_2 are bias voltages. Based on input and output impedances, the circuit behaves as a	
(A)	voltage controlled voltage source.	
(B)	voltage controlled current source.	
(C)	current controlled voltage source.	
(D)	current controlled current source.	
Q.22	A cascade of common-source amplifiers in a unity gain feedback configuration oscillates when	
(A)	the closed loop gain is less than 1 and the phase shift is less than 180°.	
(B)	the closed loop gain is greater than 1 and the phase shift is less than 180°.	
(C)	the closed loop gain is less than 1 and the phase shift is greater than 180°.	
(D)	the closed loop gain is greater than 1 and the phase shift is greater than 180°.	

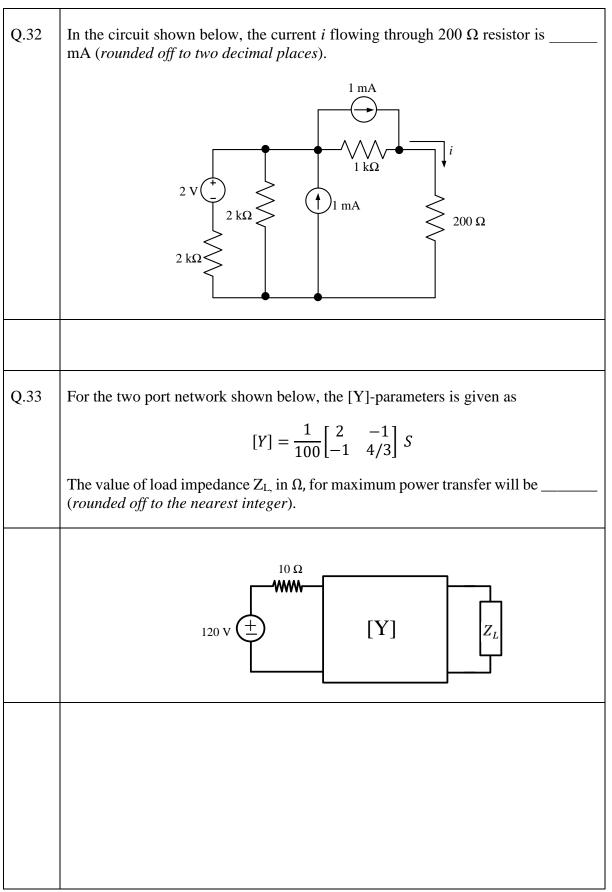
Q.23	In the circuit shown below, P and Q are the inputs. The logical function realized by the circuit shown below is	
	$ \begin{array}{c} I_{0} \\ 2 \times 1 \\ MUX \\ P \\ I_{1} \\ Sel \\ Q $	
(A)	Y = PQ	
(B)	Y = P + Q	
(C)	$Y = \overline{PQ}$	
(D)	$Y = \overline{P + Q}$	

Q.24	The synchronous sequential circuit shown below works at a clock frequency of 1 GHz. The throughput, in Mbits/s, and the latency, in ns, respectively, are	
	$Input D_0 Q_0 D_1 Q_1 D_2 Q_2 Output$ $D D D D D D D Flip Flop Flop Flop Flop Flop CLK = 1 GHz$	
(A)	1000, 3	
(B)	333.33, 1	
(C)	2000, 3	
(D)	333.33, 3	

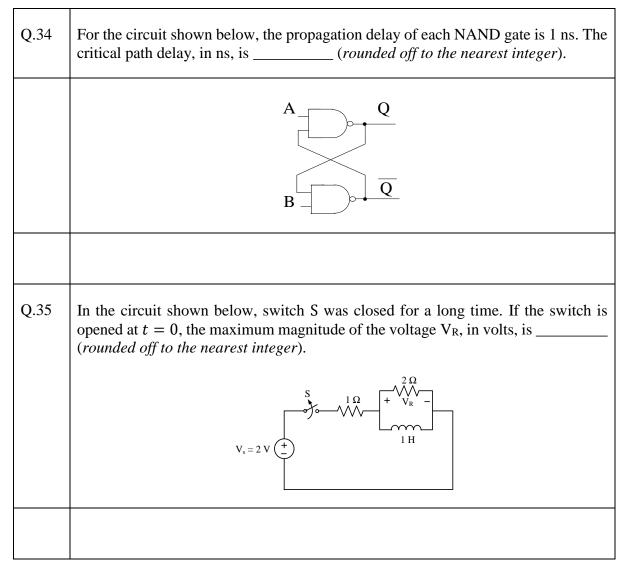
Q.25	The open loop transfer function of a unity negative feedback system is	
	$G(s) = \frac{k}{s(1+sT_1)(1+sT_2)}$, where k, T_1 and T_2 are positive constants. The phase cross-over frequency, in rad/s, is	
(A)	$\frac{1}{\sqrt{T_1T_2}}$	
(B)	$\frac{1}{T_1 T_2}$	
(C)	$\frac{1}{T_1\sqrt{T_2}}$	
(D)	$\frac{1}{T_2\sqrt{T_1}}$	
Q.26	Consider a system with input $x(t)$ and output $y(t) = x(e^t)$. The system is	
(A)	Causal and time invariant.	
(B)	Non-causal and time varying.	
(C)	Causal and time varying.	
(D)	Non-causal and time invariant.	

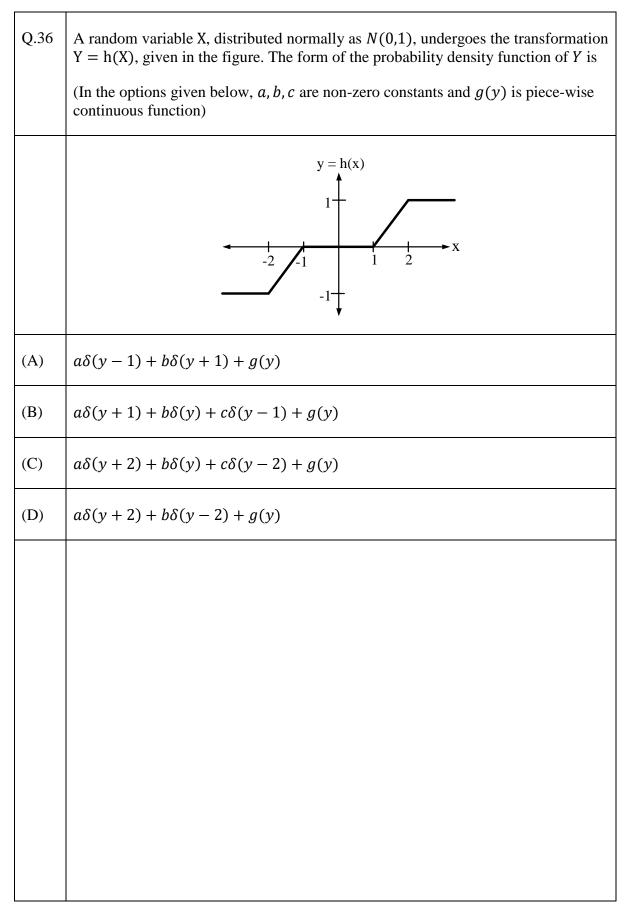


Q.27	Let $m(t)$ be a strictly band-limited signal with bandwidth B and energy E. Assuming $\omega_0 = 10B$, the energy in the signal $m(t) \cos \omega_0 t$ is
(A)	$\frac{E}{4}$
(B)	$\frac{E}{2}$
(C)	E
(D)	2 <i>E</i>
Q.28	The Fourier transform $X(\omega)$ of $x(t) = e^{-t^2}$ is
	Note: $\int_{-\infty}^{\infty} e^{-y^2} dy = \sqrt{\pi}$
(A)	$\sqrt{\pi} e^{\frac{\omega^2}{2}}$
(B)	$\frac{e^{-\frac{\omega^2}{4}}}{2\sqrt{\pi}}$
(C)	$\sqrt{\pi} e^{-\frac{\omega^2}{4}}$
(D)	$\sqrt{\pi} e^{-\frac{\omega^2}{2}}$

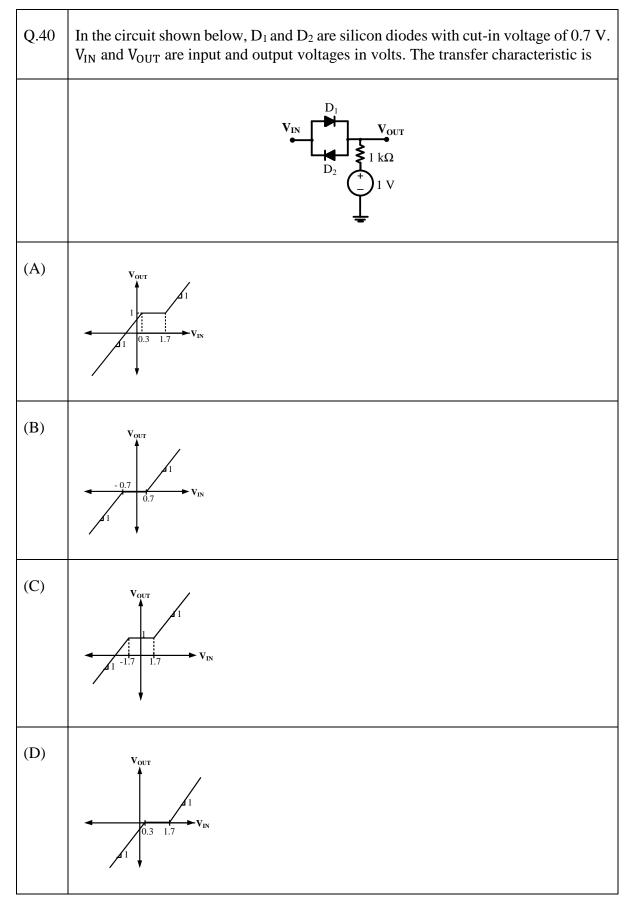


Q.29	In the table shown below, match the sig	anal type with its spectral characteristics.
	Signal type	Spectral characteristics
	(i) Continuous, aperiodic	(a) Continuous, aperiodic
	(ii) Continuous, periodic	(b) Continuous, periodic
	(iii) Discrete, aperiodic	(c) Discrete, aperiodic
	(iv) Discrete, periodic	(d) Discrete, periodic
(A)	$(i) \to (a), (ii) \to (b), (iii) \to (c), (iii)$	$v) \rightarrow (d)$
(B)	$(i) \rightarrow (a), (ii) \rightarrow (c), (iii) \rightarrow (b), (iv)$	\rightarrow (<i>d</i>)
(C)	$(i) \rightarrow (d), (ii) \rightarrow (b), (iii) \rightarrow (c), (iv)$	\rightarrow (<i>a</i>)
(D)	$(i) \rightarrow (a), (ii) \rightarrow (c), (iii) \rightarrow (d), (iv)$	\rightarrow (<i>b</i>)



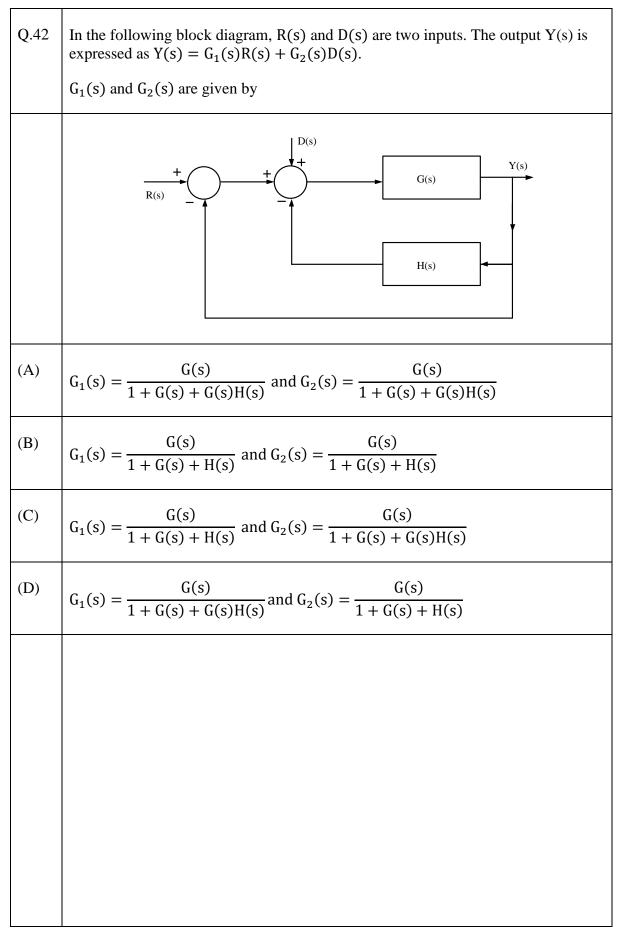


Q.36 – Q.65 Carry TWO marks Each



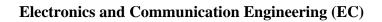
Q.37	The value of the line integral $\int_{P}^{Q} (z^2 dx + 3y^2 dy + 2xz dz)$ along the straight line joining the points <i>P</i> (1,1,2) and <i>Q</i> (2,3,1) is
(A)	20
(B)	24
(C)	29
(D)	-5
Q.38	Let x be an $n \times 1$ real column vector with length $l = \sqrt{\mathbf{x}^T \mathbf{x}}$. The trace of the matrix $P = \mathbf{x}\mathbf{x}^T$ is
(A)	l ²
(B)	$\frac{l^2}{4}$
(C)	l
(D)	$\frac{l^2}{2}$

Q.39	The $\frac{V_{OUT}}{V_{IN}}$ of the circuit shown below is
	R_{1} V_{CC} R_{3} V_{OUT} R_{1} V_{CC} R_{3} V_{CU} V_{CU} R_{3} V_{CU} V_{CU} R_{3} V_{CU} V_{CU} V_{CU} R_{3} V_{CU} V_{C
(A)	$-\frac{R_4}{R_3}$
(B)	$\frac{R_4}{R_3}$
(C)	$1 + \frac{R_4}{R_3}$
(D)	$1 - \frac{R_4}{R_3}$



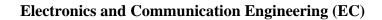
Q.41	A closed loop system is shown in the figure where $k > 0$ and $\alpha > 0$. The steady state error due to a ramp input (R(s) = α/s^2) is given by	
	$R(s) = \alpha / s^{2} \xrightarrow{\qquad \bullet} E(s) \xrightarrow{\qquad \bullet} \overline{S(s+2)} \xrightarrow{\qquad Y(s) \\ \bullet}$	
(A)	$\frac{2\alpha}{k}$	
(B)	$\frac{\alpha}{k}$	
(C)	$\frac{\alpha}{2k}$	
(D)	$\frac{\alpha}{4k}$	

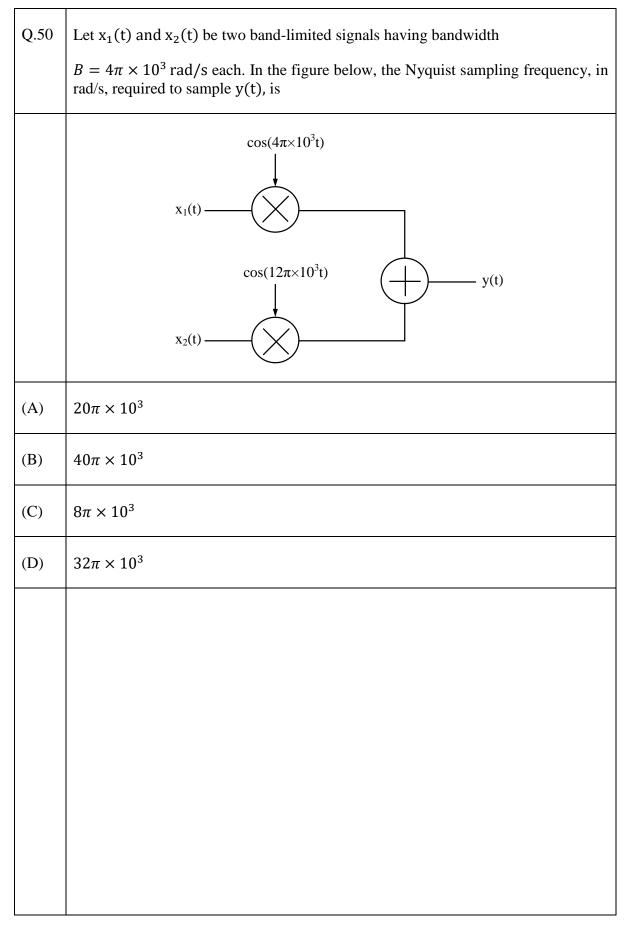
Q.43	The state equation of a second order system is							
	$\dot{x}(t) = Ax(t), x(0)$ is the initial condition.							
	Suppose λ_1 and λ_2 are two distinct eigenvalues of A and \boldsymbol{v}_1 and \boldsymbol{v}_2 are the corresponding eigenvectors. For constants α_1 and α_2 , the solution, $\boldsymbol{x}(t)$, of the state equation is							
(A)	$\sum_{i=1}^{2} \alpha_{i} e^{\lambda_{i} t} \boldsymbol{\nu}_{i}$							
(B)	$\sum_{i=1}^{2} \alpha_i e^{2\lambda_i t} \boldsymbol{v}_i$							
	$\sum_{i=1}^{2} \alpha_i e^{3\lambda_i t} \boldsymbol{v}_i$							
(D)	$\sum_{i=1}^{2} \alpha_i e^{4\lambda_i t} \boldsymbol{v}_i$							

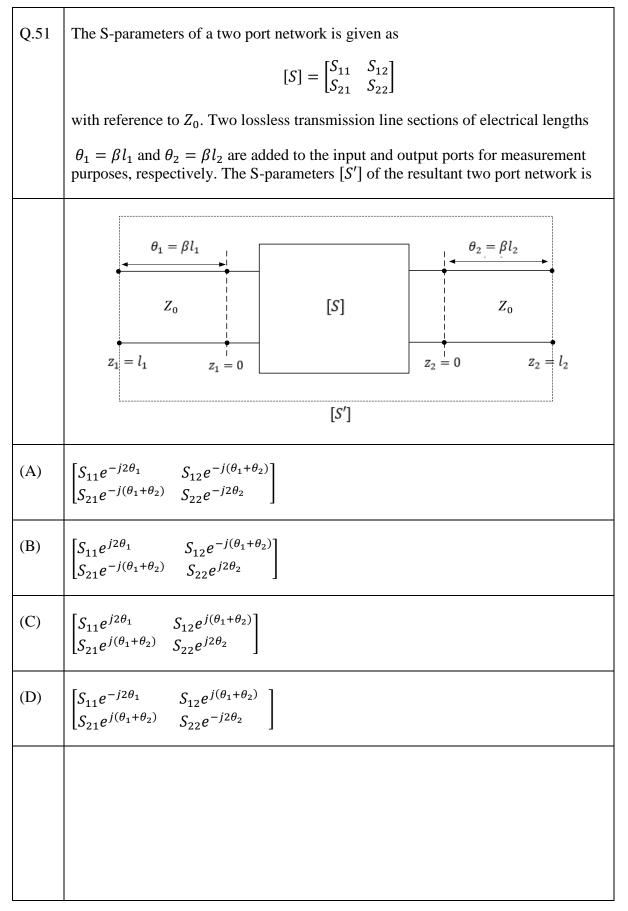

Q.44	The switch S_1 was closed and S_2 was open for a long time. At $t = 0$, switch S_1 is opened and S_2 is closed, simultaneously. The value of $i_c(0^+)$, in amperes, is
	$1 \text{ A} \underbrace{\uparrow} 0.01 \text{ F} \underbrace{\downarrow} 100 \Omega \underbrace{\downarrow} S_2 \\ 1 \text{ H} \underbrace{\downarrow} 100 \Omega \underbrace{\downarrow} S_2 \\ 1 \text{ H} \underbrace{\downarrow} 25 \Omega$
(A)	1
(B)	-1
(C)	0.2
(D)	0.8

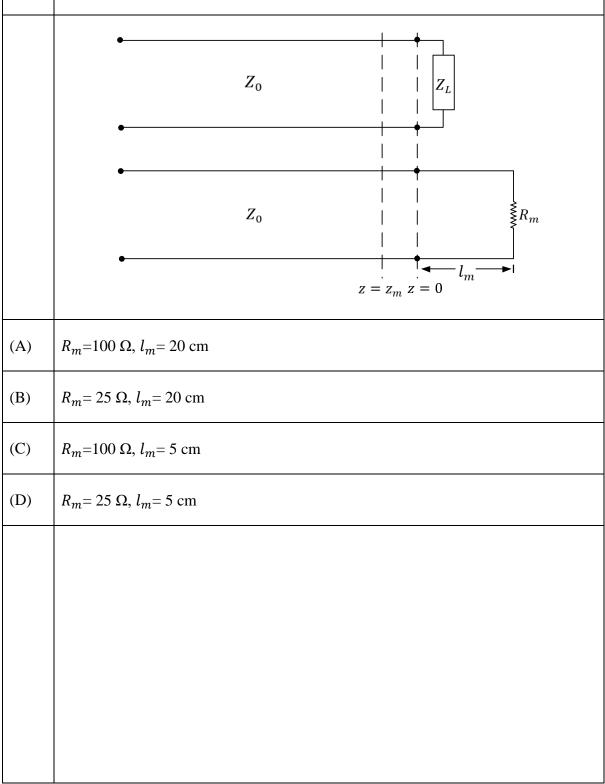
Q.45	Let a frequency modulated (FM) signal
	$x(t) = A\cos(\omega_c t + k_f \int_{-\infty}^{t} m(\lambda)d\lambda)$, where $m(t)$ is a message signal of bandwidth W. It is passed through a non-linear system with output $y(t) = 2x(t) + 5(x(t))^2$. Let B_T denote the FM bandwidth. The minimum value of ω_c required to recover $x(t)$ from $y(t)$ is
(A)	$B_T + W$
(B)	$\frac{3}{2}B_T$
(C)	$2B_T + W$
(D)	$\frac{5}{2}B_T$

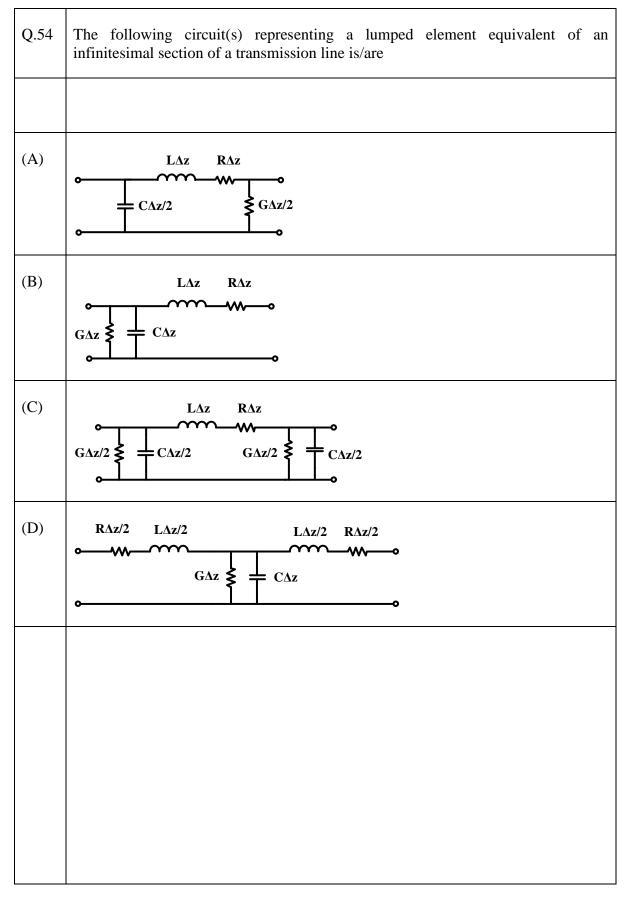
Q.46	The h-parameters of a two port network are shown below. The condition for the maximum small signal voltage gain $\frac{V_{out}}{V_s}$ is							
	$V_{s} \xrightarrow{i_{1}} h_{11}$ $\downarrow i_{2}$ $\downarrow i_{1}$ $\downarrow i_{2}$ $\downarrow i_{1}$ $\downarrow i_{2}$							
(A)	$h_{11} = 0, h_{12} = 0, h_{21} = very high and h_{22} = 0$							
(B)	$h_{11}=very$ high, $h_{12}=0, h_{21}=very$ high and $h_{22}=0$							
(C)	$h_{11} = 0$, $h_{12} = very high$, $h_{21} = very high and h_{22} = 0$							
(D)	$h_{11} = 0, h_{12} = 0, h_{21} = very high and h_{22} = very high$							

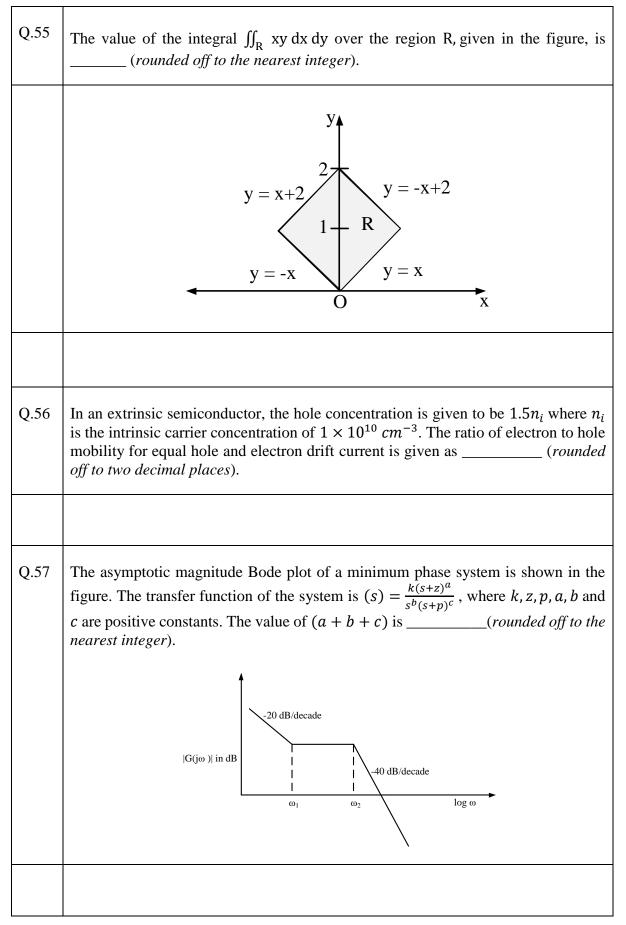



Q.47	Consider a discrete-time periodic signal with period $N = 5$. Let the discrete-time Fourier series (DTFS) representation be $x[n] = \sum_{k=0}^{4} a_k e^{\frac{jk2\pi n}{5}}$, where $a_0 = 1, a_1 = 3j, a_2 = 2j, a_3 = -2j$ and $a_4 = -3j$. The value of the sum $\sum_{n=0}^{4} x[n] \sin \frac{4\pi n}{5}$ is
(A)	-10
(B)	10
(C)	-2
(D)	2
Q.48	Let an input $x[n]$ having discrete time Fourier transform $X(e^{j\Omega}) = 1 - e^{-j\Omega} + 2e^{-3j\Omega}$ be passed through an LTI system. The frequency response of the LTI system is $H(e^{j\Omega}) = 1 - \frac{1}{2}e^{-j2\Omega}$. The output $y[n]$ of the system is
(A)	$\delta[n] + \delta[n-1] - \frac{1}{2}\delta[n-2] - \frac{5}{2}\delta[n-3] + \delta[n-5]$
(B)	$\delta[n] - \delta[n-1] - \frac{1}{2}\delta[n-2] - \frac{5}{2}\delta[n-3] + \delta[n-5]$
(C)	$\delta[n] - \delta[n-1] - \frac{1}{2}\delta[n-2] + \frac{5}{2}\delta[n-3] - \delta[n-5]$
(D)	$\delta[n] + \delta[n-1] + \frac{1}{2}\delta[n-2] + \frac{5}{2}\delta[n-3] + \delta[n-5]$

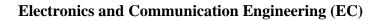

Q.49	Let $x(t) = 10\cos(10.5Wt)$ be passed through an LTI system having impulse response $h(t) = \pi \left(\frac{\sin Wt}{\pi t}\right)^2 \cos 10Wt$. The output of the system is						
(A)	$\left(\frac{15W}{4}\right)\cos(10.5Wt)$						
(B)	$\left(\frac{15W}{2}\right)\cos(10.5Wt)$						
(C)	$\left(\frac{15W}{8}\right)\cos(10.5Wt)$						
(D)	$(15W)\cos(10.5Wt)$						

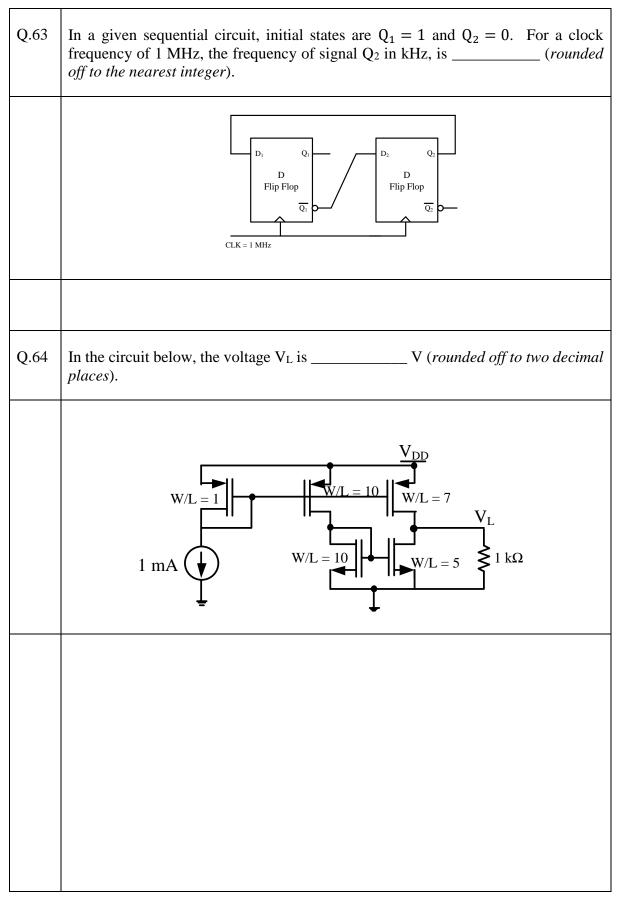



Q.52 The standing wave ratio on a 50 Ω lossless transmission line terminated in an unknown load impedance is found to be 2.0. The distance between successive voltage minima is 30 cm and the first minimum is located at 10 cm from the load. Z_L can be replaced by an equivalent length l_m and terminating resistance R_m of the same line. The value of R_m and l_m , respectively, are



Q.53	The electric field of a plane electromagnetic wave is							
	$\boldsymbol{E} = \boldsymbol{a}_{x}C_{1x}\cos(\omega t - \beta z) + \boldsymbol{a}_{y}C_{1y}\cos(\omega t - \beta z + \theta) \text{V/m.}$							
	Which of the following combination(s) will give rise to a left handed elliptically polarized (LHEP) wave?							
(A)	$C_{1x} = 1, C_{1y} = 1, \theta = \pi/4$							
(B)	$C_{1x} = 2, C_{1y} = 1, \theta = \pi/2$							
(C)	$C_{1x} = 1, C_{1y} = 2, \theta = 3\pi/2$							
(D)	$C_{1x} = 2, C_{1y} = 1, \theta = 3\pi/4$							





Let $x_1(t) = u(t + 1.5) - u(t - 1.5)$ and $x_2(t)$ is shown in the figure below. For $y(t) = x_1(t) * x_2(t)$, the $\int_{-\infty}^{\infty} y(t) dt$ is(rounded off to the nearest integer).						
$\overbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$						
Let $X(t)$ be a white Gaussian noise with power spectral density $\frac{1}{2}$ W/Hz. If $X(t)$ is input to an LTI system with impulse response $e^{-t}u(t)$. The average power of the system output is W (rounded off to two decimal places).						
A transparent dielectric coating is applied to glass ($\varepsilon_r = 4, \mu_r = 1$) to eliminate the reflection of red light ($\lambda_0 = 0.75 \mu$ m). The minimum thickness of the dielectric coating, in μ m, that can be used is (rounded off to two decimal places).						
In a semiconductor device, the Fermi-energy level is 0.35 eV above the valence band energy. The effective density of states in the valence band at $T = 300$ K is 1×10^{19} cm ⁻³ . The thermal equilibrium hole concentration in silicon at 400 K is × 10^{13} cm ⁻³ (<i>rounded off to two decimal places</i>). Given kT at 300 K is 0.026 eV.						
A sample and hold circuit is implemented using a resistive switch and a capacitor with a time constant of 1 µs. The time for the sampling switch to stay closed to charge a capacitor adequately to a full scale voltage of 1 V with 12-bit accuracy is µs (<i>rounded off to two decimal places</i>).						

Q.65	The frequency of occurrence of 8 symbols (a-h) is shown in the table below. A symbol is chosen and it is determined by asking a series of "yes/no" questions which are assumed to be truthfully answered. The average number of questions when asked in the most efficient sequence, to determine the chosen symbol, is (rounded off to two decimal places).								
	Symbols	а	b	с	d	e	f	g	h
	Frequency of occurrence	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{64}$	$\frac{1}{128}$	$\frac{1}{128}$

END OF QUESTION PAPER