MATHEMATICS MODEL TEST PAPER

Q. 1 Let V be the real vector space consisting of all polynomials in one variable with real coefficients and having degree at most 6 , together with the zero polynomial. Then which one of the following is true?
(A) $\{f \in V: f(1 / 2) \notin \mathbb{O}\}$ is a subspace of V.
(B) $\{f \in V: f(12)=1\}$ is a subspace of V.
(C) $\{f \in V: f(12)=f(1)\}$ is a subspace of V.
(D) $\{f \in V: f(1 / 2)=1\}$ is a subspace of V.
Q. 2 Let G be a group of order 2022. Let H and K be subgroups of G of order 337 and 674, respectively. If $H \cup K$ is also a subgroup of G, then which one of the following is FALSE?
(A) H is a normal subgroup of $H \cup K$.
(B) The order of $H \cup K$ is 1011 .
(C) The order of $H \cup K$ is 674 .
(D) K is a normal subgroup of $H \cup K$
Q. 3 Let $0<\alpha<1$ be a real number. The number of differentiable functions $y:[0,1] \rightarrow[0, \infty)$, having continuous derivative on $[0,1]$ and satisfying $y^{\prime}(t)=(y(t))^{\alpha}, t \in[0,1], y(0)=0$, is
(A) exactly one.
(B) exactly two.
(C) finite but more than two.
(D) infinite.
Q. 4 Let $P: R \rightarrow R$ be a continuous function such that $P(x)>0$ for all $x \in R$. Let y be a twice differentiable function on R satisfying $y^{\prime \prime}(x)+P(x) y 0(x)-y(x)=0$ for all $x \in R$. Suppose that there exist two real numbers $a, b(a<b)$ such that $y(a)=y(b)=0$. Then
(A) $y(x)=0$ for all $x \in[a, b]$.
(B) $y(x)>0$ for all $x \in(a, b)$.
(C) $y(x)<0$ for all $x \in(a, b)$.
(D) $y(x)$ changes sign on (a, b).
Q. 5 Let $f: R \rightarrow R$ be a continuous function satisfying $f(x)=f(x+1)$ for all $x \in R$. Then
(A) f is not necessarily bounded above.
(B) there exists a unique $x_{0} \in R$ such that $f\left(x_{0}+\pi\right)=f\left(x_{0}\right)$.
(C) there is no $x_{0} \in R$ such that $f\left(x_{0}+\pi\right)=f\left(x_{0}\right)$.
(D) there exist infinitely many $x_{0} \in R$ such that $f\left(x_{0}+\pi\right)=f\left(x_{0}\right)$.
Q. 6 Let $M_{n}(R)$ be the real vector space of all $n \times n$ matrices with real entries, $n \geq 2$. Let $A \in$ $M_{n}(R)$. Consider the subspace W of $M_{n}(R)$ spanned by $\left\{I_{n}, A, A^{2}, \ldots\right\}$. Then the dimension of W over R is necessarily (A) ∞
(B) n^{2}
(C) n
(D) at most n
Q. 7 Consider the following statements. I. The group (Q, +) has no proper subgroup of finite index. II. The group ($\mathrm{C} \backslash\{0\}, \cdot$) has no proper subgroup of finite index. Which one of the following statements is true?
(A) Both I and II are TRUE.
(B) I is TRUE but II is FALSE.
(C) II is TRUE but I is FALSE.
(D) Neither I nor II is TRUE.
Q. 8 Consider the family of curves $x^{2}-y^{2}=k y$ with parameter $k \in R$. The equation of the orthogonal trajectory to this family passing through $(1,1)$ is given by
(A) $x^{3}+3 x y^{2}=4$.
(B) $x^{2}+2 x y=3$.
(C) $y^{2}+2 x^{2} y=3$.
(D) $x .+2 x y^{2}=3$.
Q. 9 Which one of the following statements is true?
(A) Exactly half of the elements in any even order subgroup of S 5 must be even permutations.
(B) Any abelian subgroup of S 5 is trivial.
(C) There exists a cyclic subgroup of S 5 of order 6.
(D) There exists a normal subgroup of S 5 of index 7 .
Q. 10 Which one of the following statements is true?
(A) $(Z,+)$ is isomorphic to $(R,+)$.
(B) $(Z,+)$ is isomorphic to $(Q,+)$.
(C) $(Q / Z,+)$ is isomorphic to $(Q / 2 Z,+)$.
(D) $(\mathrm{Q} / \mathrm{Z},+$) is isomorphic to $(\mathrm{Q},+$).
Q. 11 Let $a, b, c \in R$ such that $a<b<c$. Which of the following is/are true for any continuous function $f: R \rightarrow R$ satisfying $f(a)=b, f(b)=c$ and $f(c)=a$?
(A) There exists $\alpha \in(a, c)$ such that $f(\alpha)=\alpha$
(B) There exists $\beta \in(a, b)$ such that $f(\beta)=\beta$
(C) There exists $\gamma \in(a, b)$ such that $(f \circ f)(\gamma)=\gamma$
(D) There exists $\delta \in(a, c)$ such that $(f \circ f \circ f)(\delta)=\delta$
Q. 12 Let $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ and $\mathrm{a}<\mathrm{b}$. Which of the following statement(s) is/are true?
(A) There exists a continuous function $f:[a, b] \rightarrow(a, b)$ such that f is one-one
(B) There exists a continuous function $f:[a, b] \rightarrow(a, b)$ such that f is onto
(C) There exists a continuous function $f:(a, b) \rightarrow[a, b]$ such that f is one-one
(D) There exists a continuous function $f:(a, b) \rightarrow[a, b]$ such that f is onto
Q. 13 Let V be a non-zero vector space over a field F . Let $\mathrm{S} \subset \mathrm{V}$ be a non-empty set. Consider the following properties of S :
(I) For any vector space W over F, any map $f: S \rightarrow W$ extends to a linear map from V to W.
(II) For any vector space W over F and any two linear maps $f, g: V \rightarrow W$ satisfying $f(s)=g(s)$ for all $s \in S$, we have $f(v)=g(v)$ for all $v \in V$.
(III) S is linearly independent.
(IV) The span of S is V.

Which of the following statement(s) is /are true?
(A) (I) implies (IV)
(B) (I) implies (III)
(C) (II) implies (III)
(D) (II) implies (IV)
Q. 14 Consider the following system of linear equations $x+y+5 z=3, x+2 y+m z=5$ and $x+$ $2 y+4 z=k$. The system is consistent if
(A) $m \neq 4$
(B) $k \neq 5$
(C) $m=4$
(D) $k=5$
Q. 15 Let G be a group with identity e . Let H be an abelian non-trivial proper subgroup of G with the property that $\mathrm{H} \cap \mathrm{gHg}^{-1}=\{\mathrm{e}\}$ for all $\mathrm{g} / \in \mathrm{H}$. If $\mathrm{K}=\mathrm{g} \in \mathrm{G}: \mathrm{gh}=\mathrm{hg}$ for all $\mathrm{h} \mathbb{Z} \mathrm{H}$, then
(A) K is a proper subgroup of H
(B) H is a proper subgroup of K
(C) $\mathrm{K}=\mathrm{H}$
(D) there exists no abelian subgroup $L \subseteq G$ such that K is a proper subgroup of L
Q. 16 Let G be a noncyclic group of order 4. Consider the statements I and II:
I. There is NO injective (one-one) homomorphism from G to z_{8}
II. There is NO surjective (onto) homomorphism from \boxtimes_{8} to G Then
(A) I is true
(B) I is false
(C) II is true
(D) II is false
Q. 17 Let G be a nonabelian group, $y \in G$, and let the maps f, g, h from G to itself be defined by $f(x)=y x y^{-1}, g(x)=x^{-1}$ and $h=g \circ g$. Then
(A) g and h are homomorphisms and f is not a homomorphism
(B) h is a homomorphism and g is not a homomorphism
(C) f is a homomorphism and g is not a homomorphism
(D) f, g and h are homomorphisms
Q. 18 Let S and T be linear transformations from a finite dimensional vector space V to itself such that $S(T(v))=0$ for all $v \in V$. Then
(A) $\operatorname{rank}(T) \geq \operatorname{nullity}(S)$
(B) $\operatorname{rank}(S) \geq \operatorname{nullity}(T)$
(C) $\operatorname{rank}(T) \leq \operatorname{nullity}(S)$
(D) $\operatorname{rank}(S) \leq \operatorname{nullity}(T)$
Q. 19 Consider the intervals $S=(0,2]$ and $T=[1,3)$. Let S° and T° be the sets of interior points of S and T, respectively. Then the set of interior points of $S \backslash T$ is equal to
(A) $S \backslash T^{\circ}$
(B) $S \backslash T$
(C) $S^{\circ} \backslash T^{\circ}$
(D) $S^{\circ} \backslash T$
Q. 20 Let $f(x)=\cos (|\pi-x|)+(x-\pi) \sin |x|$ and $g(x)=x^{2}$ for $x \in$ 闾. If $h(x)=f(g(x))$, then
(A) h is not differentiable at $x=0$
(B) $h^{\prime}(\sqrt{ } \pi)=0$
(C) $h^{\prime \prime}(x)=0$ has a solution in $(-\pi, \pi)$
(D) there exists $x_{0} \in(-\pi, \pi)$ such that $h\left(x_{0}\right)=x_{0}$
Q. 21 Let $T: P_{2}(R) \rightarrow P_{4}(R)$ be the linear transformation given by $T(p(x))=p\left(x^{2}\right)$. Then the rank of T is equal to.
Q. 22If y is the solution of
$y^{\prime \prime}-2 y^{\prime}+\mathrm{y}=\mathrm{e}^{\mathrm{x}}, \mathrm{y}(0)=0$,
$y^{\prime}(0)=-1 / 2$,
then $\mathrm{y}(1)$ is equal to \qquad . (rounded off to two decimal places)
Q. 23 For $\sigma \in \mathrm{S}_{8}$, let $\mathrm{o}(\sigma)$ denote the order of σ. Then $\max \left\{0(\sigma): \sigma \in \mathrm{S}_{8}\right\}$ is equal to \qquad -
Q. 24 For $g \in Z$, let $\mathrm{g}^{-} \in \mathrm{Z}_{8}$ denote the residue class of g modulo 8. Consider the group $\mathrm{Z}^{\mathrm{x}}=$ $\left\{\mathrm{x}^{-} \in \mathrm{Z}_{8}: 1 \leq \mathrm{x} \leq 7, \operatorname{gcd}(\mathrm{x}, 8)=1\right\}$ with respect to multiplication modulo 8 . The number of group isomorphisms from $Z^{\mathrm{x}}{ }_{8}$ onto itself is equal to .
Q. 25 Let V be the volume of the region $S \subseteq R^{3}$ defined by $S=\left\{(x, y, z) \in R^{3}: x y \leq z \leq 4,0 \leq x\right.$ $\left.{ }^{2}+y^{2} \leq 1\right\}$. Then V / π is equal to. (rounded off to two decimal places)
Q. 26 The number of elements of order two in the group S4 is equal to \qquad .
Q. 27 The least possible value of k, accurate up to two decimal places, for which the following problem $y^{\prime \prime}(t)+2 y^{\prime}(t)+k y(t)=0, t \in R, y(0)=0, y(1)=0, y(1 / 2)=1$, has a solution is \qquad .
Q. 28 Consider those continuous functions $f: R \rightarrow R$ that have the property that given any $x \in$ $R, f(x) \in Q$ if and only if $f(x+1) \in R \backslash Q$. The number of such functions is \qquad .
Q. 29 The minimum value of the function $f(x, y)=x^{2}+x y+y^{2}-3 x-6 y+11$ is \qquad .
Q. 30 If $x^{2}+x y^{2}=c$, where $c \in R$, is the general solution of the exact differential equation $M(x$, $y) d x+2 x y d y=0$, then $M(1,1)$ is \qquad _.

ANSWER KEY

Questio n No.	Question Type (QT)	Subject Name (SN)	Key/Range (KY)	Mark (MK)
1	MCQ	MA	C	1
2	MCQ	MA	B	1
3	MCQ	MA	B	1
4	MCQ	MA	A	1
5	MCQ	MA	D	1
6	MCQ	MA	D	2
7	MCQ	MA	A	2
8	MCQ	MA	A	2
9	MCQ	MA	C	2
10	MCQ	MA	C	2
11	MSQ	MA	A;C;D	2
12	MSQ	MA	A;C;D	2
13	MSQ	MA	B;D	2
14	MSQ	MA	A; D	2
15	MSQ	MA	C; D	2

16	MSQ	MA	A; B	2
17	MSQ	MA	C	2
18	MSQ	MA	A;B;C	2
19	MSQ	MA	C	2
20	MSQ	MA	A;B;C;D	2
21	NAT	MA	3 to 3	1
22	NAT	MA	-0.01 to 0.01	1
23	NAT	MA	15 to 15	1
24	NAT	MA	6 to 6	1
25	NAT	MA	3.99 to 4.01	1
26	NAT	MA	9	2
27	NAT	MA	10.8 to 10.9	2
28	NAT	MA	0	2
29	NAT	MA	2 to 2	2
30	NAT	MA	3 to 3	2

