IIT JAM 2024 NAT Model Questions

Subject - Mathematics (MA)

Q. 1 The number of distinct subgroups of Z_{999} is \qquad .
Q. 2 The number of elements of order 12 in the symmetric group S 7 is equal to \qquad .
Q. 3 Consider the region $G=\left\{(x, y, z) \in \mathbb{R}^{3}: 0<z<x^{2}-y^{2}, x^{2}+y^{2}<1\right\}$. Then the volume of G is equal to \qquad . (Rounded off to two decimal places)
Q. 4 Let $f(x, y)=e^{x} \sin y, x=t^{3}+1$ and $y=t^{4}+t$. Then $d f / d t$ at $t=0$ is . (rounded off to two decimal places)
Q. 5 Let $f(x, y)=0$ be a solution of the homogeneous differential equation $(2 x+5 y) d x-(x+3 y) d y=0$. If $f(x+\alpha, y-3)=0$
is a solution of the differential equation
$(2 x+5 y-1) d x+(2-x-3 y) d y=0$
then the value of α is .
Q. 6 The sum of the series $1 / 2\left(2^{2}-1\right)+1 / 3\left(3^{2}-1\right)+1 / 4\left(4^{2}-1\right)+\cdots$ is .
Q. 7 Consider the expansion of the function $f(x)=3 /(1-x)(1+2 x)$ in powers of x, that is valid in $|x|<12$. Then the coefficient of x^{4} is .
Q. 8 The minimum value of the function $f(x, y)=x^{2}+x y+y^{2}-3 x-6 y+11$ is .
Q. 9 Let $f(x)=\sqrt{ } x+\alpha x, x>0$ and $g(x)=a 0+a 1(x-1)+a 2(x-1) 2$ be the sum of the first three terms of the Taylor series of $f(x)$ around $x=1$. If $g(3)=3$, then α is.
Q. 10 If $x^{2}+x y^{2}=c$, where $c \in R$, is the general solution of the exact differential equation $M(x$, y) $d x+2 x y d y=0$, then $M(1,1)$ is .
Q. 11 The volume of the solid of revolution of the loop of the curve $y^{2}=x^{4}(x+2)$ about the x-axis (round off to 2 decimal places) is \qquad
Q. 12 Let $G=\{n \in \mathbb{N}: n \leq 55, \operatorname{gcd}(n, 55)=1\}$ be the group under multiplication modulo 55 . Let x $\in G$ be such that $x 2=26$ and $x>30$. Then x is equal to \qquad
Q. 13 The number of critical points of the function $f(x, y)=\left(x^{2}+3 y^{2}\right) e^{-(x 2+y 2)}$ is \qquad
Q. 14 The number of elements in the set $\left\{x \in S_{3}: x^{4}=e\right\}$, where e is the identity element of the permutation group S_{3}, is \qquad
Q. 15 Let M be a 3×3 matrix with real entries such that $M^{2}=M+2 I$, where I denotes the 3×3 identity matrix. If α, β and γ are eigenvalues of M such that $\alpha \beta \gamma=-4$, then $\alpha+\beta+\gamma$ is equal to \qquad .

ANSWER KEY

Question No.	Question Type (QT)	Subject Name (SN)	Key/Range (KY)	Mark (MK)
1	NAT	MA	8 to 8	1
2	NAT	MA	420 to 420	1
3	NAT	MA	0.49 to 0.51	1
4	NAT	MA	2.70 to 2.72	1
5	NAT	MA	7 to 7	1
6	NAT	MA	0.25 to 0.25	2
7	NAT	MA	33 to 33	2
8	NAT	MA	2 to 2	2
9	NAT	MA	0.5 to 0.5	2
10	NAT	MA	3 to 3	2
11	NAT	MA	6.60 to 6.80	2
12	NAT	MA	31 to 31 or 46 to 46	2
13	NAT	MA	5 to 5	2
14	NAT	MA	4 to 4	2
15	NAT	MA	3 TO 3	2

