IIT JAM 2024 NAT Model Questions

Subject - Mathematics (MA)

Q.1 The number of distinct subgroups of \mathbb{Z}_{999} is _____.

Q.2 The number of elements of order 12 in the symmetric group S7 is equal to ______.

Q.3 Consider the region $G = \{(x, y, z) \in \mathbb{R}^3 : 0 < z < x^2 - y^2, x^2 + y^2 < 1\}$. Then the volume of *G* is equal to ______. (Rounded off to two decimal places)

Q.4 Let $f(x, y) = e^x \sin y$, $x = t^3 + 1$ and $y = t^4 + t$. Then df / dt at t = 0 is . (rounded off to two decimal places)

Q.5 Let f(x, y) = 0 be a solution of the homogeneous differential equation (2x + 5y)dx - (x + 3y)dy = 0. If $f(x + \alpha, y - 3) = 0$ is a solution of the differential equation (2x + 5y - 1)dx + (2 - x - 3y)dy = 0then the value of α is .

Q.6 The sum of the series $1/2(2^2 - 1) + 1/3(3^2 - 1) + 1/4(4^2 - 1) + \cdots$ is.

Q.7 Consider the expansion of the function f(x) = 3 / (1 - x)(1 + 2x) in powers of x, that is valid in |x| < 12. Then the coefficient of x^4 is .

Q.8 The minimum value of the function $f(x, y) = x^2 + xy + y^2 - 3x - 6y + 11$ is.

Q.9 Let $f(x) = \sqrt{x + \alpha x}$, x > 0 and g(x) = a0 + a1(x - 1) + a2(x - 1)2 be the sum of the first three terms of the Taylor series of f(x) around x = 1. If g(3) = 3, then α is .

Q.10 If $x^2 + xy^2 = c$, where $c \in R$, is the general solution of the exact differential equation M(x, y) dx + 2xy dy = 0, then M(1, 1) is .

Q.11 The volume of the solid of revolution of the loop of the curve $y^2 = x^4 (x + 2)$ about the *x*-axis (round off to 2 decimal places) is _____

Q.12 Let $G = \{n \in \mathbb{N} : n \le 55, \text{gcd}(n, 55) = 1\}$ be the group under multiplication modulo 55. Let $x \in G$ be such that $x \ge 26$ and $x \ge 30$. Then x is equal to_____

Q.13 The number of critical points of the function $f(x, y) = (x^2 + 3y^2)e^{-(x^2+y^2)}$ is _____

Q.14 The number of elements in the set { $x \in S_3$: $x^4 = e$ }, where *e* is the identity element of the permutation group S_3 , is _____

Q.15 Let *M* be a 3 × 3 matrix with real entries such that $M^2 = M + 2I$, where *I* denotes the 3 × 3 identity matrix. If α , β and γ are eigenvalues of *M* such that $\alpha\beta\gamma = -4$, then $\alpha + \beta + \gamma$ is equal to______.

ANSWER KEY

Question No.	Question Type (QT)	Subject Name (SN)	Key/Range (KY)	Mark (MK)
1	NAT	MA	8 to 8	1
2	NAT	MA	420 to 420	1
3	NAT	MA	0.49 to 0.51	1
4	NAT	MA	2.70 to 2.72	1
5	NAT	MA	7 to 7	1
6	NAT	МА	0.25 to 0.25	2
7	NAT		33 to 33	2
8	NAT	MA	2 to 2	2
9	NAT	MA	0.5 to 0.5	2
10	NAT	MA	3 to 3	2
11	NAT	MA	6.60 to 6.80	2
12	NAT	MA	31 to 31 or 46 to 46	2
13	NAT	MA	5 to 5	2
14	NAT	MA	4 to 4	2
15	NAT	MA	3 TO 3	2