IIT JAM 2024 NAT Model Questions

Subject - Mathematics Statistics (MS)

Q.1 Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = x^2 - x$, $x \in \mathbb{R}$. Let $g: \mathbb{R} \to \mathbb{R}$ be a twice differentiable function such that g(x) = 0 has exactly three distinct roots in the open interval (0, 1). Let h(x) = f(x)g(x), $x \in \mathbb{R}$, and h'' be the second order derivative of the function h. If n is the number of roots of h''(x) = 0 in (0, 1), then the minimum possible value of n equals

Q.2 Let X_1, X_2, X_3 be *i*. *i*. *d*. random variables, each having the N(2, 4) distribution. If $P(2X_1 - 3X_2 + 6X_3 > 17) = 1 - \Phi(\beta)$, then β equals ______.

Q.3 Let the probability mass function of a random variable *X* be given by P(X = n) = k / (n - 1)n, n = 2, 3, ..., where *k* is a positive constant. Then, $P(X \ge 17 | X \ge 5)$ equals _____

Q.4 A box contains a certain number of balls out of which 80% are white, 15% are blue and 5% are red. All the balls of the same colour are indistinguishable. Among all the white balls, α % are marked defective, among all the blue balls, 6% are marked defective and among all the red balls, 9% are marked defective. A ball is chosen at random from the box. If the conditional probability that the chosen ball is white, given that it is defective, is 0.4, then α equals ______

Q.5 Two fair dice are tossed independently and it is found that one face is odd and the other one is even. Then the probability (round off to 2 decimal places) that the sum is less than 6 equals ______

Q.53 The volume (round off to 2 decimal places) of the region in the first octant ($x \ge 0$, $y \ge 0$, $z \ge 0$) bounded by the cylinder $x^2 + y^2 = 4$ and the planes z = 2 and y + z = 4 equals ______

Q.55 In an ethnic group, 30% of the adult male population is known to have heart disease. A test indicates high cholesterol level in 80% of adult males with heart disease. But the test also indicates high cholesterol levels in 10% of the adult males with no heart disease. Then the probability (round off to 2 decimal places), that a randomly selected adult male from this population does not have heart disease given that the test indicates high cholesterol level, equals _____

Q.57 Let *X* and *Y* be jointly distributed continuous random variables, where *Y* is positive valued with $E(Y^2) = 6$. If the conditional distribution of *X* given Y = y is U(1 - y, 1 + y), then Var(X) equals _____

Q.9 Let $X_1, X_2, ..., X_{10}$ be i.i.d. N(0, 1) random variables. If $T = X_1^2 + X_2^2 + ... + X_{10}^2$, then E(1 / T) equals _____

Q.10 Let *X* be a sample observation from $U(\theta, \theta^2)$ distribution, where $\theta \in \Theta = \{2,3\}$ is the unknown parameter. For testing H_0 : $\theta = 2$ against H_1 : $\theta = 3$, let α and β be the size and power, respectively, of the test that rejects H_0 if and only if $X \ge 3.5$. Then $\alpha + \beta$ equals ______

Q.11 Let $X_1 \sim \text{Gamma}(1, 4)$, $X_2 \sim \text{Gamma}(2, 2)$ and $X_3 \sim \text{Gamma}(3, 4)$ be three independent random variables. If $Y = X_1 + 2X_2 + X_3$, then $E((Y/4)^4)$ equals _____

Q.12 Let $X1 \sim N(2, 1)$, $X2 \sim N(-1, 4)$ and $X3 \sim N(0, 1)$ be mutually independent random variables. Then, the probability that exactly two of these three random variables are less than 1, equals ______ (round off to two decimal places)

Q.57 Two points are chosen at random on a line segment of length 9 cm. The probability that the distance between these two points is less than 3 cm is _____

Q.60 In a colony all families have at least one child. The probability that a randomly chosen family from this colony has exactly k children is $(0.5)^k$, k = 1,2,.... A child is either a male or a female with equal probability. The probability that such a family consists of at least one male child and at least one female child is ______

Q.51 Let $S \subseteq \mathbb{R}^2$ be the region bounded by the parallelogram with vertices at the points (1, 0), (3, 2), (3, 5) and (1, 3). Then, the value of the integral $\iint_{s} (x + 2y) dx dy S$ is equal to

CollegeDekho

ANSWER KEY

Question No.	Question Type (QT)	Subject Name (SN)	Key/Range (KY)	Mark (MK)
1	NAT	MS	3 to 3	1
2	NAT	MS	0.5 to 0.5	1
3	NAT	MS	0.25 to 0.25	1
4	NAT	MS	1.125 to 1.125	1
5	NAT	MS	0.30 to 0.35	1

6	NAT	MS	3.50 to 3.70	2
7	NAT	MS	0.20 to 0.25	2
8	NAT	MS	2	2
9	NAT	MS	0.12 to 0.13	2
10	NAT	MS	1.10 to 1.20	2
11	NAT	MS	3024 to 3024	2
12	NAT	MS	0.63 to 0.65	2
13	NAT	MS	0.5 to 0.6	2
14	NAT	MS	0.3 to 0.4	2
15	NAT	MS	42	2

CollegeDekho