IIT JAM 2024 NAT Model Questions

Subject - Mathematics Statistics (MS)

 differentiable function such that $g(x)=0$ has exactly three distinct roots in the open interval (0 , 1). Let $h(x)=f(x) g(x), x \in$ 屌, and $h^{\prime \prime}$ be the second order derivative of the function h. If n is the number of roots of $h^{\prime \prime}(x)=0$ in $(0,1)$, then the minimum possible value of n equals \qquad
Q. 2 Let X_{1}, X_{2}, X_{3} be i.i.d. random variables, each having the $N(2,4)$ distribution. If $P\left(2 X_{1}-3 X_{2}\right.$ $\left.+6 X_{3}>17\right)=1-\Phi(\beta)$, then β equals \qquad .
Q. 3 Let the probability mass function of a random variable X be given by $P(X=n)=k /(n-1) n$, $n=2,3, \ldots$, where k is a positive constant. Then, $P(X \geq 17 \mid X \geq 5)$ equals \qquad
Q. 4 A box contains a certain number of balls out of which 80% are white, 15% are blue and 5\% are red. All the balls of the same colour are indistinguishable. Among all the white balls, $\alpha \%$ are marked defective, among all the blue balls, 6% are marked defective and among all the red balls, 9% are marked defective. A ball is chosen at random from the box. If the conditional probability that the chosen ball is white, given that it is defective, is 0.4 , then α equals \qquad
Q. 5 Two fair dice are tossed independently and it is found that one face is odd and the other one is even. Then the probability (round off to 2 decimal places) that the sum is less than 6 equals \qquad
Q. 53 The volume (round off to 2 decimal places) of the region in the first octant ($x \geq 0, y \geq 0, z \geq$ 0) bounded by the cylinder $x^{2}+y^{2}=4$ and the planes $z=2$ and $y+z=4$ equals \qquad
Q. 55 In an ethnic group, 30% of the adult male population is known to have heart disease. A test indicates high cholesterol level in 80% of adult males with heart disease. But the test also indicates high cholesterol levels in 10\% of the adult males with no heart disease. Then the probability (round off to 2 decimal places), that a randomly selected adult male from this population does not have heart disease given that the test indicates high cholesterol level, equals \qquad
Q. 57 Let X and Y be jointly distributed continuous random variables, where Y is positive valued with $E\left(Y^{2}\right)=6$. If the conditional distribution of X given $Y=y$ is $U(1-y, 1+y)$, then $\operatorname{Var}(X)$ equals \qquad
Q. 9 Let $X_{1}, X_{2}, \ldots, X_{10}$ be i.i.d. $N(0,1)$ random variables. If $T=X_{1}{ }^{2}+X_{2}{ }^{2}+\cdots+X_{10}{ }^{2}$, then $\mathrm{E}(1 / T$) equals \qquad
Q. 10 Let X be a sample observation from $U\left(\theta, \theta^{2}\right)$ distribution, where $\theta \in \Theta=\{2,3\}$ is the unknown parameter. For testing $H_{0}: \theta=2$ against $H_{1}: \theta=3$, let α and β be the size and power, respectively, of the test that rejects H_{0} if and only if $X \geq 3.5$. Then $\alpha+\beta$ equals \qquad
Q. 11 Let $X_{1} \sim \operatorname{Gamma}(1,4), X_{2} \sim \operatorname{Gamma}(2,2)$ and $X_{3} \sim \operatorname{Gamma}(3,4)$ be three independent random variables. If $Y=X_{1}+2 X_{2}+X_{3}$, then $E\left((Y / 4)^{4}\right)$ equals \qquad
Q. 12 Let $X 1 \sim N(2,1), X 2 \sim N(-1,4)$ and $X 3 \sim N(0,1)$ be mutually independent random variables. Then, the probability that exactly two of these three random variables are less than 1 , equals \qquad (round off to two decimal places)
Q. 57 Two points are chosen at random on a line segment of length 9 cm . The probability that the distance between these two points is less than 3 cm is \qquad
Q. 60 In a colony all families have at least one child. The probability that a randomly chosen family from this colony has exactly k children is $(0.5)^{k}, k=1,2, \ldots$. A child is either a male or a female with equal probability. The probability that such a family consists of at least one male child and at least one female child is \qquad
Q. 51 Let $S \subseteq \mathbb{R}^{2}$ be the region bounded by the parallelogram with vertices at the points (1, 0), $(3,2),(3,5)$ and $(1,3)$. Then, the value of the integral $\iint_{\mathrm{s}}(x+2 y) d x d y S$ is equal to
\qquad —.

ANSWER KEY

Question No.	Question Type (QT)	Subject Name (SN)	Key/Range (KY)	Mark (MK)
$\mathbf{1}$	NAT	MS	3 to 3	1
$\mathbf{2}$	NAT	MS	0.5 to 0.5	1
$\mathbf{3}$	NAT	MS	0.25 to 0.25	1
$\mathbf{4}$	NAT	MS	1.125 to 1.125	1
$\mathbf{5}$	NAT	MS	0.30 to 0.35	1

$\mathbf{6}$	NAT	MS	3.50 to 3.70	2
$\mathbf{7}$	NAT	MS	0.20 to 0.25	2
$\mathbf{8}$	NAT	MS	2	2
$\mathbf{9}$	NAT	MS	0.12 to 0.13	2
$\mathbf{1 0}$	NAT	MS	1.10 to 1.20	2
11	NAT	MS	3024 to 3024	2
$\mathbf{1 2}$	NAT	MS	0.63 to 0.65	2
$\mathbf{1 3}$	NAT	MS	0.5 to 0.6	2
$\mathbf{1 4}$	NAT	MS	0.3 to 0.4	2
15	NAT	MS	42	2

