IIT JAM 2024 MSQ Model Questions

Subject - Mathematics (MS)

Q. 1 Let M be a 3×3 real matrix. If $P=M+M T$ and $Q=M-M^{T}$, then which of the following statements is/are always TRUE?
(A) $\operatorname{det}\left(P^{2} Q^{3}\right)=0$
(B) $\operatorname{trace}\left(Q+Q^{2}\right)=0$
(C) $X^{T} Q^{2} X=0$, for all $X \in$ 飛 3
(D) $X^{T} P X=2 X^{T} M X$, for all $X \in \mathbb{R}^{3}$
Q. 2 Let P be a 3×3 matrix having the eigenvalues 1,1 and 2 . Let $(1,-1,2)^{T}$ be the only linearly independent eigenvector corresponding to the eigenvalue 1 . If the adjoint of the matrix $2 P$ is denoted by Q, then which of the following statements is/are TRUE?
(A) $\operatorname{trace}(Q)=20$
(B) $\operatorname{det}(Q)=64$
(C) $(2,-2,4)^{T}$ is an eigenvector of the matrix Q
(D) $Q^{3}=20 Q^{2}-124 Q+25613$
Q. 3 Let X and Y be i.i.d. random variables each having the $N(0,1)$ distribution. Let $U=X / Y$ and $Z=|U|$. Then, which of the following statements is/are TRUE?
(A) U has a Cauchy distribution
(B) $E\left(Z^{p}\right)<\infty$, for some $p \geq 1$
(C) $E\left(e^{i z}\right)$ does not exist for all $t \in(-\infty, 0)$
(D) $Z^{2} \sim F_{1,1}$
Q. 4 Consider the linear system $A x=b$, where A is an $m \times n$ matrix, x is an $n \times 1$ vector of unknowns and b is an $m \times 1$ vector. Further, suppose there exists an $m \times 1$ vector c such that the linear system $A x=c$ has NO solution. Then, which of the following statements is/are necessarily TRUE?
(A) If $m \leq n$ and d is the first column of A, then the linear system $A x=d$ has a unique solution
(B) If $m \geq n$, then $\operatorname{Rank}(A)<n$
(C) $\operatorname{Rank}(A)<m$
(D) If $m>n$, then the linear system $A x=0$ has a solution other than $x=0$
Q. 5 Let A be a 3×3 real matrix such that $A \neq I 3$ and the sum of the entries in each row of A is 1 . Then, which of the following statements is/are necessarily TRUE?
(A) $A-I 3$ is an invertible matrix
(B) The set $\{x \in$ 后3: $(A-I 3) x=0\}$ has at least two elements (x is a column vector)
(C) The characteristic polynomial, $p(\lambda)$, of $A+2 A 2+A 3$ has $(\lambda-4)$ as a factor
(D) A cannot be an orthogonal matrix.
Q. 6 Consider the function
$f(x, y)=3 x^{2}+4 x y+y^{2},(x, y) \in$ R 2.
If $S=\left\{(x, y) \in\right.$ 品 $\left.^{2}: x^{2}+y^{2}=1\right\}$ ，then which of the following statements is／are TRUE？
（A）The maximum value of f on S is $3+\sqrt{ } 5$
（B）The minimum value of f on S is $3-\sqrt{ } 5$
（C）The maximum value of f on S is $2+\sqrt{ } 5$
（D）The minimum value of f on S is $2-\sqrt{ } 5$
Q． 7 Let f ：闾 \rightarrow 圆 be a twice differentiable function．Then，which of the following statements is／are necessarily TRUE？
（A）$f^{\prime \prime}$ is continuous
（B）If $f^{\prime}(0)=f^{\prime}(1)$ ，then $f^{\prime \prime}(x)=0$ has a solution in $(0,1)$
（C）f^{\prime} is bounded on $[8,10]$
（D）$f^{\prime \prime}$ is bounded on $(0,1)$
Q． 8 Let $f:$ 屌 \rightarrow 屌 be continuous on 屌 and differentiable on $(-\infty, 0) \cup(0, \infty)$ ．Which of the following statements is（are）always TRUE？
（A）If f is differentiable at 0 and $f^{\prime}(0)=0$ ，then f has a local maximum or a local minimum at 0
（B）If f has a local minimum at 0 ，then f is differentiable at 0 and $f^{\prime}(0)=0$
（C）If $f^{\prime}(x)<0$ for all $x<0$ and $f^{\prime}(x)>0$ for all $x>0$ ，then f has a global maximum at 0
（D）If $f^{\prime}(x)>0$ for all $x<0$ and $f^{\prime}(x)<0$ for all $x>0$ ，then f has a global maximum at 0
Q． 9 Let P be a 2×2 real matrix such that every non－zero vector in R_{R}^{2} is an eigenvector of P ． Suppose that λ_{1} and λ_{2} denote the eigenvalues of P and $P[\sqrt{ } 2$

$$
\sqrt{ } 3]=[2 t] \text { for some } t \in \text { 回. }
$$

Which of the following statements is（are）TRUE？
（A）$\lambda_{1} \neq \lambda_{2}$
（B）$\lambda_{1} \lambda_{2}=2$
（C）$\sqrt{ } 2$ is an eigenvalue of P
（D）$\sqrt{ } 3$ is an eigenvalue of \rangle
Q． 10 Let P be an $n \times n$ non－null real skew－symmetric matrix，where n is even．Which of the following statements is（are）always TRUE？
（A）$P x=0$ has infinitely many solutions，where $0 \in \mathbb{R}^{n}$
（B）$P x=\lambda x$ has a unique solution for every non－zero $\lambda \in$ 圆
（C）If $Q=\left(I_{n}+P\right)\left(I_{n}-P\right)^{-1}$ ，then $Q^{T} Q=I_{n}$
（D）The sum of all the eigenvalues of P is zero

Q． 11 Let $X 1, X 2, \ldots, X n$ be a random sample from a $U(\theta, 0)$ distribution，where $\theta<0$ ．If $T n=$ $\min \{X 1, X 2, \ldots, X n\}$ ，then which of the following sequences of estimators is（are）consistent for θ ？
（A）T_{n}
（B）$T_{n}-1$
（C）$T_{n}+1 / n$
（D）$T_{n}-1-1 / n^{2}$
Q. 12 Let P be a probability function that assigns the same weight to each of the points of the sample space $\Omega=\{1,2,3,4\}$. Consider the events $E=\{1,2\}, F=\{1,3\}$ and $G=\{3,4\}$. Then which of the following statement(s) is (are) true?
(A) E and F are independent
(B) E and G are independent
(C) F and G are independent
(D) E, F and G are independent
Q. 13 Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from $U(\theta, \theta+1)$, where $\theta \in$ 圆 is the unknown parameter. Let $U=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ and $V=\min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$. Then which of the following statement(s) is (are) true?
(A) U is a consistent estimator of θ
(B) V is a consistent estimator of θ
(C) $2 U-V-2$ is a consistent estimator of θ
(D) $2 V-U+1$ is a consistent estimator of θ
Q. 2 Consider the ordinary differential equation $d y x d y / d x+y=x$ for $0<x<1$. Which of the following is (are) solution(s) to the above?
(A) $y(x)=x / 2$
(B) $y(x)=x / 2+2 / x$
(C) $y(x)=x / 2-2 / x$
(D) $y(x)=0$
Q. 3 Let $\mathrm{f}:[0,1]$ be a continuous function such that
$f(0)=-1, f(1 / 2)=1, f(1)=-1$
Then
(A) f attains the value 0 at least twice in $[0,1]$
(B) f attains the value 0 exactly twice in $[0,1]$
(C) f attains the value 0 exactly once in $[0,1]$
(D) the range of f is $[1,1]$

ANSWER KEY

Question No.	Question Type (QT)	Subject Name (SN)	Key/Range (KY)	MSrk (MK)
$\mathbf{1}$	MSQ	MS	A, D	2
$\mathbf{2}$	MSQ	MS	A, C	2

3	MSQ	MS	A, D	2
4	MSQ	MS	C	2
5	MSQ	MS	B, C	2
6	MSQ	MS	C, D	2
7	MSQ	MS	B, C	2
8	MSQ	MS	D	2
9	MSQ	MS	B, C	2
10	MSQ	MS	B, C, D	2
11	MSQ	MS	A, C	2
12	MSQ		A, C	2
13	MSQ	MS	B, C, D	2
14	MSQ	MS	A, B, C	2
15	MSQ	MS	A	2

