IIT JAM 2024 MSQ Model Questions

Subject - Mathematics (MS)

Q.1 Let M be a 3 × 3 real matrix. If P = M + MT and $Q = M - M^T$, then which of the following statements is/are always TRUE?

- (A) $det(P^2Q^3) = 0$
- (B) trace($Q + Q^2$) = 0
- (C) $X^T Q^2 X = 0$, for all $X \in \mathbb{R}^3$
- (D) $X^T P X = 2X^T M X$, for all $X \in \mathbb{R}^3$

Q.2 Let P be a 3 × 3 matrix having the eigenvalues 1, 1 and 2. Let $(1, -1, 2)^T$ be the only linearly independent eigenvector corresponding to the eigenvalue 1. If the adjoint of the matrix 2P is denoted by Q, then which of the following statements is/are TRUE?

- (A) trace(Q) = 20
- (B) det(Q) = 64
- (C) $(2, -2, 4)^T$ is an eigenvector of the matrix Q
- (D) $Q^3 = 20Q^2 124Q + 256I3$

Q.3 Let X and Y be i.i.d. random variables each having the N(0, 1) distribution. Let U = X / Y and Z = |U|. Then, which of the following statements is/are TRUE?

- (A) \it{U} has a Cauchy distribution
- (B) $E(Z^p)$ < ∞, for some $p \ge 1$
- (C) $E(e^{tZ})$ does not exist for all $t \in (-\infty, 0)$
- (D) $Z^2 \sim F_{1,1}$

Q.4 Consider the linear system A x = b, where A is an $m \times n$ matrix, x is an $n \times 1$ vector of unknowns and b is an $m \times 1$ vector. Further, suppose there exists an $m \times 1$ vector c such that the linear system Ax = c has NO solution. Then, which of the following statements is/are necessarily TRUE?

- (A) If $m \le n$ and d is the first column of A, then the linear system Ax = d has a unique solution
- (B) If $m \ge n$, then Rank(A) < n
- (C) Rank(A) < m
- (D) If m > n, then the linear system Ax = 0 has a solution other than x = 0

Q.5 Let A be a 3 × 3 real matrix such that $A \neq I3$ and the sum of the entries in each row of A is 1. Then, which of the following statements is/are necessarily TRUE?

- (A) A I3 is an invertible matrix
- (B) The set $\{x \in \mathbb{R}3 : (A I3)x = 0\}$ has at least two elements (x is a column vector)
- (C) The characteristic polynomial, $p(\lambda)$, of A + 2A2 + A3 has $(\lambda 4)$ as a factor
- (D) *A* cannot be an orthogonal matrix.
- Q.6 Consider the function

```
f(x, y) = 3 x^2 + 4 x y + y^2, (x, y) \in \mathbb{R}^2.
If S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}, then which of the following statements is/are TRUE?
(A) The maximum value of f on S is 3 + \sqrt{5}
(B) The minimum value of f on S is 3 - \sqrt{5}
(C) The maximum value of f on S is 2 + \sqrt{5}
(D) The minimum value of f on S is 2 - \sqrt{5}
Q.7 Let f: \mathbb{R} \to \mathbb{R} be a twice differentiable function. Then, which of the following statements
is/are necessarily TRUE?
(A) f" is continuous
(B) If f'(0) = f'(1), then f''(x) = 0 has a solution in (0, 1)
(C) f' is bounded on [8, 10]
(D) f'' is bounded on (0, 1)
Q.8 Let f: \mathbb{R} \to \mathbb{R} be continuous on \mathbb{R} and differentiable on (-\infty, 0) \cup (0, \infty). Which of the
following statements is (are) always TRUE?
(A) If f is differentiable at 0 and f'(0) = 0, then f has a local maximum or a local minimum at 0
(B) If f has a local minimum at 0, then f is differentiable at 0 and f'(0) = 0
(C) If f'(x) < 0 for all x < 0 and f'(x) > 0 for all x > 0, then f has a global maximum at 0
(D) If f'(x) > 0 for all x < 0 and f'(x) < 0 for all x > 0, then f has a global maximum at 0
Q.9 Let P be a 2 × 2 real matrix such that every non-zero vector in \mathbb{R}^2 is an eigenvector of P.
Suppose that \lambda_1 and \lambda_2 denote the eigenvalues of P and P [ \sqrt{2}
                                                                          \sqrt{3}] = [2 t] for some t \in \mathbb{R}.
Which of the following statements is (are) TRUE?
(A) \lambda_1 \neq \lambda_2
(B) \lambda_1 \lambda_2 = 2
(C) \sqrt{2} is an eigenvalue of P
(D) \sqrt{3} is an eigenvalue of �
Q.10 Let P be an n \times n non-null real skew-symmetric matrix, where n is even. Which of the
following statements is (are) always TRUE?
(A) Px = 0 has infinitely many solutions, where 0 \in \mathbb{R}^n
(B) Px = \lambda x has a unique solution for every non-zero \lambda \in \mathbb{R}
(C) If Q = (I_n + P)(I_n - P)^{-1}, then Q^TQ = I_n
(D) The sum of all the eigenvalues of P is zero
Q.11 Let X1,X2,...,Xn be a random sample from a U(\theta,0) distribution, where \theta < 0. If Tn =
\min\{X1, X2, \dots, Xn\}, then which of the following sequences of estimators is (are) consistent for
\theta?
(A) T_n
(B) T_n - 1
(C) T_n + 1 / n
(D) T_n - 1 - 1 / n^2
```

- Q.12 Let P be a probability function that assigns the same weight to each of the points of the sample space $\Omega = \{1,2,3,4\}$. Consider the events $E = \{1,2\}$, $F = \{1,3\}$ and $G = \{3,4\}$. Then which of the following statement(s) is (are) true?
- (A) E and F are independent
- (B) E and G are independent
- (C) F and G are independent
- (D) E, F and G are independent
- Q.13 Let X_1, X_2, \ldots, X_n be a random sample from $U(\theta, \theta + 1)$, where $\theta \in \mathbb{R}$ is the unknown parameter. Let $U = \max\{X_1, X_2, \ldots, X_n\}$ and $V = \min\{X_1, X_2, \ldots, X_n\}$. Then which of the following statement(s) is (are) true?
- (A) U is a consistent estimator of θ
- (B) V is a consistent estimator of θ
- (C) 2U V 2 is a consistent estimator of θ
- (D) 2V U + 1 is a consistent estimator of θ
- Q.2 Consider the ordinary differential equation dy x dy / dx + y = x for 0 < x < 1. Which of the following is (are) solution(s) to the above?
- (A) y(x) = x / 2
- (B) y(x) = x / 2 + 2 / x
- (C) y(x) = x / 2 2 / x
- (D) y(x) = 0
- Q.3 Let f:[0,1] be a continuous function such that
- f(0) = -1, f(1/2) = 1, f(1) = -1

Then

- (A) f attains the value 0 at least twice in [0,1]
- (B) f attains the value 0 exactly twice in [0,1]
- (C) f attains the value 0 exactly once in [0,1]
- (D) the range of f is [1,1]

ANSWER KEY

Question No.	Question Type (QT)	Subject Name (SN)	Key/Range (KY)	MSrk (MK)
1	MSQ	MS	A, D	2
2	MSQ	MS	A, C	2

3	MSQ	MS	A, D	2
4	MSQ	MS	С	2
5	MSQ	MS	B, C	2
6	MSQ	MS	C, D	2
7	MSQ	MS	B, C	2
8	MSQ	MS	D	2
9	MSQ	MS	B, C	2
10	MSQ	MS	B, C, D	2
11	MSQ	MS	A, C	2
12	MSQ	MS	A, C	2
13	MSQ	MS	B, C, D	2
14	MSQ	MS	A, B, C	2
15	MSQ	MS	А	2