IIT JAM 2024 MSQ Model Questions

Subject - Mathematics (MA)

Q. 1 Let $A \subseteq Z$ with $0 \in A$. For $r, s \in Z$, define $r A=\{r a: a \in A\}, r A+s A=\{r a+s b: a, b \in A\}$. Which of the following conditions imply that A is a subgroup of the additive group Z ?
(A) $-2 A \subseteq A, A+A=A$
(B) $A=-A, A+2 A=A$
(C) $A=-A, A+A=A$
(D) $2 A \subseteq A, A+A=A$
Q. 2 Let $y:(p 2 / 3, \infty) \rightarrow R$ be the solution of $(2 x-y) y^{\prime}+(2 y-x)=0, y(1)=3$. Then
(A) $y(3)=1$
(B) $y(2)=4+\sqrt{ } 10$
(C) y ' is bounded on ($p 2 / 3,1$)
(D) y^{\prime} is bounded on $(1, \infty)$
Q. 3 Let $f:(-1,1) \rightarrow R$ be a differentiable function satisfying $f(0)=0$. Suppose there exists an M >0 such that $\left|f^{\prime}(x)\right| \leq M|x|$ for all $x \in(-1,1)$. Then
(A) f^{\prime} is continuous at $x=0$
(B) f^{\prime} is differentiable at $x=0$
(C) ff^{\prime} is differentiable at $\mathrm{x}=0$
(D) $\left(\mathrm{f}^{\prime}\right)^{2}$ is differentiable at $\mathrm{x}=0$
Q. 4 A subset $S \subseteq R^{2}$ is said to be bounded if there is an $M>0$ such that $|x| \leq M$ and $|y| \leq M$ for all $(x, y) \in S$. Which of the following subsets of R^{2} is/are bounded?
(A) $\left\{(x, y) \in R^{2}: e \times 2+y^{2} \leq 4\right\}$
(B) $\left\{(x, y) \in R^{2}: x 4+y^{2} \leq 4\right\}$
(C) $\left\{(x, y) \in R^{2}:|x|+|y| \leq 4\right\}$
(D) $\left\{(x, y) \in R^{2}: e^{x 3}+y^{2} \leq 4\right\}$
Q. 5 Which of the following is/are true?
(A) Every linear transformation from R^{2} to R^{2} maps lines onto points or lines
(B) Every surjective linear transformation from $R 2$ to R^{2} maps lines onto lines
(C) Every bijective linear transformation from R^{2} to R^{2} maps pairs of parallel lines to pairs of parallel lines
(D) Every bijective linear transformation from R^{2} to R^{2} maps pairs of perpendicular lines to pairs of perpendicular lines
Q. 6 Consider the equation $x^{2021}+x^{2020}+\cdots+x-1=0$. Then
(A) all real roots are positive.
(B) exactly one real root is positive.
(C) exactly one real root is negative.
(D) no real root is positive.
Q. 7 Let $\mathrm{D}=\mathrm{R} 2 \backslash\{(0,0)\}$. Consider the two functions $\mathrm{u}, \mathrm{v}: \mathrm{D} \rightarrow \mathrm{R}$ defined by $\mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{2}-\mathrm{y}^{2}$ and $v(x, y)=x y$. Consider the gradients ∇u and ∇v of the functions u and v, respectively. Then (A) $\nabla \mathrm{u}$ and $\nabla \mathrm{v}$ are parallel at each point (x, y) of D .
(B) ∇u and ∇v are perpendicular at each point (x, y) of D .
(C) ∇u and ∇v do not exist at some points (x, y) of D.
(D) ∇u and ∇v at each point (x, y) of D span R^{2}.
Q. 8 Consider the two functions $f(x, y)=x+y$ and $g(x, y)=x y-16$ defined on R^{2}. Then (A) the function f has no global extreme value subject to the condition $g=0$.
(B) the function f attains global extreme values at $(4,4)$ and $(-4,-4)$ subject to the condition $g=$ 0.
(C) the function g has no global extreme value subject to the condition $f=0$.
(D) the function g has a global extreme value at $(0,0)$ subject to the condition $f=0$.
Q. 9 Let $f:(a, b) \rightarrow R$ be a differentiable function on (a, b). Which of the following statements is/are true?
(A) $\mathrm{f} 0>0$ in (a, b) implies that f is increasing in (a, b).
(B) f is increasing in (a, b) implies that $f 0>0$ in (a, b).
(C) If $f^{\prime}\left(x_{0}\right)>0$ for some $x_{0} \in(a, b)$, then there exists $a \delta>0$ such that $f(x)>f\left(x_{0}\right)$ for all $x \in\left(x_{0}\right.$, $\left.\mathrm{x}_{0}+\delta\right)$.
(D) If $f 0\left(x_{0}\right)>0$ for some $x_{0} \in(a, b)$, then f is increasing in a neighbourhood of x_{0}.
Q. 10 Let G be a finite group of order 28. Assume that G contains a subgroup of order 7 . Which of the following statements is/are true?
(A) G contains a unique subgroup of order 7 .
(B) G contains a normal subgroup of order 7.
(C) G contains no normal subgroup of order 7 .
(D) G contains at least two subgroups of order 7
Q. 11 Let G be a noncyclic group of order 4. Consider the statements I and II:
I. There is NO injective (one-one) homomorphism from G to z_{8}
II. There is NO surjective (onto) homomorphism from \mathbb{Z}_{8} to G

Then
(A) I is true
(B) I is false
(C) II is true
(D) II is false
Q. 12 Let G be a nonabelian group, $y \in G$, and let the maps f, g, h from G to itself be defined by $f(x)=y x y^{-1}, g(x)=x^{-1}$ and $h=g \circ g$. Then
(A) g and h are homomorphisms and f is not a homomorphism
(B) h is a homomorphism and g is not a homomorphism
(C) f is a homomorphism and g is not a homomorphism
(D) f, g and h are homomorphisms
Q. 13 Let S and T be linear transformations from a finite dimensional vector space V to itself such that $S(T(v))=0$ for all $v \in V$.
Then
(A) $\operatorname{rank}(T) \geq \operatorname{nullity}(S)$
(B) $\operatorname{rank}(S) \geq \operatorname{nullity}(T)$
(C) $\operatorname{rank}(T) \leq \operatorname{nullity}(S)$
(D) $\operatorname{rank}(S) \leq \operatorname{nullity}(T)$
Q. 14 Consider the intervals $S=(0,2]$ and $T=[1,3)$. Let $S \circ$ and $T \circ$ be the sets of interior points of S and T, respectively. Then the set of interior points of $S \backslash T$ is equal to
(A) $S \backslash T$ 。
(B) $S \backslash T$
(C) $S \circ \backslash T \circ$
(D) $S \circ \backslash T$
Q. 15 Let $f(x)=\cos (|\pi-x|)+(x-\pi) \sin |x|$ and $g(x)=x^{2}$ for $x \in$ 闾. If $h(x)=f(g(x))$, then $(\mathrm{A}) h$ is not differentiable at $x=0$
(B) $h^{\prime}(\sqrt{ } \pi)=0$
(C) h " $(x)=0$ has a solution in $(-\pi, \pi)$
(D) there exists $x_{0} \in(-\pi, \pi)$ such that $h\left(x_{0}\right)=x_{0}$

ANSWER KEY

Question No.	Question Type (QT)	Subject Name (SN)	Key/Range (KY)	Mark (MK)
$\mathbf{1}$	MSQ	MA	A, B, C	2
$\mathbf{2}$	MSQ	MA	B, D	2
$\mathbf{3}$	MSQ	MA	A, C, D	2
$\mathbf{4}$	MSQ	MA	A, B, C	2
$\mathbf{5}$	MSQ	MA	A, B, C	2

6	MSQ	MA	A, B	2
7	MSQ	MA	B, D	2
8	MSQ	MA	A, D	2
9	MSQ	MA	A, C	2
10	MSQ	MA	A, B	2
11	MSQ	MA	A, C	2
12	MSQ	MA	B, C	2
13	MSQ	MA	C, D	2
15	MSQ	MA	B, D	2
14	MSQ	MA	A	2

