IIT JAM 2024 MSQ Model Questions

Subject - Mathematics (MA)

Q. 1 Let $A \subseteq Z$ with $0 \in A$. For r, $s \in Z$, define rA = {ra : $a \in A$ }, rA + sA = {ra + sb : a, $b \in A$ }. Which of the following conditions imply that A is a subgroup of the additive group Z? (A) $-2A \subseteq A$, A + A = A(B) A = -A, A + 2A = A(C) A = -A, A + A = A(D) $2A \subseteq A$, A + A = A(D) $2A \subseteq A$, A + A = AQ. 2 Let y : (p 2/3, ∞) \rightarrow R be the solution of (2x - y)y' + (2y - x) = 0, y(1) = 3. Then (A) y(3) = 1 (B) y(2) = 4 + $\sqrt{10}$ (C) y ' is bounded on (p 2/3, 1) (D) y ' is bounded on (1, ∞) Q. 3 Let f : (-1, 1) \rightarrow R be a differentiable function satisfying f(0) = 0. Suppose there exists an M > 0 such that |f'(x)| \leq M|x| for all $x \in (-1, 1)$. Then (A) f' is continuous at x = 0(B) f' is differentiable at x = 0

- (C) ff' is differentiable at x = 0
- (D) (f')² is differentiable at x = 0

Q. 4 A subset $S \subseteq \mathbb{R}^2$ is said to be bounded if there is an M > 0 such that $|x| \le M$ and $|y| \le M$ for all $(x, y) \in S$. Which of the following subsets of \mathbb{R}^2 is/are bounded? (A) { $(x, y) \in \mathbb{R}^2 : e x 2 + y^2 \le 4$ } (B) { $(x, y) \in \mathbb{R}^2 : x 4 + y^2 \le 4$ } (C) { $(x, y) \in \mathbb{R}^2 : |x| + |y| \le 4$ } (D) { $(x, y) \in \mathbb{R}^2 : e^{x3} + y^2 \le 4$ }

Q.5 Which of the following is/are true?

(A) Every linear transformation from R^2 to R^2 maps lines onto points or lines

(B) Every surjective linear transformation from R 2 to R² maps lines onto lines

(C) Every bijective linear transformation from R^2 to R^2 maps pairs of parallel lines to pairs of parallel lines

(D) Every bijective linear transformation from R^2 to R^2 maps pairs of perpendicular lines to pairs of perpendicular lines

Q.6 Consider the equation $x^{2021} + x^{2020} + \cdots + x - 1 = 0$. Then

- (A) all real roots are positive.
- (B) exactly one real root is positive.
- (C) exactly one real root is negative.

(D) no real root is positive.

Q.7 Let D = R 2 \ {(0, 0)}. Consider the two functions u, v : D \rightarrow R defined by u (x, y) = x² - y² and v(x, y) = xy. Consider the gradients ∇u and ∇v of the functions u and v, respectively. Then (A) ∇u and ∇v are parallel at each point (x, y) of D.

(B) ∇u and ∇v are perpendicular at each point (x, y) of D.

(C) ∇u and ∇v do not exist at some points (x, y) of D.

(D) ∇u and ∇v at each point (x, y) of D span R².

Q.8 Consider the two functions f(x, y) = x + y and g(x, y) = xy - 16 defined on R². Then (A) the function f has no global extreme value subject to the condition g = 0.

(B) the function f attains global extreme values at (4, 4) and (-4, -4) subject to the condition g = 0.

(C) the function g has no global extreme value subject to the condition f = 0.

(D) the function g has a global extreme value at (0, 0) subject to the condition f = 0.

Q.9 Let $f : (a, b) \rightarrow R$ be a differentiable function on (a, b). Which of the following statements is/are true?

(A) f 0 > 0 in (a, b) implies that f is increasing in (a, b).

(B) f is increasing in (a, b) implies that f 0 > 0 in (a, b).

(C) If f' $(x_0) > 0$ for some $x_0 \in (a, b)$, then there exists a $\delta > 0$ such that $f(x) > f(x_0)$ for all $x \in (x_0, x_0 + \delta)$.

(D) If f 0 (x_0) > 0 for some $x_0 \in (a, b)$, then f is increasing in a neighbourhood of x_0 .

Q.10 Let G be a finite group of order 28. Assume that G contains a subgroup of order 7. Which of the following statements is/are true?

(A) G contains a unique subgroup of order 7.

- (B) G contains a normal subgroup of order 7.
- (C) G contains no normal subgroup of order 7.
- (D) G contains at least two subgroups of order 7

Q.11 Let *G* be a noncyclic group of order 4. Consider the statements I and II:

I. There is NO injective (one-one) homomorphism from ${\it G}$ to \mathbb{Z}_8

II. There is NO surjective (onto) homomorphism from \mathbb{Z}_8 to G

Then

- (A) I is true
- (B) I is false
- (C) II is true
- (D) II is false

Q.12 Let *G* be a nonabelian group, $y \in G$, and let the maps *f*, *g*, *h* from *G* to itself be defined by $f(x) = yxy^{-1}$, $g(x) = x^{-1}$ and $h = g \circ g$. Then

(A) g and h are homomorphisms and f is not a homomorphism

- (B) \hbar is a homomorphism and g is not a homomorphism
- (C) *f* is a homomorphism and *g* is not a homomorphism
- (D) f, g and h are homomorphisms

Q.13 Let *S* and *T* be linear transformations from a finite dimensional vector space *V* to itself such that S(T(v)) = 0 for all $v \in V$. Then (A) rank(*T*) \geq nullity(*S*) (B) rank(*S*) \geq nullity(*T*) (C) rank(*T*) \leq nullity(*S*)

(D) rank(S) \leq nullity(T)

Q.14 Consider the intervals S = (0, 2] and T = [1, 3). Let $S \circ$ and $T \circ$ be the sets of interior points of *S* and *T*, respectively. Then the set of interior points of $S \setminus T$ is equal to

- (A) *S* ∧ *T* ∘
- (B) *S* ∧ *T*
- (C) $S \circ \smallsetminus T \circ$
- (**D**) *S* ∘ ∖ *T*

Q.15 Let $f(x) = \cos(|\pi - x|) + (x - \pi) \sin |x|$ and $g(x) = x^2$ for $x \in \mathbb{R}$. If h(x) = f(g(x)), then (A) h is not differentiable at x = 0(B) $h'(\sqrt{\pi}) = 0$ (C) h''(x) = 0 has a solution in $(-\pi, \pi)$ (D) there exists $x_0 \in (-\pi, \pi)$ such that $h(x_0) = x_0$

ANSWER KEY

Question No.	Question Type (QT)	Subject Name (SN)	Key/Range (KY)	Mark (MK)
1	MSQ	MA	A, B, C	2
2	MSQ	MA	B, D	2
3	MSQ	MA	A, C, D	2
4	MSQ	MA	A, B, C	2
5	MSQ	MA	A, B, C	2

6	MSQ	MA	А, В	2
7	MSQ	MA	B, D	2
8	MSQ	MA	A, D	2
9	MSQ	MA	A, C	2
10	MSQ	MA	А, В	2
11	MSQ	MA	A, C	2
12	MSQ	MA	B, C	2
13	MSQ	MA	C, D	2
14	MSQ	MA	B, D	2
15	MSQ	MA	A	2

CollegeDekho