

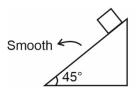
PHYSICS

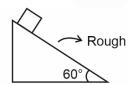
SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- 1. A force F = -40x acts on a mass of 1 kg. x is the position of the mass. If maximum speed of the mass is 4 m/s, find the amplitude. All parameters are in SI units.
 - (1) $\frac{1}{\sqrt{10}}$ m
- (2) $\frac{2}{\sqrt{10}}$ m
- (3) $\frac{3}{\sqrt{10}}$ m
- (4) $\frac{4}{\sqrt{10}}$ m

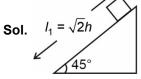

Answer (2)


Sol.
$$V_{\text{max}} = A\omega = A\sqrt{\frac{k}{m}}$$

$$\Rightarrow$$
 4 = $A\sqrt{\frac{40}{1}}$

$$\Rightarrow A = \frac{2}{\sqrt{10}} m$$

Consider 2 inclined plane of same height. 1st has a smooth surface and angle of inclination is 45°, other has a rough surface and angle of inclination is 60°. If ratio of time taken to slide on then its 'n'. Find coefficient of friction of rough inclined plane.


(1)
$$\mu = 3n^2$$

(2)
$$\mu = \frac{3 - 2n^2}{\sqrt{3}}$$

(3)
$$\mu = \frac{3 - \sqrt{3}n^2}{2}$$

(4)
$$\mu = \frac{2n^2}{\sqrt{3}}$$

Answer (2)

$$a = g \sin \theta = \left(\frac{g}{\sqrt{2}}\right)$$

$$I_2 = \frac{2h}{\sqrt{3}}$$

$$60^{\circ}$$

$$\boldsymbol{a} = \boldsymbol{g} \sin \theta - \mu \boldsymbol{g} \cos \theta$$

 $=\left(g\frac{\sqrt{3}}{2}-\frac{\mu g}{2}\right)$

$$=g\left(\frac{\sqrt{3}}{2}-\frac{\mu}{2}\right)$$

$$t_{1} = \sqrt{\frac{2l_{1}}{a}}$$

$$t_{2} = \sqrt{\frac{2l_{2}}{a}}$$

$$= \sqrt{\frac{2\sqrt{2}h}{\sqrt{3}g}}$$

$$= \sqrt{\frac{g}{\sqrt{2}}}$$

$$= \sqrt{\frac{4h}{g}}$$

$$= \sqrt{\frac{8h}{g(3-\sqrt{3}\mu)}}$$

$$\Rightarrow 3 - \sqrt{3}\mu = 2n^2$$

$$\Rightarrow \sqrt{3}\mu = 3 - 2n^2$$

$$\Rightarrow \mu = \left(\frac{3 - 2n^2}{\sqrt{3}}\right)$$

 $\frac{t_1}{t_2} = \sqrt{\frac{3-\sqrt{3}\mu}{2}} = n$

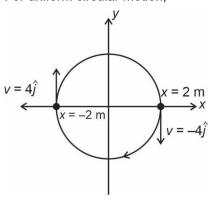
3. A particle undergoing uniform circular motion about origin. At certain instant x = 2 m and $v = -4\hat{j}$ m/s, find velocity and acceleration of particle when at x = -2 m.

(1)
$$\vec{a} = -4\hat{j} \text{ m/s}$$

$$\vec{a} = 8\hat{i} \text{ m/s}^2$$

(2)
$$\vec{v} = 4\hat{j} \text{ m/s}$$
$$\vec{a} = 8\hat{i} \text{ m/s}^2$$

(3)
$$\vec{v} = -4\hat{j} \text{ m/s}$$
$$\vec{a} = -8\hat{i} \text{ m/s}^2$$


(4)
$$\vec{v} = 4\hat{j} \text{ m/s}$$

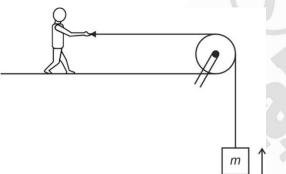
 $\vec{a} = -8\hat{i} \text{ m/s}^2$

Answer (2)

JEE (Main)-2023: Phase-1 (29-01-2023)-Evening

Aakash

Sol. For uniform circular motion,


At
$$x = -2 \text{ m}, \ v = 4\hat{j}$$

$$a = \left(\frac{v^2}{R}\right)$$
 towards the centre

$$a = \left(\frac{4^2}{2}\right) = 8 \text{ m/s}^2$$

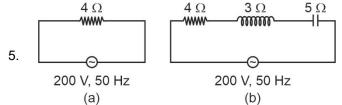
$$\vec{a} = 8 \text{ m/s}^2 (\hat{i})$$

4. A man pulls a block as shown:

Consider the following statements:

- (a) Work done by gravity on block is +ve
- (b) Work done by gravity on block is -ve
- (c) If man pulls block with constant speed, then tension in string equals weight of block.
- (d) None of the above

Which of the statement(s) is/are correct?


- (1) (b) & (c) only
- (2) (d) only
- (3) (a) & (c) only
- (4) (a) only

Answer (1)

Sol. Weight acts down and displacement is up ⇒ statement (b) is correct.

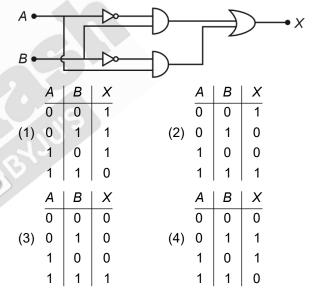
$$T - mg = ma$$

$$\Rightarrow$$
 If $a = 0$, $T = mg$

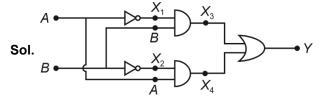
RMS current in circuit (a) is I_a while RMS current in circuit (b) is I_b then

- (1) $I_a > I_b$
- (2) $I_a < I_b$
- (3) $I_a = I_b$
- (4) None of the above

Answer (1)


Sol.
$$Z_a = 4 \Omega \& Z_a = \sqrt{4^2 + (5-3)^2} \Omega = \sqrt{20} \Omega$$

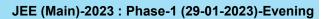
$$\Rightarrow I_a = \frac{220}{4} \& I_b = \frac{220}{\sqrt{20}}$$


$$= 55 A \qquad = \frac{110}{\sqrt{5}}$$

So $I_a > I_b$

6. Find truth table

Answer (4)



$$X_1 = \overline{A}$$

$$X_3 = B \cdot \overline{A}$$

$$X_2 = \overline{B}$$

$$X_4 = (A\overline{B})$$

$$Y = X_3 + X_4$$
$$= A\overline{B} + B\overline{A}$$

Y = output = XOR gate

Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

- In a communication system, maximum voltage is 14 mV and minimum voltage is 6 mV. Find out the modulation index.
 - (1) 0.2
- (2) 0.6
- (3) 0.4
- (4) 0.3

Answer (3)

Sol. Index =
$$\frac{V_{\text{max}} - V_{\text{min}}}{V_{\text{max}} + V_{\text{min}}} = \frac{14 - 6}{14 + 6} = 0.4$$

- 8. The gravitational potential due to a solid uniform sphere of mass M and radius R at a point at radial distance r(r > R) from its centre is equal to
 - $(1) -\frac{GM}{r}$

- $(3) -\frac{GMR}{r^2} \qquad (4) -\frac{GM(R+r)}{r^2}$

Answer (1)

Sol.
$$E_{(r)} = \frac{GM}{r^2}$$
 $(r > R)$

$$dV = -\vec{E} \cdot d\vec{r}$$

$$\int_{V}^{0} dV = -\int_{r}^{\infty} \frac{GM}{r^2} dr$$

$$V = -\frac{GM}{r}$$

- Resolving power of compound microscope will increase with
 - (1) Decrease in wavelength of light and increase in numerical aperture
 - (2) Increase in wavelength of light and decrease in numerical aperture
 - (3) Increase in both wavelength and numerical aperture
 - (4) Decrease in both wavelength and numerical aperture

Answer (1)

Sol. Resolving power of microscope $\infty \left(\frac{2n\sin\theta}{\lambda} \right)$

n =Refractive index of the medium separating object and aperture.

 $n\sin\theta$ = Numerical aperture

 λ = wavelength of light used.

10. It is given that $x^2 + y^2 = a^2$, where a : radius. Also,

it is given that $(x - \alpha t)^2 + \left(y - \frac{t}{\beta}\right)^2 = a^2$, where t =

time. Then dimensions of α and β are

- (1) $[M^0LT^{-1}]$ and $[M^0L^{-1}T]$
- (2) $[M^0LT]$ and $[M^0L^{-1}T^{-1}]$
- (3) $[M^0LT]$ and $[M^0LT^{-1}]$
- (4) $[M^0L^{-1}T]$ and $[M^0LT]$

Answer (1)

Sol.
$$x = \alpha t = \frac{t}{\beta}$$

$$\Rightarrow L' \equiv \alpha T' \equiv \frac{T'}{\beta}$$

$$\Rightarrow \alpha \equiv LT^{-1}$$
 and $\beta = L^{-1}T$

11. Assertion (A): EM waves are not deflected by electric field and magnetic field.

Reason (R): EM waves don't carry any charge so they are not deflected by electric field and magnetic field.

- (1) Both (A) and (R) are true and (R) is correct explanation of (A)
- (2) Both (A) and (R) are true, but (R) is not correct explanation of (A)
- (3) (A) is true but (R) is false
- (4) (A) is false but (R) is true

Answer (1)

Sol. EM wave does not have charge therefore they are not deflected by electric or magnetic field.

12. de-Broglie wavelength of a body of mass m and kinetic energy E is given by

(1)
$$\lambda = \frac{h}{mF}$$

(1)
$$\lambda = \frac{h}{mE}$$
 (2) $\lambda = \frac{\sqrt{2mE}}{h}$

$$(3) \quad \lambda = \frac{h}{\sqrt{2Em}}$$

$$(4) \quad \lambda = \sqrt{\frac{h}{2mE}}$$

Answer (3)

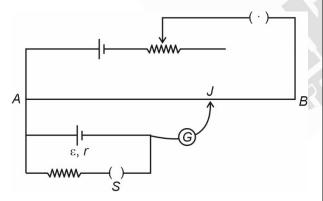
JEE (Main)-2023 : Phase-1 (29-01-2023)-Evening

Sol.
$$E = \left(\frac{P^2}{2m}\right)$$

where P is linear momentum, E = kinetic energy, m = mass of particle.

$$P = \sqrt{2Em}$$

$$\lambda = \frac{h}{P} = \frac{h}{\sqrt{2Em}}$$


- 13. In a region with electric field $30\hat{i}$ V/m a charge particle of charge $q = 2 \times 10^{-4}$ C is displaced slowly from (1, 2) to origin. The work done by the external agent is equal to
 - (1) 1 mJ
- (2) 6 mJ
- (3) 2 mJ
- (4) 3 mJ

Answer (2)

Sol.
$$F = qE = 2 \times 10^{-4} \times 30 \text{ N}$$

Work done =
$$6 \times 10^{-3} \times (1) J = 6 mJ$$

14. Consider the following potentiometer circuit: When switch S is open, length AJ is 300 cm. When switch S is closed, length AJ is 200 cm. If R 5 Ω , find internal resistance r of the cell.

- (1) 4Ω
- $(2) 2\Omega$
- (3) 5Ω
- (4) 2.5Ω

Answer (4)

Sol.
$$C \times 300 = \varepsilon$$

$$C \times 200 = \frac{\varepsilon}{R+r}R$$

$$\Rightarrow \frac{300}{200} = \frac{R+r}{R}$$

$$\Rightarrow r = \frac{R}{2} = 2.5 \Omega$$

- 15.
- 16.
- 17.
- 18.
- 19.
- 20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. At 300 K, RMS speed of an ideal gas molecules is $\sqrt{\frac{\alpha+5}{\alpha}} \ \ \text{times the average speed of gas molecules,}$

then value of
$$\alpha$$
 is equal to $\left(\text{take }\pi=\frac{22}{7}\right)$

Answer (28.00)

Sol.
$$v_{\rm rms} = \sqrt{\frac{3RT}{M_0}}$$

$$V_{\text{av}} = \sqrt{\frac{8RT}{\pi M_0}}$$

$$\frac{v_{\text{rms}}}{v_{\text{av}}} = \sqrt{\frac{3\pi}{8}}$$
$$= \sqrt{\frac{3 \times 22}{8 \times 7}}$$
$$= \sqrt{\frac{33}{28}} = \sqrt{\frac{28 + 5}{28}}$$

$$\Rightarrow$$
 α = 28

22. An α -particle and a proton are accelerated through same potential difference. The ratio of de-Broglie wavelength of alpha particle to proton is equal to

$$\frac{1}{\sqrt{x}}$$
. Value of x is (take $m_{\alpha} = 4m_{\text{proton}}$)

Answer (08.00)

Sol.
$$\lambda = \frac{h}{p}$$

$$\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mqV}}$$

$$\frac{\lambda_{\alpha}}{\lambda_{p}} = \sqrt{\frac{m_{p}q_{p}}{m_{\alpha}q_{\alpha}}} = \sqrt{\frac{1}{4} \times \frac{1}{2}} = \frac{1}{\sqrt{8}}$$

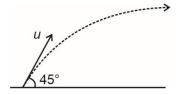
$$\Rightarrow$$
 x = 8

23. Time period of rotation of a planet is 24 hours. If the radius decreases to $\frac{1}{4}$ th of original value, then the new time period is x hours. Find 2x.

Answer (03.00)

Sol. $I\omega$ = constant

$$\Rightarrow I_1\omega_1 = \frac{I_1}{16}\omega_2$$


$$\Rightarrow \omega_2 = 16\omega_1$$

$$\Rightarrow$$
 $T_2 = \frac{T_1}{16} = 1.5 \text{ hours}$

24. A projectile is fire with velocity 54 km/hr making angle 45° with horizontal. Angular momentum of this particle of mass 1 kg about the point of projection one second into the motion will be $\frac{5N}{\sqrt{2}}$ in SI unit ($g = 10 \text{ m/s}^2$). Find the value of N.

Answer (15.00)

Sol. u = 54 km/hr = 15 m/sec.

torque at time t is $\tau = mgu\cos\theta t$

$$\frac{dI}{dt} = \tau$$

$$\int_{1}^{L} dL = \int_{0}^{1} mgu \cos \theta t dt$$

$$L = \frac{mgu\cos\theta}{2} = \frac{10\times15}{2\sqrt{2}} = \frac{75}{2} \text{ kg m}^2/\text{sec}$$

So
$$N = 15$$

25. A block of mass 20 kg is moved with a constant force 'F' for 20 seconds starting from rest and then F is removed. It is then observed that block moves 50 m in next 10 seconds. Find F (in N).

Answer (05.00)

Sol. Impulse, Ft = mv

$$\Rightarrow v = \frac{50}{10} = 5 \text{ m/s}$$

$$F \times 20 = 20 \times 5 \Rightarrow F = 5 \text{ N}$$

Answer (08.00)

Sol.
$$N_A = N_{0A} e^{-\lambda_A t}$$

$$N_B = N_{0B}e^{-\lambda_B t}$$

$$\Rightarrow \frac{N_A}{N_B} = \frac{N_{0A}}{N_{0B}} \frac{e^{-\lambda_A t}}{e^{-\lambda_B t}}$$

$$=\frac{\frac{320}{16}}{\frac{320}{32}}\times\frac{\frac{1}{4}}{\frac{1}{16}}$$

- 27.
- 28.
- 29.
- 30.