

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

In the given circuit the resistance between terminals A and B is equal to

- (1) 2Ω
- (3) $\frac{2}{3}\Omega$
- (4) 6Ω

Answer (3)

Sol. The circuit can be redrawn as

So the net resistance across A and B is

$$\frac{1}{R_{\text{net}}} = \frac{1}{2} + \frac{1}{12} + \frac{1}{4} + \frac{1}{6} + \frac{1}{2}$$
$$\frac{1}{R_{\text{net}}} = \frac{6 + 1 + 3 + 2 + 6}{12}$$

$$R_{net} = \left(\frac{2}{3}\right)\Omega$$

- A car travels 4 km distance with a speed of 3 km/h and next 4 km with a speed of 5 km/h. Find average speed of car.
 - (1) $\frac{15}{2}$ km/h (2) $\frac{15}{4}$ km/h
 - (3) 15 km/h
- (4) 10 km/h

Answer (2)

Sol.
$$v_{\text{avg}} = \frac{\text{Distance}}{\text{Time}}$$

$$= \frac{4+4}{\frac{4}{3} + \frac{4}{5}} \text{ km/h}$$

$$= \frac{15}{4} \text{ km/h}$$

A current 2 A is flowing through the sides of an equilateral triangular loop of side $4\sqrt{3}$ m as shown. Find the magnetic field induction at the centroid of the triangle.

- (1) $3\sqrt{3} \times 10^{-7} \text{ T}$
- (2) $\sqrt{3} \times 10^{-7} \text{ T}$
- (3) $2\sqrt{3} \times 10^{-7} \text{ T}$
- (4) $5\sqrt{3} \times 10^{-7} \text{ T}$

Answer (1)

Sol.

$$\frac{r}{2\sqrt{3}} = \tan 30^{\circ}$$

$$r = 2 \text{ m}$$

Magnetic field at centroid

$$= 3 \times \frac{\mu_0 I}{4\pi r} (\sin 60^\circ + \sin 60^\circ)$$

$$=3\times\frac{\mu_0}{4\pi}\times\frac{2}{2}\left\lceil\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}\right\rceil$$

$$=3\sqrt{3}\times\frac{\mu_0}{4\pi}\ T$$

$$=3\sqrt{3}\times10^{-7}\ T$$

JEE (Main)-2023: Phase-1 (30-01-2023)-Evening

A particle is released at a height equal to radius of the earth above the surface of the earth. Its velocity when it hits the surface of earth is equal to

 $(M_e: mass of earth, R_e: Radius of earth)$

(1)
$$V = \sqrt{\frac{2GM_e}{R_e}}$$
 (2) $V = \sqrt{\frac{GM_e}{2R_e}}$

$$(2) \quad v = \sqrt{\frac{GM_e}{2R_e}}$$

$$(3) \quad v = \sqrt{\frac{GM_e}{R_e}}$$

(3)
$$v = \sqrt{\frac{GM_e}{R_e}}$$
 (4) $v = \sqrt{\frac{2GM_e}{3R_e}}$

Answer (3)

Sol. Using energy conservation.

$$-\frac{GMm}{2R_e} = -\frac{GMm}{R_e} + \frac{1}{2}mv^2$$

$$v = \sqrt{\frac{GM_e}{R_e}}$$

A faulty scale reads 5°C at melting point and 95°C at steam point.

Find original temperature if this faulty scale reads 41°C.

- (1) 40°C
- (2) 41°C
- (3) 36°C
- (4) 45°C

Answer (1)

$$\Rightarrow$$
 9x = 360

$$\Rightarrow x = 40$$

A block stays in equilibrium as shown:

Find the tension in the string if $m = \sqrt{3}$ kg

- (1) $\sqrt{3}g$ N
- (2) 3g N
- (3) $\frac{g}{2}$ N
- (4) $\frac{g}{\sqrt{3}}$ N

Answer (1)

Sol. Since block in equilibrium

$$\Rightarrow$$
 $T = mg$

$$\Rightarrow T = \sqrt{3}q$$

7. In the AC circuit shown in the figure the value of Irms is equal to

- (1) 2A
- (2) $2\sqrt{2}A$

(3) 4A

(4) $\sqrt{2}A$

Answer (1)

Sol.
$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

= $\sqrt{100^2 + (100 - 100)^2} = 100 \Omega$
So, $i_0 = \frac{200\sqrt{2}}{100} = 2\sqrt{2}$

So,
$$i_{rms} = \frac{i_0}{\sqrt{2}} = 2A$$

8. A point charge Q is placed inside the cavity made in uniform conducting solid sphere as shown. E_A , E_B and E_C are electric field magnitudes at points A, B and C respectively, Then

- (1) $E_A = 0$, $E_B = 0$ and $E_C \neq 0$
- (2) $E_A \neq 0$, $E_B = 0$ and $E_C \neq 0$
- (3) $E_A \neq 0$, $E_B = 0$ and $E_C = 0$
- (4) $E_A \neq 0$, $E_B \neq 0$ and $E_C \neq 0$

Answer (2)

Sol. Taking Q as positive

 $E_A \neq 0$ (electric field due to both Q and induced charge on the inner surface of cavity)

 $E_B = 0$ (No field line inside conductor)

 $E_C \neq 0$ (electric field due to charge induced on outer surface of conductor).

In the shown mass-spring system when it is set into oscillations along the spring, it has angular frequency ω_1 , when m = 1 kg and ω_2 if m = 2 kg.

Then value of $\frac{\omega_1}{\omega_2}$ is equal to

(1) 1

- (2) $\sqrt{2}$
- (4) 2

Answer (2)

Sol.
$$\omega_1 = \sqrt{\frac{k}{m}} = \sqrt{\frac{k}{1}}$$
 $\omega_2 = \sqrt{\frac{k}{m}} = \sqrt{\frac{k}{2}}$ $\omega_3 = \sqrt{\frac{k}{k/2}} = \sqrt{2}$

10. For the given logic circuit which of the following truth table is correct?

Answer (1)

$$X_{1} = \overline{\overline{A \cdot (\overline{A \cdot B}) \cdot \overline{B \cdot (\overline{A \cdot B})}}}$$

$$= A \cdot (\overline{AB}) + B \cdot (\overline{AB})$$

$$= A \cdot (\overline{A} + \overline{B}) + B \cdot (\overline{A} + \overline{B})$$

$$= A\overline{B} + B\overline{A}$$

$$= XOR gate$$

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

11. A particle of mass *m* is moving under a force whose delivered power P is constant. Initial velocity of particle is zero. Find position of particle at t = 4s.

(1)
$$x = \frac{16}{3} \sqrt{\frac{2P}{m}}$$
 (2) $x = \frac{4}{3} \sqrt{\frac{2P}{m}}$

$$(2) \quad x = \frac{4}{3} \sqrt{\frac{2P}{m}}$$

(3)
$$x = \frac{2}{3}\sqrt{\frac{P}{m}}$$
 (4) $x = \frac{3}{10}\sqrt{\frac{P}{m}}$

$$(4) \quad x = \frac{3}{10} \sqrt{\frac{P}{m}}$$

Answer (1)

Sol.
$$P = \frac{W}{t}$$

$$\Rightarrow \frac{1}{2}mv^2 = P \cdot t$$

$$\Rightarrow v = \sqrt{\frac{2Pt}{m}} = \frac{dx}{dt}$$

$$\Rightarrow x = \frac{16}{3}\sqrt{\frac{2P}{m}}$$

Column-I list few physical quantities and column-II lists their dimensions. Choose the correct option matching the two lists correctly

Column-I

Column-II

- (P) Pressure gradient
- (A) $[M^1L^2T^{-2}]$
- (Q) Energy density
- (B) $[M^1L^1T^{-1}]$
- (R) Torque
- (C) $[M^1L^{-2}T^{-2}]$
- (S) Impulse
- (D) $[M^1L^{-1}T^{-2}]$
- (1) P-C, Q-A, R-B, S-D (2) P-C, Q-D, R-A, S-B
- (3) P-A, Q-D, R-B, S-C (4) P-A, Q-C, R-B, S-D

Answer (2)

Sol. [Pressure gradient]
$$\Rightarrow \left[\frac{dp}{dz}\right] = \left[\frac{ML^{-1}T^{-2}}{L}\right]$$
$$= [ML^{-2}T^{2}]$$

JEE (Main)-2023 : Phase-1 (30-01-2023)-Evening

[Energy density]
$$\Rightarrow \left[\frac{dU}{dV}\right] = \left[\frac{ML^2T^{-2}}{L^3}\right] = [ML^{-1}T^{-2}]$$

$$[\mathsf{Torque}] \Rightarrow [F] \times [r] = [\mathsf{MLT}^{-2}] \times [\mathsf{L}] = [\mathsf{ML}^2\mathsf{T}^{-2}]$$

[Impulse]
$$\Rightarrow$$
 [F] [t] = [MLT⁻²] [T] = [MLT⁻¹]

So,
$$P \rightarrow C$$
, $Q \rightarrow D$, $R \rightarrow A$, $S \rightarrow B$

13. Consider the following assertion & reason:

Assertion (A): At sink temperature of –273°C, the efficiency of a Carnot engine will be 1.

Reason (R): Efficiency of a Carnot engine is given

by
$$\eta = 1 - \frac{T_{\text{sink}}}{T_{\text{Source}}}$$
.

- (1) (A) is correct, (R) is correct and correctly explains A
- (2) (A) is not correct, (R) is correct
- (3) Both (A) & (R) are incorrect
- (4) Both (A) & (R) are correct, (R) does not explain (A)

Answer (1)

Sol.
$$\eta = 1 - \frac{T_{\text{sink}}}{T_{\text{Source}}}$$

If
$$T_{\text{sink}} = 0 \text{ K} \Rightarrow \eta = 1$$

14. Electric field in a region is

$$\vec{E} = 2x^2\hat{i} - 4y\hat{j} + 6z\hat{k}$$

Find the charge inside the cuboid shown:

- (1) $-8\epsilon_0$
- (2) $36\epsilon_0$
- (3) $12\epsilon_0$
- (4) $24\epsilon_0$

Answer (4)

Sol.
$$\phi_{\text{total}} = 2(1)^2[2 \times 3] - 4(2)[1 \times 3] + 6(3)[1 \times 2]$$

= 12 - 24 + 36
= 24

$$\Rightarrow \frac{q}{\epsilon_0} = 24$$

$$\Rightarrow$$
 $q = 24\varepsilon_0$

- 15. Find the ratio of de Broglie wavelength of proton, when it is accelerated across *v* and 3*v* potential difference.
 - (1) 3:1
- (2) 1: $\sqrt{3}$
- (3) 1:3
- (4) $\sqrt{3}:11$

Answer (4)

$$\frac{P^2}{2m} = eV$$

$$P = \sqrt{2meV} \Rightarrow \lambda_1 = \frac{h}{\sqrt{2meV}}$$

When accelerated by potential difference of 3V, then linear momentum of proton is

$$\frac{P^2}{2m} = 3eV$$

$$P = \sqrt{6meV} \Rightarrow \lambda_2 = \frac{h}{\sqrt{6meV}}$$

$$\frac{\lambda_1}{\lambda_2} = \sqrt{3}$$

- 16.
- 17.
- 18.
- 19.
- 20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. For the given electrical circuit, the potential difference between points *B* and *C* is zero. The value of *x* is _____.

Answer (00.50)

Sol. $\frac{1}{\sqrt{x}} \int_{0}^{\infty} \int_{0}^$

$$V_B = V_C$$
then $\frac{2}{3} = \frac{\left(\frac{x}{x+1}\right)}{x}$

$$\Rightarrow \frac{2}{3} = \frac{1}{x+1}$$

$$x+1 = \frac{3}{2}$$

$$\Rightarrow x = \frac{1}{2}\Omega$$

22. Two waves of same intensity from sources in phase are made to superimpose at a point. If path difference between these two coherent waves is zero then resultant intensity is I_0 . If this path difference is $\frac{\lambda}{2}$ where λ is wavelength of these waves, then resultant intensity is I_0 , and if the path difference is $\frac{\lambda}{4}$ then resultant intensity is I_2 . Value of $\frac{I_1 + I_2}{I_0}$ is equal to

Answer (00.50)

Sol. Let individual intensity from source is I thus

$$I_{0} = I + I + 2\sqrt{I \times I} \cos\left(0 \times \frac{2\pi}{\lambda}\right)$$

$$\Rightarrow I_{0} = 4I$$

$$I_{1} = I + I + 2\sqrt{I \times I} \cos\left(\frac{\lambda}{2} \times \frac{2\pi}{\lambda}\right)$$

$$\Rightarrow I_{1} = 0$$

$$I_{2} = I + I + 2\sqrt{I \times I} \cos\left(\frac{\lambda}{4} \times \frac{2\pi}{\lambda}\right)$$

$$\Rightarrow I_{2} = 2I$$
So, $\frac{I_{1} + I_{2}}{I_{1}} = \frac{1}{2}$ or 0.5

23. A bullet (mass 10 grams) is fired from a gun (mass 10 kg without the bullet) with a speed of 100 m/s.

The recoil speed of gun is $\frac{x}{10}$ m/s. Find x.

Answer (1)

Sol. Conserving momentum

$$10 \times V = \frac{10}{1000} \times 100$$

$$\Rightarrow V = \frac{1}{10} \text{ m/s}$$

24. The ratio of temperature (in *K*) of hydrogen and oxygen is 2 : 1. The ratio of their average kinetic energy per molecule is

Answer (02.00)

Sol. Average kinetic energy =
$$\frac{f}{2}K_BT$$

$$\frac{\left(\text{Average kinetic energy}\right)_{H_2}}{\left(\text{Average kinetic energy}\right)_{O_2}} = \frac{T_{H_2}}{T_{O_2}} = \left(\frac{2}{1}\right)$$

25. The relation between velocity (v) and position (x) of a particle moving along x-axis is given by $4v^2 = 50 - x^2$. The time period of the oscillatory motion of the particle is $\frac{88}{n}$ seconds.

Find
$$n \left[\text{use } \pi = \frac{22}{7} \right]$$

Answer (07.00)

Sol.
$$4v^2 = 50 - x^2$$

$$v^2 = \frac{1}{4}(50 - x^2)$$

$$v = \frac{1}{2}\sqrt{50 - x^2}$$

Comparing equation of S.H.M.

$$v = \omega \sqrt{A^2 - x^2}$$

$$A^2 = 50$$

$$A = \sqrt{50} = 5\sqrt{2}$$

$$w = \frac{1}{2} = 0.5 \text{ rad/sec}$$

$$T = \frac{2\pi}{w} = \frac{2\pi}{0.5} = 4\pi \text{ second}$$

$$\pi = \left(\frac{22}{7}\right)$$

$$T = \frac{88}{7} = \frac{88}{n}$$

So,
$$n = 7$$

26. Prism A has angle of prism equal to 6° and its material has refractive index 1.5. It is used in combination with prism B of refractive index 1.8 to produce dispersion without deviation. Prism angle of prism B is equal to ______ degrees.

Answer (03.75°)

Sol. For dispersion without deviation

$$A_A(\mu_A - 1) + A_B(\mu_B - 1) = 0$$

6(1.5 - 1) + A (1.8 - 1) = 0

$$A = -\frac{3}{0.8} = -3.75^{\circ}$$

- 27.
- 28.
- 29.
- 30.