JEE Main Maths Coordinate Geometry Previous Year Questions With Solutions

Question 1: A-line through A $(-5,-4)$ meets the lines $x+3 y+2=0,2 x+y+4=0$ and $x-y-5=0$ at B, C and D, respectively. If $(15 / A B)^{2}+(10 / A C)^{2}=(6 / A D)^{2}$, then the equation of the line is

Solution:

$[x+5] /[\cos \theta]=[y+4] /[\sin \theta]=r_{1} / A B=r_{2} / A C=r_{3} / A D$
$\left(r_{1} \cos \theta-5, r_{1} \sin \theta-4\right)$ lies on $x+3 y+2=0$
$\mathrm{r}_{1}=15 /[\cos \theta+3 \sin \theta]$
Similarly, $10 / \mathrm{AC}=2 \cos \theta+\sin \theta$ and $6 / \mathrm{AD}=\cos \theta-\sin \theta$
Putting in the given relation, we get $(2 \cos \theta+3 \sin \theta)^{2}=0$
$\tan \theta=-2 / 3$
$\Rightarrow y+4=[-2 / 3](x+5)$
$2 x+3 y+22=0$
Question 2: The equations of two equal sides of an isosceles triangle are $7 x-y+3=0$ and $x+y-3=$ 0 , and the third side passes through the point $(1,-10)$. The equation of the third side is \qquad .

Solution:

Any line through $(1,-10)$ is given by $y+10=m(x-1)$
Since it makes equal angle say α with the given lines $7 x-y+3=0$ and $x+y-3=0$.
Therefore, $\tan \alpha=[\mathrm{m}-7] /[1+7 \mathrm{~m}]$
$=[m-(-1)] /[1+m(-1)]$
$\Rightarrow \mathrm{m}=[1 / 3]$ or 3
Hence, the two possible equations of the third side are $3 x+y+7=0$ and $x-3 y-31=0$.
Question 3: The graph of the function $\cos x \cos (x+2)-\cos ^{2}(x+1)$ is
A) A straight line passing through $\left(0,-\sin ^{2} 1\right)$ with slope 2
B) A straight line passing through $(0,0)$
C) A parabola with vertex 75°
D) A straight line passing through the point $\left(\pi / 2,-\sin ^{2} 1\right)$ and parallel to the x-axis

Solution:

Let $\mathrm{y}=\cos \mathrm{x} \cos (\mathrm{x}+2)-\cos ^{2}(\mathrm{x}+1)$
$=\cos (x+1-1) \cos (x+1+1)-\cos ^{2}(x+1)$
$=\cos ^{2}(\mathrm{x}+1)-\sin ^{2} 1-\cos ^{2}(\mathrm{x}+1)$
$=-\sin ^{2} 1$, which represents a straight line parallel to x -axis with $\mathrm{y}=-\sin ^{2} 1$ for all x and so also for $\mathrm{x}=$ $\pi / 2$.

Question 4: In what direction can a line be drawn through the point $(1,2)$ so that its points of intersection with the line $x+y=4$ is at a distance $\sqrt{ } 6 / 3$ from the given point?

Solution:

Let the required line through the point $(1,2)$ be inclined at an angle θ to the x -axis.
Then its equation is $[x-1] /[\cos \theta]=[y-2] /[\sin \theta]=r$
where r is the distance of any point (x, y) on the line from the point $(1,2)$.
The coordinates of any point on the line (i) are $(1+r \cos \theta, 2+r \sin \theta)$.
If this point is at a distance $\sqrt{6} / 3$ form $(1,2)$, then $r=\sqrt{6} / 3$.
Therefore, the point is $(1+[\sqrt{6} / 3] \cos \theta, 2+[\sqrt{6} / 3] \sin \theta)$.
But this point lies on the line $\mathrm{x}+\mathrm{y}=4$.
$\sqrt{ } 6 / 3(\cos \theta+\sin \theta)=1$ or
$\sin \theta+\cos \theta=3 / \sqrt{ } 6$
$[1 / \sqrt{ } 2] \sin \theta+[1 / \sqrt{ } 2] \cos \theta=\sqrt{ } 3 / 2,\{$ Dividing both sides by $\sqrt{ } 2\}$
$\sin \left(\theta+45^{\circ}\right)=\sin 60^{\circ}$ or $\sin 120^{\circ}$
$\theta=15^{\circ}$ or 75°
Question 5: A variable line passes through a fixed point P. The algebraic sum of the perpendicular drawn from $(2,0),(0,2)$ and $(1,1)$ on the line is zero, then what are the coordinates of the P ?

Solution:

Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$, then the equation of the line passing through P and whose gradient is m , is $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}(\mathrm{x}-$ X_{1}).

Now according to the condition
$\left[\left\{-2 \mathrm{~m}+\left(\mathrm{mx}_{1}-\mathrm{y}_{1}\right)\right\} /\left\{\sqrt{ } 1+\mathrm{m}^{2}\right\}\right]+\left[\left\{2+\left(\mathrm{mx}_{1}-\mathrm{y}_{1}\right)\right\} /\left\{\sqrt{ } 1+\mathrm{m}^{2}\right\}\right]+\left[\left\{1-\mathrm{m}+\left(\mathrm{mx}_{1}-\mathrm{y}_{1}\right)\right\} /\left\{\sqrt{ } 1+\mathrm{m}^{2}\right\}\right]$ $=0$
$3-3 m+3 m x_{1}-3 y_{1}=0$
$\Rightarrow \mathrm{y}_{1}-1=\mathrm{m}\left(\mathrm{x}_{1}-1\right)$
Since it is a variable line, hold for every value of m .
Therefore, $\mathrm{y}_{1}=1, \mathrm{x}_{1}=1$
$\Rightarrow \mathrm{P}(1,1)$
Question 6: The area enclosed within the curve $|x|+|y|=1$ is \qquad .

Solution:

The given lines are $\pm x \pm y=1$
i.e., $x+y=1, x-y=1, x+y=-1$ and $x-y=-1$.

These lines form a quadrilateral whose vertices are $\mathrm{A}(-1,0), \mathrm{B}(0,-1), \mathrm{C}(1,0)$ and $\mathrm{D}(0,1)$.
Obviously, ABCD is a square.
The length of each side of this square is $\sqrt{ } 1^{2}+1^{2}=\sqrt{ } 2$
Hence, the area of the square is $\sqrt{ } 2 * \sqrt{ } 2=2$ sq. units
Trick: Required area $=2 \mathrm{c}^{2} /|\mathrm{ab}|=\left[2 * 1^{2}\right] /[|1 * 1|]=2$.
Question 7: The locus of a point P, which divides the line joining $(1,0)$ and $(2 \cos \theta, 2 \sin \theta)$ internally in the ratio $2: 3$ for all θ, is a \qquad .

Solution:

Let the coordinates of the point P , which divides the line joining $(1,0)$ and $(2 \cos \theta, 2 \sin \theta)$ in the ratio 2 : 3 be (h, k). Then,
$\mathrm{h}=[4 \cos \theta+3] /[5]$ and $\mathrm{k}=[4 \sin \theta] /[5]$

The Learning App
$\cos \theta=[5 \mathrm{~h}-3] /[4]$ and $\sin \theta=[5 \mathrm{k}] /[4]$
$([5 \mathrm{~h}-3] /[4])^{2}+([5 \mathrm{k}] /[4])^{2}=1\left\{\right.$ since $\left.\cos ^{2} \theta+\sin ^{2} \theta=1\right\}$
$(5 h-3)^{2}+\left(5 k^{2}\right)=16$
Therefore, locus of (h, k) is $(5 \mathrm{x}-3)^{2}+(5 \mathrm{y})^{2}=16$, which is a circle.
Question 8: The area of a parallelogram formed by the lines $a x \pm b y \pm c=0$, is \qquad .

Solution:
$a x \pm b y \pm c=0$
$\Rightarrow \mathrm{x} /[\pm \mathrm{c} / \mathrm{a}]+\mathrm{y} /[\pm \mathrm{c} / \mathrm{b}]=1$ which meets on axes at $\mathrm{A}(\mathrm{ca}, 0), \mathrm{C}(-\mathrm{ca}, 0), \mathrm{B}(0, \mathrm{cb}), \mathrm{D}(0,-\mathrm{cb})$.
Therefore, the diagonals AC and BD of quadrilateral ABCD are perpendicular.
Hence, it is a rhombus.
So, the area $=(1 / 2) \times \mathrm{AC} \times \mathrm{BD}$
$=(1 / 2) \times(2 \mathrm{c} / \mathrm{a}) \times(2 \mathrm{c} / \mathrm{b})$
$=2 \mathrm{c}^{2} / \mathrm{ab}$.
Question 9: If the sum of the distances of a point from two perpendicular lines in a plane is 1 , then its locus is \qquad .

Solution:

Required locus of the point (x, y) is the curve $|\mathrm{x}|+|\mathrm{y}|=1$.
If the point lies in the first quadrant, then $\mathrm{x}>0, \mathrm{y}>0$ and so $|\mathrm{x}|+|\mathrm{y}|=1$
$\Rightarrow \mathrm{x}+\mathrm{y}=1$, which is straight line.
If the point (x, y) lies in the second quadrant then $x<0, y>0$ and so $|x|+|y|=1$
$\Rightarrow-\mathrm{x}+\mathrm{y}=1$.
Similarly, for the third and fourth quadrants, the equations are $-\mathrm{x}-\mathrm{y}=1$ and $\mathrm{x}-\mathrm{y}=1$.
Hence, the required locus is the curve consisting of the sides of the square.
Question 10: The line $2 x+3 y=12$ meets the x-axis at A and y-axis at B. The line through $(5,5)$ perpendicular to AB meets the x -axis, y -axis and the AB at C, D and E , respectively. If O is the origin of coordinates, then the area of OCEB is \qquad .

Solution:

Coordinates of the origin: $\mathrm{O}(0,0)$
The line $2 \mathrm{x}+3 \mathrm{y}=12$ meets the y -axis at B .
That means $\mathrm{B}=(0,4)$.
The equation of any line perpendicular to the line $2 x+3 y=12$ and passes through $(5,5)$ is $3 x-2 y=5$

The line (i) meets the x-axis at C.
Therefore, the coordinates of C are $(5 / 3,0)$.
Similarly, by solving the line AB and (i), we get; the coordinates of E as $(3,2)$.
Thus, $\mathrm{O}(0,0), \mathrm{C}(5 / 3,0), \mathrm{E}(3,2)$ and $\mathrm{B}(0,4)$.

Now,
Area of OCEB$)=\operatorname{ar}(\triangle \mathrm{OAB})-\operatorname{ar}(\triangle \mathrm{CAE})$
$=(1 / 2) \times 6 \times 4=(1 / 2) \times(2 \sqrt{ } 13 / 3) \times \sqrt{ } 13$
$=23 / 3$ sq. units.
Question 11: Line L has intercepts a and b on the co-ordinate axes. When the axes are rotated through a given angle keeping the origin fixed, the same line L has intercepts p and q, find the relation between a, b and p, q.

Solution:

Suppose we rotate the coordinate axes in the anti-clockwise direction through an angle α.
The equation of the line L with respect to old axes is $[x / a]+[y / b]=1$.
In this question replacing x by $\mathrm{x} \cos \alpha-\mathrm{y} \sin \alpha$ and y by $\mathrm{x} \sin \alpha+\mathrm{y} \cos \alpha$, the equation of the line with respect to new axes is $[\mathrm{x} \cos \alpha-\mathrm{y} \sin \alpha] /[\mathrm{a}]+[\mathrm{x} \sin \alpha+\mathrm{y} \cos \alpha] /[\mathrm{b}]=1$
$x *(\cos \alpha / a+\sin \alpha / b)+y *(\cos \alpha / b-\sin \alpha / a)=1$
The intercepts made by (i) on the co-ordinate axes are given as p and q .
Therefore, $[1 / \mathrm{p}]=[\cos \alpha / \mathrm{a}]+[\sin \alpha / \mathrm{b}]$ and $[1 / \mathrm{q}]=[\cos \alpha / \mathrm{b}]-[\sin \alpha / \mathrm{a}]$
Squaring and adding, we get $\left[1 / p^{2}\right]+\left[1 / q^{2}\right]=\left[1 / a^{2}\right]+\left[1 / b^{2}\right]$.
Question 12: The equation of the line which bisects the obtuse angle between the lines $x-2 y+4=0$ and $4 x-3 y+2=0$, is \qquad .

Solution:

The equations of the bisectors of the angles between the lines are
$[x-2 y+4] / \sqrt{ }[1+4]= \pm[4 x-3 y+2] / \sqrt{ }[16+9]$
Taking a positive sign, we have;
$(4-\sqrt{5}) x-(3-2 \sqrt{5}) y-(4 \sqrt{5}-2)=0$
and negative sign gives $(4+\sqrt{ } 5) x-(2 \sqrt{ } 5+3) y+(4 \sqrt{ } 5+2)=0$
Let θ be the angle between the line (i) and one of the given lines, then

$$
\begin{aligned}
& \tan \theta=\left|\frac{\frac{1}{2}-\frac{4-\sqrt{5}}{3-2 \sqrt{5}}}{1+\frac{1}{2} \cdot \frac{4-\sqrt{5}}{3-2 \sqrt{5}}}\right| \\
& =\sqrt{ }[5+2]>1
\end{aligned}
$$

Hence, line (i), i.e., $(4-\sqrt{ } 5) x-(3-2 \sqrt{ } 5) y-(4 \sqrt{5}-2)=0$, bisects the obtuse angle between the given lines.

Question 13: The points $(1,3)$ and $(5,1)$ are the opposite vertices of a rectangle. The other two vertices lie on the line $y=2 x+c$, then the value of c will be \qquad .

Solution:

Let ABCD be a rectangle.
Given $\mathrm{A}(1,3)$ and $\mathrm{C}(5,1)$.
We know that the intersecting point of the diagonal of a rectangle is the same or at the midpoint.
So, the midpoint of AC is $(3,2)$.
Hence, $\mathrm{y}=2 \mathrm{x}+\mathrm{c}$ passes through (3, 2).
$2=6+c$
Therefore, $\mathrm{c}=-4$.
Question 14: The equation of the lines, which passes through the point $(3,-2)$ and are inclined at 60° to the line $\sqrt{3 x}+y=1$ \qquad .

Solution:

The equation of any straight line passing through $(3,2)$ is $y+2=m(x-3)$
The slope of the given line is $-\sqrt{3}$.
So, $\tan 60^{\circ}= \pm[m-(-\sqrt{ } 3)] /[1+m(-\sqrt{ } 3)]$
On solving, we get $\mathrm{m}=0$ or $\sqrt{ } 3$
Putting the values of m in (i), the required equation of lines are
$y+2=0$ and $\sqrt{ } 3 x-y=2+3 \sqrt{ } 3$.
Question 15: If the slope of a line passing through point $\mathrm{A}(3,2)$ is $3 / 4$, then the points on the line which are 5 units away from A are \qquad .

Solution:
The equation of line passes through $(3,2)$ and of slope $3 / 4$ is $3 x-4 y-1=0$
Let the point be (h, k), then
$3 \mathrm{~h}-4 \mathrm{k}-1=0 \ldots \ldots$.(i) and
$(h-3)^{2}+(y-2)^{2}=5^{2}($ ii $)$
On solving the equations, we get $\mathrm{h}=-1,7$ and $\mathrm{k}=-1,5$.
Hence, points are $(-1,-1)$ and $(7,5)$.

