This Question Paper contains 12 printed pages. (Section - A, B, C & D)

Sl.No.

18 (E)

(JULY 2022)

Time: 3 Hours]

[Maximum Marks: 80

er dati real real design

Instructions:

- 1) Write in a clear legible handwriting.
- 2) This question paper has four Sections A, B, C & D and Question Numbers from 1 to 55.
- 3) All Sections are compulsory. General options are given.
- 4) The numbers to the right represent the marks of the question.
- 5) Draw neat diagrams wherever necessary.
- 6) New sections should be written in a new page. Write the answers in numerical order.
- 7) Calculator is not allowed.

SECTION-A

- Do as directed (Question numbers from 1 to 24) (Each question carries 1 mark)

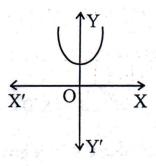
 [24]
- Choose the correct option in questions from 1 to 12 to make each statement true.
 - 1) The decimal expansion of ____ is non-terminating and recurring. [1]
 - (A) $\frac{6}{15}$

(B) $\frac{2}{15}$

(C) $\frac{3}{8}$

(D) $\frac{4}{8}$

2) Mean of first ten natural numbers =



(A) 5.5

(B) 6.5

(C) 5.05

- (D) 5
- 3) The graph of y = P(x) is given below. The number of zeroes of P(x) is _____. [1]

(A) 1

(B) 2

(C) 3

- (D) 0
- 4) The lines representing the pair of equations _____, ____ are parallel. [1]

(A)
$$x + 2y - 4 = 0$$
, $2x + 4y - 12 = 0$

(B)
$$2x + 3y - 9 = 0$$
, $4x + 6y - 18 = 0$

(C)
$$x-2y=0$$
, $3x+4y-20=0$

(D)
$$9x + 3y + 12 = 0$$
, $18x + 6y + 24 = 0$

- 5) The discriminant $(b^2 4ac)$ of the quadratic equation $3x^2 6x + 2 = 0$ is _____.[1]
 - (A) -12

(B) 12

(C) - 60

(D) 60

S-1414

- 6) For an A.P., if a = 7, d = 3 and n = 8 then $a_n = 1$. [1]
 - (A) 25

(B) 26

(C) 27

- (D) 28
- [1] The distance of M(x, y) from the origin O(0, 0) is _____. 7)
 - (A) $x^2 + y^2$

(B) $\sqrt{x^2 + y^2}$

(C) $\sqrt{x^2 - y^2}$

- (D) |x-y|
- $\sqrt{1+\tan^2\theta} =$ 8)

(A) $1 + \tan \theta$

(B) $sec^2 \theta$

(C) $\sec \theta$

- (D) cosec θ
- The angle subtended by a minute hand of a clock at the centre of the clock in 10 9) minutes is _____. STEED IN NOTE OF
 - (A) 30°

(B) 45°

(C) 60°

- (D) 90°
- 10) The formula to find the volume of a sphere is _____

[1]

(A) $\frac{4}{3}\pi r^3$ (C) $\frac{4}{3}\pi r^2$

(B) $\frac{2}{3}\pi r^3$

C	1	4	1	
2-	1	4	1	4

- 11) If the zeroes of the quadratic polynomial $P(x) = ax^2 + bx + c \ (a \ne 0) \ \alpha$ and β , then $\alpha\beta =$ ______
 - (A) $\frac{c}{a}$ (B) $-\frac{c}{a}$
 - (C) $-\frac{b}{a}$ (D) $\frac{b}{a}$
- 12) The probability of an event cannot be _____. [1]
 - (A) $\frac{2}{3}$ (B) -1.5
 - (C) 15% (D) 0.7
- State whether the following statements (from 13 to 18) are true or false.
 - 13) $\sqrt{3}x + 5$ is a linear polynomial. [1]
 - 14) The common difference of A.P. 10, 8, 6, 4, ---- is 2. [1]
 - 15) $\sin A = \cos A$ for all values of A. [1]
 - 16) There is only one tangent at a point of the circle. [1]
 - 17) 3 (Mean) = Mode + 2 (Median).
 - 18) The sum of the probabilities of all the elementary events of an experiment is 1.[1]

			5-1414
	Fill i	in the blanks by selecting the proper alternatives given in brack	cets
	(fron	m 19 to 24)	
æ	19)	HCF(12, 21) =(1, 3, 7)	[1]
	20)	The graph of $P(x) = x^2 + 3x + 2$ is a (ray, line, parabola)	[1]
	21)	A circle can have parallel tangents at the most. (two, three	ee, infinitely
		many)	
	22)	If the perimeter and the area of a circle are numerically equ	ial, then the
× 1		radius of the circle is $(\pi, 4, 2)$	[1]
**	23)	The class mark of the class 30-40 is (30, 35, 40)	[1
	24)	The probability of Sun setting in the west is(-1, 0, 1)	[1

SECTION-B

The second se

- Answer any ten of the following questions from 25 to 38 (Each question carries 2 marks)
 - 25) Find a quadratic polynomial, the sum and the product of whose zeroes are 0 and -3.

[2]

- 26) Divide $x^2 + 7x + 10$ by x + 5 and write the quotient and the remainder. [2]
- 27) Find the roots of the quadratic equation $\sqrt{2}x^2 + 7x + 5\sqrt{2} = 0$ by factorization.[2]
- 28) In a flower bed, there are 25 rose plants in the first row, 23 in the second, 21 in the third and so on. There are 5 rose plants in the last row. How many rows are there in the flower bed?
 [2]
- 29) Find the sum of first 10 terms of the A.P. -10, -5, 0, 5, ----. [2]
- 30) Find a point on the y-axis which is equidistant from the points P(6, 5) and Q(-4, 3).
- 31) Evaluate: $2 \tan^2 45^\circ \cos^2 30^\circ + \sin^2 60^\circ$. [2]
- 32) If $\sin \theta = \frac{3}{4}$, calculate $\cos \theta$ and $\tan \theta$. [2]
- The angle of elevation of the top of a tower from a point on the ground, which is 60 m away from the foot of the tower is 30°. Find the height of the tower. [2]
- 34) A tangent PA at a point P of a circle of radius 5 cm meets a line through the centre 'O' at a point A, so that OA = 12 cm. Find PA. [2]
- Two cubes each of side 5 cm are joined end to end. Find the surface area of the resulting cuboid.

[2]

- 36) A cone of height 24 cm and radius of base 6 cm is made up of modelling clay.Rahul reshapes it in the form of a sphere. Find the radius of the sphere. [2]
- 37) Find the mode of the following data.

Class Interval	10-25	25-40	40-55	55-70	70-85	85-100
Frequency	2	3	7	6	6	6

38) Two players Sania and Sangeeta play a tennis match. It is known that, the probability of Sania winning the match is 0.57. What is the probability of Sangeeta winning the match?

SECTION-C

- Solve any eight of the following questions from 39 to 50 (Each question carries 3 marks)
 - 39) Solve the pair of equations: 2x + 3y = 7, 3x 4y = 2 by elimination method. [3]
 - 40) The sum and the difference of two numbers are 18 and 2 respectively. Find the numbers.

 [3]

VMI22

41) The sum of the reciprocals of Jayesh's ages (in years) 3 years ago and 5 years from

now is
$$\frac{1}{3}$$
. Find his present age. [3]

- 42) Find the sum of first 51 terms of an A.P. whose second and third terms are 14 and 18 respectively. [3]
- 43) How many three digit numbers are divisible by 7? [3]
- Find the area of the triangle whose vertices are P(1, -1), Q(-4, 6) and R(-3, -5).
- 45) If A(1, 2), B(4, y), C(x, 6) and D(3, 5) are the vertices of a parallelogram taken in order, find x and y. [3]
- 46) A toy is in the form of a cone of radius 3.5 cm mounted on a hemisphere of same radius. The total height of the toy is 15.5 cm. Find the total surface area of the toy.

 [3]
- 47) Find the mean of the following data.

Class Interval	100-150	150-200	200-250	250-300	300-350
Frequency	4	5	12	2	2

[3]

48) Find the median of the following data.

Class Interval 0	-10	10-20	20-30	30-40	40-50	50-60
Frequency	5	8	20	15	7	5

- 49) One card is drawn from a well-shuffled deck of 52 cards. Find the probability of getting[3]
 - i) a king of red colour
 - ii) a face card
 - iii) a spade
- 50) A box contains 90 discs which are numbered from 1 to 90. If one disc is drawn at random from the box, find the probability that it bears [3]
 - i) a two digit number
 - ii) a perfect square number
 - iii) a number divisible by 5.

SECTION-D

- Solve any three of the following questions from 51 to 55 (Each question carries 4 marks)
 - 51) In triangle ABC, $\angle B = 90^{\circ}$. Prove that $AC^2 = AB^2 + BC^2$.

[4]

VMI22

- 52) If the square of one side of a triangle is equal to the sum of the squares of the other two sides, then prove that the angle opposite to the first side is a right angle. [4]
- 53) Draw a line segment of length 7 cm and divide it in the ratio 3:5. Write the steps of construction. [4]
- 54) Draw two tangents to a circle of radius 5 cm, which are inclined at an angle of 60° to each other. [4]
- 55) The median of the following data is 8.05. Find the values of a and b, if the total frequency is 100. [4]

Class Interval	1-4	4-7	7-10	10-13	13-16	16-19
Frequency	6.	а	40	16	b	4