Useful data

$A \backslash B$	$\{a \in A: a \notin B\}$
\mathbb{C}	Set of all complex numbers
$\mathbb{C}^{m \times n}$	Set of all matrices of order $m \times n$ with complex entries
$\mathbb{C}^{\infty}(\Omega)$	Collection of all infinitely differentiable functions on the open domain Ω
i	$\sqrt{-1}$
I	Identity matrix of appropriate order
$L^{2}(\mathbb{R})$	$:=L^{2}(\mathbb{R}, d x)$
$L^{2}[a, b]$	$:=L^{2}([a, b], d x)$
\mathbb{N}	Set of all positive integers
\mathbb{Q}	Set of all rational numbers
\mathbb{R}	Set of all real numbers
$\mathbb{R}^{m \times n}$	Set of all matrices of order $m \times n$ with real entries
\mathbb{S}^{1}	$\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2}=1\right\}$
\mathbb{S}^{2}	$\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$
\mathbb{Z}	Set of all integers

Q1) Suppose that the characteristic equation of $M \in C^{3 \times 3}$ is

$$
\lambda^{3}+\alpha \lambda^{2}+\beta \lambda-1=0
$$

where $\alpha, \beta \in \mathrm{C}$ with $\alpha+\beta \neq 0$
Which of the following statements is TRUE?
(A) $M(I-\beta M)=M^{-1}(M+\alpha I)$
(B) $M(I+\beta M)=M^{-1}(M-\alpha I)$
(C) $\mathrm{M}^{-1}\left(\mathrm{M}^{-1}+\beta \mathrm{I}\right)=\mathrm{M}-\alpha \mathrm{I}$
(D) $\mathrm{M}^{-1}\left(\mathrm{M}^{+1}-\beta \mathrm{I}\right)=\mathrm{M}+\alpha \mathrm{I}$

Q2) Consider
P Let $M \in R^{m \times n}$ with $m>n \geq 2$. If rank $(M)=n$, then the system of linear equations $M x=0$ has $\mathrm{x}=0$ as the only solution
$Q:$ Let $E \in R^{n \times n}, n \geq 2$ be a non-zero matrix such that $E^{3}=0$. Then $I+E^{2}$ is a singular matrix.
Which of the following statements is TRUE?
(A) Both P and Q are TRUE
(B) Both P and Q are FALSE
(C) P is TRUE and Q is FALSE
(D) P is FALSE and Q is TRUE

Q3) The number of non-isomorphic abelian groups of order $2^{2}, 3^{3}, 5^{4}$ is \qquad

Q4) The number of subgroups of a cyclic group of order 12 is \qquad

Q5) The radius of convergence of the series

$$
\sum_{n \geq 0} 3^{n+1} z^{2 n}, z \in \mathbb{C}
$$

is \qquad (round off to TWO decimal places).

Q6) The number of zeros of the polynomial

$$
2 z^{7}-7 z^{5}+2 z^{3}-z+1
$$

in the unit disc $\{\mathrm{z} \in \mathrm{C}:|\mathrm{z}|<1\}$ is \qquad

Q7) Consider the linear system of equations $A x=b$ with

$$
A=\left(\begin{array}{lll}
3 & 1 & 1 \\
1 & 4 & 1 \\
2 & 0 & 3
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)
$$

Which of the following statements are TRUE?
(A) The Jacobi iterative matrix is $\left(\begin{array}{ccc}0 & 1 / 4 & 1 / 3 \\ 1 / 3 & 0 & 1 / 3 \\ 2 / 3 & 0 & 0\end{array}\right)$
(B) The Jacobi iterative method converges for any initial vector
(C) The Gauss-Seidel iterative method converges for any initial vector
(D) The spectral radius of the Jacobi iterative matrix is less than 1

Q8) If $\mathrm{P}(\mathrm{x})$ is a polynomial of degree 5 and

$$
\alpha=\sum_{i=0}^{6} P\left(x_{i}\right)\left(\prod_{j=0, j \neq i}^{6}\left(x_{i}-x_{j}\right)^{-1}\right)
$$

where $\mathrm{x}_{0}, \mathrm{x}_{1}, \cdots, \mathrm{x}_{6}$ are distinct points in the interval $[2,3]$, then the value of $\alpha^{2}-\alpha+1$ is \qquad
Q9) The maximum value of $f(x, y)=49-x^{2}-y^{2}$ on the line $x+3 y=10$ is \qquad

Q10) If the ordinary differential equation

$$
x^{2} \frac{d^{2} \phi}{d x^{2}}+x \frac{d \phi}{d x}+x^{2} \phi=0, x>0
$$

has a solution of the form $\phi(x)=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n}$, where a_{n} 's are constants and $a_{0} \neq 0$, then the value of $r^{2}+1$ is \qquad

Q11) The partial differential equation

$$
7 \frac{\partial^{2} u}{\partial x^{2}}+16 \frac{\partial^{2} u}{\partial x \partial y}+4 \frac{\partial^{2} u}{\partial y^{2}}=0
$$

is transformed to

$$
A \frac{\partial^{2} u}{\partial \xi^{2}}+B \frac{\partial^{2} u}{\partial \xi \partial \eta}+C \frac{\partial^{2} u}{\partial \eta^{2}}=0
$$

using $\xi=y-2 x$ and $\eta=7 y-2 x$.
Then, the value of $\frac{1}{12^{3}}\left(B^{2}-4 A C\right)$ is \qquad

Q12) Let $\mathrm{R}[\mathrm{X}]$ denote the ring of polynomials in X with real coefficients. Then, the quotient ring $R[X] /\left(X^{4}+4\right)$ is
(A) a field
(B) an integral domain, but not a field
(C) not an integral domain, but has 0 as the only nilpotent element
(D) a ring which contains non-zero nilpotent elements

Q13) Consider the following conditions on two proper non-zero ideals J_{1} and J_{2} of a non-zero commutative ring R
P: For any $r_{1}, r_{2} \in R$, there exists a unique $r \in R$ such that $r-r_{1} \in J_{1}$ and $r-r_{2} \in J_{2}$. Q: $\mathrm{J}_{1}+\mathrm{J}_{2}=\mathrm{R}$

Then, which of the following statements is TRUE?
(A) P implies Q but Q does not imply P
(B) Q implies P but P does not imply Q
(C) P implies Q and Q implies P
(D) P does not imply Q and Q does not imply P

Q14) P :
Suppose that $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges at $x=-3$ and diverges at $x=6$. Then
$\sum_{n=0}^{\infty}(-1)^{n} a_{n}$ converges.

Q :
The interval of convergence of the series $\sum_{n=2}^{\infty} \frac{(-1)^{n} x^{n}}{4^{n} \log _{e} n}$ is $[-4,4]$.
Which of the following statements is TRUE?
(A) P is true and Q is true
(B) P is false and Q is false
(C) P is true and Q is false
(D) P is false and Q is true

Q15) Let

$$
f_{n}(x)=\frac{x^{2}}{x^{2}+(1-n x)^{2}}, x \in[0,1], n=1,2,3, \cdots
$$

Then, which of the following statements is TRUE?
(A) $\left\{f_{n}\right\}$ is not equicontinuous on $[0,1]$
(B) $\left\{f_{n}\right\}$ is uniformly convergent on $[0,1]$
(C) $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ is equicontinuous on $[0,1]$
(D) $\left\{f_{n}\right\}$ is uniformly bounded and has a subsequence converging uniformly on $[0,1]$

Q16) Let X, Y and Z be Banach spaces. Suppose that $T: X \rightarrow Y$ is linear and $S: Y \rightarrow Z$ is linear, bounded and injective. In addition, if $\mathrm{S} \circ \mathrm{T}: \mathrm{X} \rightarrow \mathrm{Z}$ is bounded, then, which of the following statements is TRUE?
(A) T is surjective
(B) Tis bounded but not continuous Prepare
(C) T is bounded
(C) T is bounded
(D) T is not bounded

Q17) The first derivative of a function $\mathrm{f} \in \mathrm{C}^{\infty}(-3,3)$ is approximated by an interpolating polynomial of degree 2 , using the data

$$
(-1, f(-1)),(0, f(0)) \text { and }(2, f(2))
$$

It is found that

$$
f^{\prime}(0) \approx-\frac{2}{3} f(-1)+\alpha f(0)+\beta f(2)
$$

Then, the value of $1 / \alpha \beta$ is
(A) 3
(B) 6
(C) 9
(D) 12

Q18) Let $\mathrm{u}(\mathrm{x}, \mathrm{t})$ be the solution of the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}=0,0<x<\pi, t>0
$$

with the initial conditions

$$
u(x, 0)=\sin x+\sin 2 x+\sin 3 x, \frac{\partial u}{\partial t}(x, 0)=0,0<x<\pi
$$

and the boundary conditions $u(0, t)=u(\pi, t)=0, t \geq 0$. Then, the value of $u(\pi / 2, \pi)$ is
(A) $-1 / 2$
(B) 0
(C) $1 / 2$
(D) 1

Q19) Let $T: R^{2} \rightarrow R^{2}$ be a linear transformation defined by

$$
\mathrm{T}((1,2))=(1,0) \text { and } \mathrm{T}((2,1))=(1,1)
$$

For $\mathrm{p}, \mathrm{q} \in \mathrm{R}$, let $\mathrm{T}^{-1}((\mathrm{p}, \mathrm{q}))=(\mathrm{x}, \mathrm{y})$
Which of the following statements is TRUE?
(A) $x=p-q ; y=2 p-q$
(B) $\mathrm{x}=\mathrm{p}+\mathrm{q} ; \mathrm{y}=2 \mathrm{p}-\mathrm{q}$
(C) $x=p+q ; y=2 p+q$
(D) $\mathrm{x}=\mathrm{p}-\mathrm{q} ; \mathrm{y}=2 \mathrm{p}+\mathrm{q}$

Q20) Let K denote the subset of C consisting of elements algebraic over Q. Then, which of the following statements are TRUE?
(A) No element of $C \backslash K$ is algebraic over Q
(B) K is an algebraically closed field
(C) For any bijective ring homomorphism $\mathrm{f}: \mathrm{C} \rightarrow \mathrm{C}$, we have $\mathrm{f}(\mathrm{K})=\mathrm{K}$
(D) There is no bijection between K and Q

Q21) Let $X=(R, T)$, where T is the smallest topology on R in which all the singleton sets are closed. Then, which of the following statements are TRUE?
(A) $[0,1)$ is compact in X
(B) X is not first countable
(C) X is second countable
(D) X is first countable

Q22) Consider (Z, T), where T is the topology generated by sets of the form

$$
\mathrm{A}_{\mathrm{m}, \mathrm{n}}=\{\mathrm{m}+\mathrm{nk} \mid \mathrm{k} \in \mathrm{Z}\}
$$

for $\mathrm{m}, \mathrm{n} \in \mathrm{Z}$ and $\mathrm{n} \vDash 0$. Then, which of the following statements are TRUE?
(A) (Z, T) is connected
(B) Each $\mathrm{A}_{\mathrm{m}, \mathrm{n}}$ is a closed subset of (Z, T)
(C) (Z, T) is Hausdorff
(D) (Z, T) is metrizable

Q23) Three companies C_{1}, C_{2} and C_{3} submit bids for three jobs J_{1}, J_{2} and J_{3}. The costs involved per unit are given in the table below:

	J_{1}		J_{2}
J_{3}			
C_{1}	10	12	8
C_{2}	9	15	10
C_{3}	15	10	9

Then, the cost of the optimal assignment is \qquad

Q24) The surface area of the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=1$ is (round off to ONE decimal place).

Q25) The rate of change of $f(x, y, z)=x+x \cos z-y \sin z+y$ at P_{0} in the direction from $P_{0}(2,-1$, 0) to $P_{1}(0,1,2)$ is \qquad .

Q26) If the Laplace equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0,1<x<2,1<y<2
$$

with the boundary conditions

$$
\frac{\partial u}{\partial x}(1, y)=y, \frac{\partial u}{\partial x}(2, y)=5,1<y<2
$$

and

$$
\frac{\partial u}{\partial y}(x, 1)=\frac{\alpha x^{2}}{7}, \frac{\partial u}{\partial y}(x, 2)=x, 1<x<2
$$

has a solution, then the constant α is \qquad .

Q27) Let $u(x, y)$ be the solution of the first order partial differential equation

$$
x \frac{\partial u}{\partial x}+\left(x^{2}+y\right) \frac{\partial u}{\partial y}=u, \text { for all } x, y \in \mathbb{R}
$$

satisfying $u(2, y)=y-4, y \in R$. Then, the value of $u(1,2)$ is \qquad .

Q28) The optimal value for the linear programming problem
Maximize: $6 \mathrm{x}_{1}+5 \mathrm{x}_{2}$
subject to: $3 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 12$
$-\mathrm{x}_{1}+\mathrm{x}_{2} \leq 1$
$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
is \qquad

Q29) A certain product is manufactured by plants $\mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{3} whose capacities are 15,25 and 10 units, respectively. The product is shipped to markets $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}$ and M_{4}, whose requirements are $10,10,10$ and 20 , respectively. The transportation costs per unit are given in the table below.

	M_{1}	M_{2}	M_{3}	M_{4}	
P_{1}	1	3	1	3	15
P_{2}	2	2	4	1	25
P_{3}	2	1	1	2	10
	10	10	10	20	

Then the cost corresponding to the starting basic solution by the Northwest-corner method is \qquad .

Q30) Let M be a 3×3 real matrix such that $M^{2}=2 M+3 I$. If the determinant of M is -9 , then the trace of M equals .

