CHEMISTRY

1. Sucrose is dextrorotatory but after hydrolysis the mixture show laevorotation, this is because of
(A) Laevorotation of glucose is more than dextrorotation of fructose.
(B) Sucrose is a non-reducing sugar.
(C) Recemic mixture is formed.
2. The correct order of match between column X and column Y is :

$X \quad Y$

I. Vitamin A i. Muscular weakness
II. Vitamin D ii. Increased blood clotting time
III. Vitamin E iii. Night-blindness
IV. Vitamin K iv. Osteomalacia
(A) I - iv, II - iii, III - ii, IV - i
(B) I - ii, II - i, III - iii, IV - iv
(C) I - iii, II - ii, III - iv, IV - i
(D) I-iii, II - iv, III - i, IV - ii
3. In the reaction :

P, Q and R respectively are :
(A) $\mathrm{NaNO}_{2}+$ dil. $\mathrm{HCl}, \mathrm{HBF}_{4}, \mathrm{Cu}+\mathrm{NaNO}_{2}$
(B) $\mathrm{NaNO}_{2}+$ con. $\mathrm{HCl}, \mathrm{F}_{2}, \mathrm{Cu}+\mathrm{NaNO}_{3}$
(C) $\mathrm{NaNO}_{2}+$ dil. $\mathrm{HCl}, \mathrm{BF}_{3}, \mathrm{Cu}+\mathrm{NaNO}_{2}$
(D) $\mathrm{NaNO}_{3}+$ dil. $\mathrm{HCl}, \mathrm{F}_{2}, \mathrm{Cu}+\mathrm{NaNO}_{3}$

Thyroxine produced in the thyroid gland is an iodinated derivative of
4) threonine
(B) lysine
(E) tyrosine
5. Which one of the following is a non-narcotic analgesic ?
(A) Heroin
(B) Codeine
(e) Aspirin
(D) Morphine
6. Receptors are proteins and crucial to body communication process. These receptors embedded in
(A) Cell membrane
(B) Protein
(C) Endocrine gland
(D) Chromosome
7. Which of the following monomers form biodegradable polymers ?
(A) Ethylene glycol and pthalic acid
(B) Caprolactum and 1,3-Butadiene
(C) Phenol and formaldehyde
(Đ) 3-hydroxybutanoic acid and 3-hydroxypentanoic acid
8. Match the List-I with List-II in the following :

List-I

1. Caprolactum (a) $\begin{array}{r}\left(\mathrm{CH}_{2}-\mathrm{CH}\right)_{\pi} \\ \mathrm{CH}_{3}\end{array}$
2. Vinyl chloride
(b) $\begin{array}{r}\left(\mathrm{CH}_{2}-\mathrm{CH}\right)_{71} \\ \mathrm{C}_{6} \mathrm{H}_{5}\end{array}$
3. Styrene
(c)

4. Propene
(d)

(A) 1-c, 2-d, 3-a, 4-b
(B) 1-a, 2-d, 3-c, 4-b
(C) 1-d, 2-c, 3-a, 4-b
(円) 1-d, 2-c, 3-b, 4-a
5. The correct order of first ionisation enthalpy of given elements is
(A) $\mathrm{Li}<\mathrm{B}<\mathrm{Be}<\mathrm{C}$
(B) $\mathrm{Be}<\mathrm{Li}<\mathrm{B}<\mathrm{C}$
(C) $\mathrm{C}<\mathrm{B}<\mathrm{Be}<\mathrm{Li}$
(D) $\mathrm{Li}<\mathrm{Be}<\mathrm{B}<\mathrm{C}$
6. Which of the following statement is INCORRECT ?
(A) Bond length of $\mathrm{O}_{2}>$ Bond length of O_{2}^{2+}
(B) Bond order of $\mathrm{O}_{2}^{+}<$Bond order of $\mathrm{O}_{2}^{2-} \&$
(C) Bond length of $\mathrm{O}_{2}<$ Bond length of O_{2}^{2-}
(D) Bond order of $\mathrm{O}_{2}>$ Bond order of O_{2}^{2-}
7. A gas at a pressure of 2 atm is heated from $25^{\circ} \mathrm{C}$ to $323^{\circ} \mathrm{C}$ and simultaneously compressed to $\frac{2^{\text {rd }}}{3}$ of its original value. Then the final pressure is
(A) 1.33 atm
(B) 6 atm
(C) 2 atm
(D) 4 atm
8. Lattice enthalpy for NaCl is $+788 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\underset{\mathrm{Hyd}}{\underset{\mathrm{H}}{ }{ }^{\circ}=-784 \mathrm{~kJ} \mathrm{~mol}^{-1} \text {. Enthalpy of solution }}$ of NaCl is
(A) $+572 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(B) $+4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(C) $-572 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(D) $-4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
9. At 500 K , for a reversible reaction $\mathrm{A}_{2(\mathrm{~g})}+\mathrm{B}_{2_{(\mathrm{g})}} \rightleftharpoons 2 \mathrm{AB}_{(\mathrm{g})}$ in a closed container, $\mathrm{K}_{\mathrm{C}}=2 \times 10^{-5}$. In the presence of catalyst, the equilibrium is attaining 10 times faster. The equilibrium constant K_{C} in the presence of catalyst at the same temperature is
(A) 2×10^{-4}
(B) 2×10^{-6}
(C) 2×10^{-10}
(D) 2×10^{-5}
10. A weak acid with $\mathrm{pK}_{\mathrm{a}} 5.9$ and weak base with $\mathrm{pK}_{\mathrm{b}} 5.8$ are mixed in equal proportions. pH of the resulting solution is
(B) 7.5

$$
\text { (x) } 7
$$

(D) 7.05
15. Temperature of $25^{\circ} \mathrm{C}$ in Fahrenheit and Kelvin scale respectively are (A) $77^{\circ} \mathrm{F}$ and 298.15 K
(C) $45^{\circ} \mathrm{F}$ and 260.15 K
(B) $17^{\circ} \mathrm{F}$ and 298.15 K
(D) $47^{\circ} \mathrm{F}$ and 312.15 K
16. The number of protons, neutrons and electrons in the ion ${ }_{16}^{32} \mathrm{~S}^{2-}$ respectively are (A) $16,18,16$

$$
\text { (B) } 16,16,18
$$

(C) $18,16,16$
(D) $16,16,16$

Space For Rough Work

$$
\frac{C}{Q}=\frac{-32}{Q}
$$

17. A pair of amphoteric oxides is
(A) $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Li}_{2} \mathrm{O}$
(B) $\mathrm{BeO}, \mathrm{BO}_{3}$
(C) $\mathrm{BeO}, \mathrm{MgO}$
(D) $\mathrm{BeO}, \mathrm{ZnO}$
18. The composition of water gas is
(A) $\mathrm{CO}_{(\mathrm{g})}+\mathrm{N}_{2_{(g)}}$
(B) $\mathrm{CH}_{4(\mathrm{~g})}$
(C) $\mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad$ (D) $\mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2(\mathrm{~g})}$
19. IUPAC name of the compound is

(A) 2,3-dimethylbut-2-ene
(C) 1, 1, 2, 2-tetra methylethene
(B) 2,3-dimethyl butyne
(D) 2,3-dimethyl butene
20. Among the following :

I
The II

II

III

$\ddot{\Theta}$ IV

V
(A) I, II and III
21. Which one of the following gases converts haemoglobin into carboxy haemoglobin ?
22. What is the oxidation number of S in
(A) +5 is the oxidation number of S in $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$?
(B) O_{2}
(C) NO
(D) CO_{2} (A) CO
(B) III, IV species is
(B) III, IV and $V x$
(C) II and III x
(Đ) I, II and IV

$$
(B)+4
$$

23.

A 30% solution of hydrogen peroxide is

$$
(C)+7
$$

(A) ' 30 volume' hydrogen peroxide
(C) '50 volume' hydrogen peroxide
(B) ' 10 volume' hydrogen peroxide
(D) '100 volume' hydrogen peroxide

Space For Rough Work

24. If 'a' stands for the edge length of the cubic systems - The ratio of radii in simple cubic, body centered cubic and face centered cubic unit cells is
(A) $1 a: \sqrt{3} a: \sqrt{2} a$
(B) $\frac{1}{2} a: \frac{\sqrt{3}}{4} a: \frac{1}{2 \sqrt{2}} a$
$\cos \frac{1}{2} a \cdot \frac{\sqrt{3}}{2} a \cdot \frac{\sqrt{2}}{2} a$
(D) $\frac{1}{2} a: \sqrt{3} a: \frac{1}{\sqrt{2}} a$
25. Dimerisation of solute molecules in low dielectric constant solvent is due to :
(A) Hydrogen bond
(B) Covalent bond
(C) Co-ordinate bond
(D) Ionic bond
26. The swelling in feet and ankles of an aged person due to sitting continuously for long hours during travel, is reduced by soaking the feet in warm salt water. This is because of :
(A) Reverse Osmosis
(B) Osmosis
(C) Edema
(D) Diffusion
27. A sample of water is found to contain $5.85 \%\left(\frac{W}{W}\right)$ of $A B$ (molecular mass 58.5) and $9.50 \%\left(\frac{\mathrm{~W}}{\mathrm{~W}}\right) \mathrm{XY}_{2}$ (molecular mass 95). Assuming 80% ionisation of AB and 60% ionisation of XY_{2}, the freezing point of water sample is [Given : K_{f} for water $1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, Freezing point of pure water is 273 K and A, B and Y are monovalent ions)
(A) 264.25 K $\begin{array}{lll}\text { (A) } 264.25 \mathrm{~K} & \text { (B) } 265.56 \mathrm{~K} & \text { (C) } 280.44 \mathrm{~K}\end{array}$
28. Match the column A (type of crystalline solid) with the column B (example for each type) :

A			B
P. Molecular Solid	i.	SiC	
Q.	Ionic Solid	ii.	Mg
R. Metallic Solid	iii.	$\mathrm{H}_{2} \mathrm{O}$	
S.	Network Solid	iv.	MgO

(A) P-iii, Q-i, R-ii, S-iv
(C) P-ii, ()-iv, R-iii, S-i

$$
\begin{aligned}
& \text { (B) P-iv, Q-iii, R-ii, S-i } \\
& \text { (D) P-iii, Q-iv, R-ii, S-i }
\end{aligned}
$$

A metal crystallises in a body centered cubic lattice with the metallic radius $\sqrt{3} \AA$. The volume of the unit cell in m^{3} is
$\begin{array}{ll}\text { (A) } 64 \times 1029 & \text { (B) } 4 \times 10^{-29}\end{array}$ Space For Rough Work \quad (D) 4×10^{-10}
$4 \gamma=\sqrt{2} 0$
30. The resistance of 0.1 M weak acid HA in a conductivity cell is $2 \times 10^{3} \mathrm{Ohm}$. The cell constant of the cell is $0.78 \mathrm{C} \mathrm{m}^{1}$ and $\lambda_{\mathrm{m}}^{\circ}$ of acid HA is $390 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. The pH of the
solution is
(B) 4.2
(C) 5
(D) 3
LAt 3.3
31. In which one of the following reactions, rate constant has the unit $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$?
(A) Acid catalysed hydrolysis of $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
(B) $\mathrm{CHCl}_{3}+\mathrm{Cl}_{2} \longrightarrow \mathrm{CCl}_{4}+\mathrm{HCl}$

$$
\text { (C) } 2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}
$$

$$
\begin{aligned}
(\text { mot lit } & \text {-1 })^{1-n} \\
t & =\frac{2 \times 10^{3} \times 0.78 \times 1000}{9} \\
& \Rightarrow 102 \times 18
\end{aligned}
$$

(D) Decomposition of HI on the surface of Gold
32. For a reaction, the value of rate constant at 300 K is $6.0 \times 10^{5} \mathrm{~s}^{-1}$. The value of Arrhenius factor A at infinitely high temperature is :
(A) $6 \times 10^{5} \times \mathrm{e}^{-\mathrm{E} / 300 \mathrm{R}}$
(B) $e^{-E a / 300 R}$
(C) $\frac{6 \times 10^{-5}}{300}$
(D) 6×10^{5}
$A e^{-R T}$
$e^{-E A / R T}$
$\Rightarrow 2 \times 78 \times$ Fao
$\Rightarrow 1$
$0^{4} \times 4$
and $\Rightarrow 4-$ H) $\frac{2000}{2.303} \mathrm{~K}$
(B) 2000 K
(C) $\frac{1000}{2.303} \mathrm{~K}$
(D) 1000 K
34. During the electrolysis of brine, by using inert electrodes, (A) O_{2} liberates at anode
(C) Na deposits on cathode
(B) H_{2} liberates at anode
(D) Cl_{2} liberates at anode
35. Consider the following 4 electrodes

A: $\mathrm{Ag}^{*}(0.0001 \mathrm{M}) / \mathrm{Ag}_{(\mathrm{s})} ; \mathrm{B}: \mathrm{Ag}^{+}(0.1 \mathrm{M}) / \mathrm{Ag}_{(\mathrm{s})}$
C: $\mathrm{Ag}^{+}(0.01 \mathrm{M}) / \mathrm{Ag}_{(\mathrm{s})} ;$
Then reduction potential in volts of $\mathrm{Ag}^{+}(0.001 \mathrm{M}) / \mathrm{Ag}_{(\mathrm{s})} ; \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\circ}=+0.80 \mathrm{~V}$
(A) $B>C>D>A$ in volts of the electrodes in the order $\operatorname{sf} A>D-C>B$
(B) C $>$ D $>$ A $>$ B
(D) A $>$ B $>$ C $>$ D
36. When FeCl_{3} is added to excess of hot water gives a sol ' X '. When FeCl_{3} is added to $\mathrm{NaOH}_{(\text {aq) }}$ solution, gives sol ' Y '.
X and Y formed in the above processes respectively are
(A) $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot x \mathrm{H}_{2} \mathrm{O} / \mathrm{OH}$ and $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot x \mathrm{H}_{2} \mathrm{O} / \mathrm{Fe}^{3 \prime}$
(B) $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot x \mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}$and $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot x \mathrm{H}_{2} \mathrm{O} / \mathrm{Na}^{+}$
(C) $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot x \mathrm{H}_{2} \mathrm{O} / \mathrm{Cl}^{-}$and $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot x \mathrm{H}_{2} \mathrm{O} / \mathrm{OH}$
(D) $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot x \mathrm{H}_{2} \mathrm{O} / \mathrm{Fe}^{3+}$ and $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot x \mathrm{H}_{2} \mathrm{O} / \mathrm{OH}$
37. The reducing agent in the given equations:

$$
\begin{aligned}
& 4 \mathrm{Ag}_{(\mathrm{s})}+8 \mathrm{CN}_{(\mathrm{aq})}^{-}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 4\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]_{(\mathrm{aq})}+4 \mathrm{OH}_{\text {(aq) }}^{-} \\
& 2\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]_{(\mathrm{aq})}^{-}+2 \mathrm{Zn}_{(\mathrm{s})} \longrightarrow\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]_{\text {(aq) }}^{2-}+2 \mathrm{Ag}_{(\mathrm{s})} \\
& \begin{array}{llll}
\text { (A) } \mathrm{Zn} & \text { (B) } \mathrm{O}_{2} & \text { (C) } \mathrm{H}_{2} \mathrm{O} & \text { (D) } \mathrm{CN}^{-}
\end{array}
\end{aligned}
$$

38. For the formation of which compound in Ellingham diagram ΔG° becomes more and more negative with increase in temperature?
(A) CO
(B) FeO
(C) ZnO
(D) $\mathrm{Cu}_{2} \mathrm{O}$
39. Which of the following compound does not give dinitrogen on heating ?
(A) $\mathrm{Ba}\left(\mathrm{N}_{3}\right)_{2}$
(B) $\mathrm{NH}_{4} \mathrm{NO}_{2}$
(G) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
(D) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
40. Aqueous solution of raw sugar when passed over beds of animal charcoal, it becomes colourless. Pick the correct set of terminologies that can be used for the above example.

Adsorbent		Adsorbate	Process
(A)	Solution of Sugar	Animal Charcoal	Sorption
(B)	Animal Charcoal	Solution of Sugar	Absorption
(e)	Animal Charcoal	Colouring substance	Adsorption
(D)	Colouring Substance	Animal Charcoal	Adsorption

41. For Freundlich adsorption isotherm, a graph of $\log (x / m) \mathrm{Vs} . \log (\mathrm{P})$ gives a straight line. The slope of line and its Y -axis intercept respectively are
(A) $\log \left(\frac{1}{n}\right), K \quad$ (B) $\frac{1}{n}, \log K$

$$
\begin{array}{ll}
\text { (C) } \log \left(\frac{1}{n}\right), \log K & \text { (D) } \frac{1}{n}, K
\end{array}
$$

Space For Rough Work

42. In solid state, PCl_{5} is a/an $8 \mathrm{mnO}_{4}^{-}+3 \mathrm{SS}_{2} \mathrm{O}_{3}^{-2}+\mathrm{H}_{2} \mathrm{O}+6 \mathrm{MmO}_{2}+680_{4}^{-2}$ (A) Octahedral structure
(B) Ionic solid with $\left[\mathrm{PCl}_{6}\right]^{+}$and $\left[\mathrm{PCl}_{4}\right]$ $+$
(e) lonic solid with $\left[\mathrm{PCl}_{4}\right]^{+}$and $\left[\mathrm{PCl}_{6}\right]$
(D) Covalent solid present in the form of $\mathrm{P}_{2} \mathrm{Cl}_{10}$
43. In which one of the following pairs, both the elements does not have $(\mathrm{n}-1) \mathrm{d}^{10} \mathrm{~ns}^{2}$
configuration in its elementary state ?
(A) Zn, Cd
(B) Cd, Hg
(C) Hg, Cn
(D) Cu, Zn
44. Which of the following is CORRECT with respect to melting point of a transition element ?
(A) $\mathrm{V}>\mathrm{Cr}$
(B) $\mathrm{Cr}>\mathrm{Mn}$
(C) $\mathrm{Mn}>\mathrm{Fe}$
(D) $\mathrm{Ti}>\mathrm{V}$

45. $\mathrm{aMnO}_{4}^{-}+\mathrm{bS}_{2} \mathrm{O}_{3}^{-2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow x \mathrm{MnO}_{2}+\mathrm{ySO}_{4}^{-2}+\mathrm{zOH}^{-}$
a and y respectively are
(A) $8 ; 3$
(B) $8 ; 6$
(C) $3 ; 6$
(D) $8 ; 8$
46. Which formula and name combination is INCORRECT ?
(A) $\mathrm{K}_{3}\left[\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$ - Potassium trioxalatoaluminate (III) -
(B) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right]$ - Diamminechloridonitrito - N - platinum (II)
(C) $\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right] \mathrm{Cl}$ - Dichloridodiethylenediammine cobalt (II) chloride
(D) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right] \mathrm{Cl}_{2}-$ Tetraammineaquachloridocobalt (III) chloride
47. Which of the following system in an octahedral complex has maximum unpaired electrons?
(A) d^{9} (high spin)
(B) d^{6} (low spin)
(C) d^{4} (low spin)
(D) d^{7} (high spin)
48. The correct decreasing order of basicity of hydrides of Group-15 elements is
(A) $\mathrm{SbH}_{3}>\mathrm{AsH}_{3}>\mathrm{PH}_{3}>\mathrm{NH}_{3}$
(B) $\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}>\mathrm{NH}_{3}$
(C) $\mathrm{AsH}_{3}>\mathrm{SbH}_{3}>\mathrm{NH}_{3}>\mathrm{PH}_{3}$
(D) $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}$
49. Which one of the following oxoacids of phosphorus can reduce AgNO_{3} to metallic silver ?
(A) $\mathrm{H}_{3} \mathrm{PO}_{2}$
(B) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$
(C) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$
-(D) $\mathrm{H}_{3} \mathrm{PO}_{4}$
50. A pair of compounds having the same boiling points are
(A) cis but-2-ene and trans but-2-ene
(B) n-hexane and neo-hexane
(C) benzene and naphthalene
(D) $(+)$ butan $-2-$ ol and (-) butan - 2-ol
51. Identify A, B and C in the sequence :
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br} \xrightarrow[\text { alc }]{\mathrm{KCN}} \mathrm{A} \xrightarrow{\mathrm{LiAlH}_{4}} \mathrm{~B} \xrightarrow[0^{\circ} \mathrm{C}]{\mathrm{HNO}_{2}} \mathrm{C}$
(A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NC}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl}$
(D) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
52. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{PCC}} \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CHO}$
Hybridisation change involved at $\mathrm{C}-1$ in the above reaction
(A) sp^{3} to sp
(B) sp^{3} to sp^{2}
(C) sp^{2} to sp^{3}
(D) sp to sp^{2}
53. If a didentate ligand ethane $-1,2$ - diamine is progressively added in the molar ratio en : Ni :: $1: 1,2: 1,3: 1$ to $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ aq solution, following co-ordination entities are formed.
I. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{en}\right]^{2+}{ }_{(\mathrm{aq})}$ - pale blue
II. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\text { en })_{2}\right]^{2+}{ }_{(\text {aq })}$ - blue/purple $\quad \mathrm{Vf} \mathrm{BA}^{\left(\mathrm{C}^{R}\right.}$
III. $\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+}{ }_{(\text {aq) }}-$ violet

The wavelength in nm of light absorbed in case of I and III are respectively
(A) 475 nm and 310 nm
(B) 300 nm and 475 nm
(C) 310 nm and 500 nm
(D) 600 nm and 535 nm
54. Which of the following is an organometallic compound ?
(A) $\mathrm{CH}_{3} \mathrm{COONa}$
(B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}$
(C) $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Ca}$
(D) $\mathrm{CH}_{3} \mathrm{ONa}$
55. A better reagent to oxidize primary alcohols into aldehyde is :
(A) BC
(B) Alkaline KMnO_{4}
(C) Acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(D) CrO_{3}
56. In the reaction :

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN} \xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{+}]{\text {(i) } \mathrm{SnCl}_{2}+\mathrm{HCl}} \mathrm{X} \xrightarrow{\text { con. } \mathrm{KOH}} \mathrm{Y}+\mathrm{Z} \text {, }
$$

Formation of X , formation of Y and Z are known by
(A) Rosenmund reduction, Cannizaro reaction.
(B) Clemmensen reduction, Sandmeyer reaction.

(C) Wolff-Kishner reduction, Wurtz reaction.
(D) Stephen reaction, Cannizaro reaction.
57. Compounds P and R in the following reaction are

(ii) $\mathrm{H}_{2} \mathrm{O}_{2} \mathrm{OH}^{-}$
(A) Position isomers
(B) Functional isomers
(C) Metamer
(D) Identical
58. Aniline does not undergo
(A) Nitration
(C) Friedel-Craft reaction
(B) Sulphonation
(D) Bromination
59. The heating of phenyl methyl ether with HI produces an aromatic compound A which on treatment with con. HNO_{3} gives B . A and B respectively are,
(A) Methanol, Ethanoic acid
(B) Picric acid, Phenol
(C) Iodobenzene, 1-Iodo-4-nitrobenzene
(D) Phenol, Picric acid
60.

Y in the above reaction is
(A) Salicylaldehyde (B) Aspirin
(C) Cumene
(D) Picric acid

