Q1) Let \boldsymbol{M} be any square matrix of arbitrary order n such that $\boldsymbol{M}^{2}=\mathbf{0}$ and the nullity of \boldsymbol{M} is 6 . Then the maximum possible value of n (in integer) is \qquad

Q2) Let $X^{1}, X^{2}, \ldots, X^{\mathrm{n}}$ be a random sample from a population $f(x ; \theta)$, where θ is a parameter. Then which one of the following statements is NOT true?
$\sum_{i=1}^{n} X_{i}$ is a complete and sufficient statistic for θ, if
(A)

$$
f(x ; \theta)=\frac{e^{-\theta} \theta^{x}}{x!}, x=0,1,2, \ldots, \text { and } \theta>0
$$

$\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}^{2}\right)$ is a complete and sufficient statistic for θ, if

$$
\begin{equation*}
f(x ; \theta)=\frac{1}{\sqrt{2 \pi} \theta} e^{-\frac{1}{2 \theta^{2}}(x-\theta)^{2}},-\infty<x<\infty, \theta>0 \tag{B}
\end{equation*}
$$

$f(x ; \theta)=\theta x^{\theta-1}, 0<x<1, \theta>0$ has monotone likelihood ratio property in
(C) $\prod_{i=1}^{n} X_{i}$
$\begin{aligned} X_{(n)} & -X_{(1)} \text { is ancillary statistic for } \theta \text { if } f(x ; \theta)=1,0<\theta<x<\theta+1 \text {, where } \\ \text { (D) } X_{(1)} & =\min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\} \text { and } X_{(n)}=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}\end{aligned}$
Q3) At a telephone exchange, telephone calls arrive independently at an average rate of 1 call per minute, and the number of telephone calls follows a Poisson distribution. Five time intervals, each of duration 2 minutes, are chosen at random, Let p denote the probability that in each of the five time intervals at most 1 call arrives at the telephone exchange. Then e^{10} (in integer) is equal to \qquad

Q4) A random sample of size 4 is taken from the distribution with the probability density Function

$$
f(x ; \theta)= \begin{cases}\frac{2(\theta-x)}{\theta^{2}}, & 0<x<\theta \\ 0, & \text { elsewhere }\end{cases}
$$

If the observed sample values are $6,5,3,6$, then the method of moments estimate (in integer) of the parameter θ, based on these observations, is \qquad

Q5) A company sometimes stops payments of quarterly dividends. If the company pays the quarterly dividend, the probability that the next one will be paid is 0.7 . If the company stops the
quarterly dividend, the probability that the next quarterly dividend will not be paid is 0.5 . Then the probability (rounded off to three decimal places) that the company will not pay quarterly dividend in the long run is \qquad .

Q6) Let $X_{1}, X_{2}, \ldots, X_{8}$ be a random sample taken from a distribution with the probability density function

$$
f_{X}(x)= \begin{cases}\frac{x}{8}, & 0<x<4 \\ 0, & \text { elsewhere }\end{cases}
$$

Let $F_{8}(x)$ be the empirical distribution function of the sample. If α is the variance of $F_{8}(2)$, then 128α (in integer) is equal to \qquad .

Q7) Let \boldsymbol{M} be a 3×3 real symmetric matrix with eigenvalues $-1,1,2$ and the corresponding unit eigenvectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$, respectively. Let \boldsymbol{x} and \boldsymbol{y} be two vectors in \mathbb{R}^{3} such that

$$
\boldsymbol{M} \boldsymbol{x}=\boldsymbol{u}+2(\boldsymbol{v}+\boldsymbol{w}) \quad \text { and } \quad \boldsymbol{M}^{2} \boldsymbol{y}=\boldsymbol{u}-(\boldsymbol{v}+2 \boldsymbol{w})
$$

Considering the usual inner product in \mathbb{R}^{3}, the value of $|\boldsymbol{x}+\boldsymbol{y}|^{2}$, where $|\boldsymbol{x}+\boldsymbol{y}|$ is the length of the vector $\boldsymbol{x}+\boldsymbol{y}$, is
(A) 1.25
(B) 0.25
(C) 0.75
(D) 1

Q8) Consider the following infinite series:

$$
S_{1}:=\sum_{n=0}^{\infty}(-1)^{n} \frac{n}{n^{2}+4} \quad \text { and } \quad S_{2}:=\sum_{n=0}^{\infty}(-1)^{n}\left(\sqrt{n^{2}+1}-n\right) \quad \text { in }
$$

Which of the above series is/are conditionally convergent?
(A) S_{1} only
(B) S_{2} only
(C) Both S_{1} and S_{2}
(D) Neither S_{1} nor S_{2}

Q9) Let (X, Y, Z) be a random vector with the joint probability density function

$$
f_{X, Y, Z}(x, y, z)= \begin{cases}\frac{1}{3}(2 x+3 y+z), & 0<x<1,0<y<1,0<z<1 \\ 0, & \text { elsewhere }\end{cases}
$$

Then which one of the following points is on the regression surface of X on (Y, Z) ?
(A) $\left(\frac{4}{7}, \frac{1}{3}, \frac{1}{3}\right)$
(A)
(B) $\left(\frac{6}{7}, \frac{2}{3}, \frac{2}{3}\right)$
(C) $\left(\frac{1}{2}, \frac{1}{3}, \frac{2}{3}\right)$
(D) $\left(\frac{1}{2}, \frac{2}{3}, \frac{1}{3}\right)$

Q10) A random sample X of size one is taken from a distribution with the probability density function

$$
f(x ; \theta)= \begin{cases}\frac{2 x}{\theta^{2}}, & 0<x<\theta \\ 0, & \text { elsewhere }\end{cases}
$$

If x / θ is used as a pivot for obtaining the confidence interval for θ, then which one of the following is an 80% confidence interval (confidence limits rounded off to three decimal places) for θ based on the observed sample value $x=10$?
(A) $(10.541,31.623)$
(B) $(10.987,31.126)$
(C) $(11.345,30.524)$
(D) $(11.267,30.542)$

Q11) Let $X 1, X 2, \ldots, X 7$ be a random sample from a normal population with mean 0 and variance $\theta>0$. Let

$$
K=\frac{X_{1}^{2}+X_{2}^{2}}{X_{1}^{2}+X_{2}^{2}+\cdots+X_{7}^{2}}
$$

Consider the following statements:
(I) The statistics K and $X_{1}^{2}+X_{2}^{2}+\cdots+X_{7}^{2}$ are independent.
(II) $\frac{7 K}{2}$ has an F-distribution with 2 and 7 degrees of freedom.
(III) $E\left(K^{2}\right)=\frac{8}{63}$.

Then which of the above statements is/are true?
(A) (I) and (II) only
(B) (I) and (III) only
(C) (II) and (III) only
(D) (I) only

Q12) Consider the following statements:
(I) Let a random variable X have the probability density function

$$
f_{X}(x)=\frac{1}{2} e^{-|x|}, \quad-\infty<x<\infty .
$$

Then there exist i.i.d. random variables X_{1} and X_{2} such that X and $X_{1}-X_{2}$ have the same distribution
(II) Let a random variable Y have the probability density function

$$
f_{Y}(y)=\left\{\begin{array}{lr}
\frac{1}{4}, & -2<y<2 \\
0, & \text { elsewhere }
\end{array}\right.
$$

Then there exist i.i.d. random variables Y_{1} and Y_{2} such that Y and $Y_{1}-Y_{2}$ have the same distribution.
Then which of the above statements is/are true?
(A) (I) only
(B) (II) only
(C) Both (I) and (II)
(D) Neither (I) nor (II)

Q13) Which of the following real valued functions is/are uniformly continuous on $[0, \infty)$?
(A) $\sin ^{2} x$
(B) $x \sin x$
(C) $\sin (\sin x)$
(D) $\sin (x \sin x)$

Q14) Two independent random samples, each of size 7, from two populations yield the following values:

Populatio n 1	18	20	16	20	17	18	14
Populatio n 2	17	18	14	20	14	13	16

If Mann-Whitney U test is performed at 5% level of significance to test the null hypothesis H_{0} :
Distributions of the populations are same, against the alternative hypothesis H_{1} : Distributions of
the populations are not same, then the value of the test statistic U (in integer) for the given data, is \qquad

Q15) Suppose a random sample of size 3 is taken from a distribution with the probability density function

$$
f(x)= \begin{cases}2 x, & 0<x<1 \\ 0, & \text { elsewhere }\end{cases}
$$

If p is the probability that the largest sample observation is at least twice the smallest sample observation, then the value of p (rounded off to three decimal places) is \qquad

Q16) Let $0,1,1,2,0$ be five observations of a random variable X which follows a Poisson distribution with the parameter $\theta>0$. Let the minimum variance unbiased estimate of $P(X \leq 1)$, based on this data, be α. Then $5^{4} \alpha$ (in integer) is equal to \qquad

Q17) In a laboratory experiment, the behavior of cats are studied for a particular food preference between two foods A and B. For an experiment, 70% of the cats that had food A will prefer food A, and 50% of the cats that had food B will prefer food A. The experiment is repeated under identical conditions. If 40% of the cats had food A in the first experiment, then the percentage (rounded off to one decimal place) of cats those will prefer food A in the third experiment, is

Q18) A random sample of size 5 is taken from a distribution with the probability density function

$$
\text { DiSOO } f(x ; \theta)= \begin{cases}\frac{3 x^{2}}{\theta^{3}}, & 0<x<\theta, \\ 0, & \text { elsewhere, }\end{cases}
$$

where θ is an unknown parameter. If the observed values of the random sample are $3,6,4,7,5$, then the maximum likelihood estimate of the $1 / 8$ th quantile of the distribution (rounded off to one decimal place) is \qquad

Q19) Consider a gamma distribution with the probability density function

$$
f(x ; \beta)=\left\{\begin{array}{lc}
\frac{1}{24 \beta^{5}} x^{4} e^{-x / \beta}, & x>0 \\
0, & \text { elsewhere }
\end{array}\right.
$$

with $\beta>0$. Then, for $\beta=2$, the value of the Cramer-Rao lower bound (rounded off to one decimal place) for the variance of any unbiased estimator of β^{2} based on a random sample of size 8 from this distribution, is \qquad

Q20) Let $Y_{1}<Y_{2}<\cdots<Y_{\mathrm{n}}$ be the order statistics of a random sample of size n from a continuous distribution, which is symmetric about its mean μ. Then the smallest value of n (in integer) such that $P\left(Y_{1}<\mu<Y\right) \geq 0.99$, is \qquad .

Q21) If $P(x, y, z)$ is a point which is nearest to the origin and lies on the intersection of the surfaces $z=x y+5$ and $x+y+z=1$. Then the distance (in integer) between the origin and the point P is \qquad

Q22) Let $\Phi(\cdot)$ denote the cumulative distribution function of a standard normal random variable. If the random variable X has the cumulative distribution function

$$
F(x)= \begin{cases}\Phi(x) & \text { if } x<-1 \\ \Phi(x+1) & \text { if } x \geq-1\end{cases}
$$

then which one of the following statements is true?
(A) $P(X \leq-1)=1 / 2$
(B) $P(X=-1)=1 / 2$
(C) $P(X<-1)=1 / 2$
(D) $P(X \leq 0)=1 / 2$

Q23) Suppose that X has the probability density function

$$
f(x)= \begin{cases}\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

where $\alpha>0$ and $\lambda>0$. Which one of the following statements is NOT true?
(A) $E(X)$ exists for all $\alpha>0$ and $\lambda>0$
(B) Variance of X exists for all $\alpha>0$ and $\lambda>0$
(C) $E(1 / X)$ exists for all $\alpha>0$ and $\lambda>0$
(D) $E(\log e(1+X))$ exists for all $\alpha>0$ and $\lambda>0$

Q24) Suppose that there are 5 boxes, each containing 3 blue pens, 1 red pen and 2 black pens. One pen is drawn at random from each of these 5 boxes. If the random variable X_{1} denotes the total number of blue pens drawn and the random variable X_{2} denotes the total number of red pens drawn, then $P\left(X_{1}=2, X_{2}=1\right)$ equals
(A) $5 / 36$
(B) $5 / 18$
(C) $5 / 12$
(D) $5 / 9$

Q25) Suppose that x is an observed sample of size 1 from a population with probability density function $f(\cdot)$. Based on x, consider testing

$$
H_{0}: f(y)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}} ; y \in \mathbb{R} \quad \text { against } \quad H_{1}: f(y)=\frac{1}{2} e^{-|y|} ; y \in \mathbb{R}
$$

Then which one of the following statements is true?
(A) The most powerful test rejects H_{0} if $|x|>c$ for some $c>0$
(B) The most powerful test rejects H_{0} if $|x|<c$ for some $c>0$
(C) The most powerful test rejects H_{0} if $\| x|-1|>c$ for some $c>0$
(D) The most powerful test rejects H_{0} if $\| x|-1|<c$ for some $c>0$

Q26) Let A be a 2×2 real matrix such that $A B=B A$ for all 2×2 real matrices B. If trace of A equals 5 , then determinant of A (rounded off to two decimal places) equals \qquad

Q27) Two defective bulbs are present in a set of five bulbs. To remove the two defective bulbs, the bulbs are chosen randomly one by one and tested. If X denotes the minimum number of bulbs that must be tested to find out the two defective bulbs, then $P(X=3)$ (rounded off to two decimal places) equals \qquad

Q28) Let A be an $n \times n$ real matrix. Consider the following statements.
(I) If A is symmetric, then there exists $c \geq 0$ such that $A+c I_{n}$ is symmetric and positive definite, where I_{n} is the $n \times n$ identity matrix
(II) If A is symmetric and positive definite, then there exists a symmetric and positive definite matrix B such that $A=B^{2}$.
Which of the above statements is/are true?
(A) Only (I)
(B) Only (II)
(C) Both (I) and (II)
(D) Neither (I) nor (II)

Q29) Let (X, Y) have joint probability mass function

$$
p(x, y)= \begin{cases}\frac{c}{2^{x+y+2}} & \text { if } x=0,1,2, \ldots ; y=0,1,2, \ldots ; x \neq y \\ 0 & \text { otherwise } .\end{cases}
$$

Then which one of the following statements is true?
(A) $c=1 / 2$
(B) $c=1 / 4$
(C) $c>1$
(D) X and Y are independent

Q30) Which of the following sets is/are countable?
(A) The set of all functions from $\{1,2,3, \ldots, 10\}$ to the set of all rational numbers
(B) The set of all functions from the set of all natural numbers to $\{0,1\}$
(C) The set of all integer valued sequences with only finitely many non-zero terms
(D) The set of all integer valued sequences converging to 1

Discover. Prepare . Achieve

College Dekho

