1. If F is function such that $F(0)=2, F(1)=3$, $F(x+2)=2 F(x)-F(x+1)$ for $x \geq 0$, then $F(5)$ is equal to
(a) -7
(b) -3
(c) 17
(d) 13
2. Let S be a set containing n elements. Then, number of binary operations on S is
(a) n^{n}
(b) $2^{n^{2}}$
(c) $n^{n^{2}}$
(d) n^{2}
3. The numerically greatest term in the expansion of $(3-5 x)^{11}$ when $x=\frac{1}{5}$, is
(a) 55×3^{9}
(b) 55×3^{6}
(c) 45×3^{9}
(a) 45×3^{6}
4. The number of solutions of the equation $\sin \left(e^{x}\right)=5^{x}+5^{-x}$, is
(a) 0
(b) 1
(c) 2
(d) infinitely many
5. If $a^{x}=b^{y}=c^{z}=d^{u}$ and a, b, c, d are in GP, then x, y, z, u are in
(a) AP
(b) GP
(c) HP
(d) None of these
6. If z satisfies the equation $|z|-z=1+2 i$, then z is equal to
(a) $\frac{3}{2}+2 i$
(b) $\frac{3}{2}-2 i$
(c) $2-\frac{3}{2} i$
(d) $2+\frac{3}{2} i$
7. If $z=\frac{1-i \sqrt{3}}{1+i \sqrt{3}}$, then $\arg (z)$ is
(a) 60°
(b) 120°
(c) 240°
(d) 300°
8. If $f(x)=\sqrt{\log _{10} x^{2}}$. The set of all values of x for which $f(x)$ is real, is
(a) $[-1,1]$
(b) $[1, \infty)$
(c) $(-\infty,-1]$
(d) $(-\infty,-1] \cup[1, \infty)$
9. For what values of m can the expression

$$
2 x^{2}+m x y+3 y^{2}-5 y-2
$$

be expressed as the product of two linear factors?
(a) 0
(b) ± 1
(c) ± 7
(d) 49
10. If B is a non-singular matrix and A is a square matrix, then $\operatorname{det}\left(B^{-1} A B\right)$ is equal to
(a) $\operatorname{det}\left(A^{-1}\right)$
(b) $\operatorname{det}\left(B^{-1}\right)$
(c) $\operatorname{det}(A)$
(d) $\operatorname{det}(B)$
11. If $f(x), g(x)$ and $h(x)$ are three polynomials of degree 2 and

$$
\Delta(x)=\left|\begin{array}{ccc}
f(x) & g(x) & h(x) \\
f^{\prime}(x) & g^{\prime}(x) & h^{\prime}(x) \\
f^{\prime \prime}(x) & g^{\prime \prime}(x) & h^{\prime \prime}(x)
\end{array}\right|
$$

then $\Delta(x)$ is a polynomial of degree
(a) 2
(b) 3
(c) 0
(d) atmost 3
12. The chances of defective screws in three boxes A, B, C are $\frac{1}{5}, \frac{1}{6}, \frac{1}{7}$ respectively. A box is selected at random and a screw drawn from it at random is found to be defective. Then, the probability that it came from box A, is
(a) $\frac{16}{29}$
(b) $\frac{1}{15}$
(c) $\frac{27}{59}$
(d) $\frac{42}{107}$
13. The value of $\frac{\cos \theta}{1+\sin \theta}$ is equal to
(a) $\tan \left(\frac{\theta}{2}-\frac{\pi}{4}\right)$
(b) $\tan \left(-\frac{\pi}{4}-\frac{\theta}{2}\right)$
(c) $\tan \left(\frac{\pi}{4}-\frac{\theta}{2}\right)$
(d) $\tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)$
14. If $3 \sin \theta+5 \cos \theta=5$, then the value of $5 \sin \theta-3 \cos \theta$ is equal to
(a) 5
(b) 3
(c) 4
(d) None of these
15. The principal value of $\sin ^{-1}\left\{\sin \frac{5 \pi}{6}\right\}$ is
(a) $\frac{\pi}{6}$
(b) $\frac{5 \pi}{6}$
(c) $\frac{7 \pi}{6}$
(d) None of these
16. A rod of length l slides with its ends on two perpendicular lines. Then, the locus of its mid point is
(a) $x^{2}+y^{2}=\frac{l^{2}}{4}$
(b) $x^{2}+y^{2}=\frac{l^{2}}{2}$
(c) $x^{2}-y^{2}=\frac{l^{2}}{4}$
(d) None of these
17. The equation of straight line through the intersection of line $2 x+y=1$ and $3 x+2 y=5$ and passing through the origin is
(a) $7 x+3 y=0$
(b) $7 x-y=0$
(c) $3 x+2 y=0$
(d) $x+y=0$
18. The line joining $(5,0)$ to $(10 \cos \theta, 10 \sin \theta)$ is divided internally in the ratio $2: 3$ at P. If θ varies, then the locus of P is
(a) a straight line
(b) a pair of straight lines
(c) a circle
(d) None of the above
19. If $2 x+y+k=0$ is a normal to the parabola $y^{2}=-8 x$, then the value of k, is
(a) 8
(b) 16
(c) 24
(d) 32
20. $\lim _{n \rightarrow \infty}\left[\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{n(n+1)}\right]$ is equal to
(a) 1
(b) -1
(c) 0
(d) None of these
21. The condition that the line $l x+m y=1$ may be normal to the curve $y^{2}=4 a x$, is
(a) $a l^{3}-2 a l m^{2}=m^{2}$
(b) $a l^{2}+2 a l m^{3}=m^{2}$
(c) $a l^{3}+2 a l m^{2}=m^{3}$
(d) $a l^{3}+2 a l m^{2}=m^{2}$
22. If $\int f(x) d x=f(x)$, then $\int\{f(x)\}^{2} d x$ is equal to
(a) $\frac{1}{2}\{f(x)\}^{2}$
(b) $\{f(x)\}^{3}$
(c) $\frac{\{f(x)\}^{3}}{3}$
(d) $\{f(x)\}^{2}$
23. $\int \sin ^{-1}\left\{\frac{(2 x+2)}{\sqrt{4 x^{2}+8 x+13}}\right\} d x$ is equal to
(a) $(x+1) \tan ^{-1}\left(\frac{2 x+2}{3}\right)$

$$
-\frac{3}{4} \log \left(\frac{4 x^{2}+8 x+13}{9}\right)+c
$$

(b) $\frac{3}{2} \tan ^{-1}\left(\frac{2 x+2}{3}\right)$

$$
-\frac{3}{4} \log \left(\frac{4 x^{2}+8 x+13}{9}\right)+c
$$

(c) $(x+1) \tan ^{-1}\left(\frac{2 x+2}{3}\right)$

$$
-\frac{3}{2} \log \left(4 x^{2}+8 x+13\right)+c
$$

(d) $\frac{3}{2}(x+1) \tan ^{-1}\left(\frac{2 x+2}{3}\right)$

$$
-\frac{3}{4} \log \left(4 x^{2}+8 x+13\right)+c
$$

24. If the equation of an ellipse is $3 x^{2}+2 y^{2}+6 x-8 y+5=0$, then which of the following are true?
(a) $e=\frac{1}{\sqrt{3}}$
(b) centre is $(-1,2)$
(c) foci are $(-1,1)$ are $(-1,3)$
(d) All of the above
25. The equation of the common tangents to the two hyperbolas $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$, are
(a) $y= \pm x \pm \sqrt{b^{2}-a^{2}}$
(b) $y= \pm x \pm \sqrt{a^{2}-b^{2}}$
(c) $y= \pm x \pm \sqrt{a^{2}+b^{2}}$
(d) $y= \pm x \pm\left(a^{2}-b^{2}\right)$
26. Domain of the function $f(x)=\log _{x} \cos x$, is
(a) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-\{1\}$
(b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{1\}$
(c) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(d) None of these
27. Range of the function $y=\sin ^{-1}\left(\frac{x^{2}}{1+x^{2}}\right)$, is
(a) $\left(0, \frac{\pi}{2}\right)$
(b) $\left[0, \frac{\pi}{2}\right)$
(c) $\left(0, \frac{\pi}{2}\right]$
(d) $\left[0, \frac{\pi}{2}\right]$
28. If $x=\sec \theta-\cos \theta, y=\sec ^{n} \theta-\cos ^{n} \theta$, then $\left(x^{2}+4\right)\left(\frac{d y}{d x}\right)^{2}$ is equal to
(a) $n^{2}\left(y^{2}-4\right)$
(b) $n^{2}\left(4-y^{2}\right)$
(c) $n^{2}\left(y^{2}+4\right)$
(d) None of these
29. If $y=\sqrt{x+\sqrt{y+\sqrt{x+\sqrt{y+\ldots \infty}}}}$, then $\frac{d y}{d x}$ is equal to
(a) $\frac{y+x}{y^{2}-2 x}$
(b) $\frac{y^{3}-x}{2 y^{2}-2 x y-1}$
(c) $\frac{y^{3}+x}{2 y^{2}-x}$
(d) None of these
30. If $\int_{1}^{x} \frac{d t}{|t| \sqrt{t^{2}-1}}=\frac{\pi}{6}$, then x can be equal to
(a) $\frac{2}{\sqrt{3}}$
(b) $\sqrt{3}$
(c) 2
(d) None of these
31. The area bounded by the curve $y=|\sin x|$, x-axis and the lines $|x|=\pi$, is
(a) 2 sq unit
(b) 1 sq unit
(c) 4 sq unit
(d) None of these
32. The degree of the differential equation of all curves having normal of constant length c is
(a) 1
(b) 3
(c) 4
(d) None of these
33. If $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}, \quad \overrightarrow{\mathbf{b}}=-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{c}}=3 \hat{\mathbf{i}}+\hat{\mathbf{j}}$, then $\overrightarrow{\mathbf{a}}+t \overrightarrow{\mathbf{b}}$ is perpendicular to $\overrightarrow{\mathbf{c}}$, if t is equal to
(a) 2
(b) 4
(c) 6
(d) 8
34. The distance between the line $\overrightarrow{\mathbf{r}}=2 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}+\lambda(\hat{\mathbf{i}}-\hat{\mathbf{j}}+4 \hat{\mathbf{k}})$ and the plane $\overrightarrow{\mathbf{r}} \cdot(\hat{\mathbf{i}}+5 \hat{\mathbf{j}}+\hat{\mathbf{k}})=5$, is
(a) $\frac{10}{3}$
(b) $\frac{10}{\sqrt{3}}$
(c) $\frac{10}{3 \sqrt{3}}$
(d) $\frac{10}{9}$
35. The equation of sphere concentric with the sphere $\quad x^{2}+y^{2}+z^{2}-4 x-6 y-8 z-5=0$ and which passes through the origin, is
(a) $x^{2}+y^{2}+z^{2}-4 x-6 y-8 z=0$
(b) $x^{2}+y^{2}+z^{2}-6 y-8 z=0$
(c) $x^{2}+y^{2}+z^{2}=0$
(d) $x^{2}+y^{2}+z^{2}-4 x-6 y-8 z-6=0$
36. If the lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect, then the value of k, is
(a) $\frac{3}{2}$
(b) $\frac{9}{2}$
(c) $-\frac{2}{9}$
(d) $-\frac{3}{2}$
37. The two curves $y=3^{x}$ and $y=5^{x}$ intersect at an angle
(a) $\tan ^{-1}\left(\frac{\log 3-\log 5}{1+\log 3 \log 5}\right)$
(b) $\tan ^{-1}\left(\frac{\log 3+\log 5}{1-\log 3 \log 5}\right)$
(c) $\tan ^{-1}\left(\frac{\log 3+\log 5}{1+\log 3 \log 5}\right)$
(d) $\tan ^{-1}\left(\frac{\log 3-\log 5}{1-\log 3 \log 5}\right)$
38. The equation

$$
\lambda x^{2}+4 x y+y^{2}+\lambda x+3 y+2=0
$$

represents a parabola, if λ is
(a) 0
(b) 1
(c) 2
(d) 4
39. If two circles $2 x^{2}+2 y^{2}-3 x+6 y+k=0$ and $\quad x^{2}+y^{2}-4 x+10 y+16=0 \quad$ cut orthogonally, then the value of k is
(a) 41
(b) 14
(c) 4
(d) 1
40. If $A(-2,1), B(2,3)$ and $C(-2,-4)$ are three points. Then, the angle between $B A$ and $B C$ is
(a) $\tan ^{-1}\left(\frac{2}{3}\right)$
(b) $\tan ^{-1}\left(\frac{3}{2}\right)$
(c) $\tan ^{-1}\left(\frac{1}{3}\right)$
(d) $\tan ^{-1}\left(\frac{1}{2}\right)$

Answer Key

1. d	2. c	3. a	4. a	5. c	6. b	7. c	8. d	9. c	10. c
11. c	12. d	13. c	14. b	15. a	16. a	17. a	18. c	19. c	20. a
21. d	22. a	23. a	24. d	25. b	26. d	27. b	28. c	29. d	30. a
31. c	32. d	33. d	34. c	35. a	36. b	37. a	38. d	39. c	40. a

