MATHEMATICS

1. $1+3+6+\ldots++^{\frac{n(n+1)}{2}}=$
A. $\frac{n(n+1)(2 n+1)}{6}$
B. $\frac{n^{<}(n+1)^{2}}{4}$
C. $\frac{n(n+1)(2 n+1)}{4}$
D. $\frac{n(n+1)(n+2)}{6}$
2. If $A=\{$ Rhombuses $\}, B=\{$ Rectangles $\}$, then $A \cap B=$
A. \{Squares \}
B. \{Rectangles\}
C. $\{$ Rhombuses $\}$
D. $\{$ Parallelograms $\}$
3. If α, β are the roots of $a x^{2}+b x+c=0$ then $(a \alpha+b)^{-3}+(a \beta+b)^{-3}=$
A. $a^{3}-2 a b c$
B. $b^{3}-3 a b c$
C. $\frac{c^{3}-3 a b c}{b^{3} c^{3}}$
D. $\frac{b^{3}-3 a b c}{a^{3} c^{3}}$
4. The term independent of x in $\left(a x+\frac{b}{x}\right)^{14}$ is
A. 14!a7b7
B. $\frac{14!}{(7!)^{2}} a^{7} b^{7}$
C. $\frac{14!}{7!} a^{7} b^{7}$
D. $\frac{14!}{(17!)^{3}} a^{7} b^{7}$

Note: All questions are of objective type (multiple choice questions). Each question has four options of which one is correct. Each correct answer will be awarded 2 marks. The wrong answer and unanswered questions will receive nil marks.
5. If $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in A.P then
A. a^{2}, b^{2}, c^{2} are in A.P
B. b^{2}, c^{2}, a^{2} are in A.P
C. b^{2}, a^{2}, c^{2} are in A.P
D. a^{2}, b^{2}, c^{2} are in G.P
6. If ${ }^{(2 n+1)} P_{n-1}:\left({ }^{(2 n-1)} P_{n}=3: 5\right.$ then $n=$
A. 4
B. 5
C. 6
D. 3
7. If $A=\left[\begin{array}{ccc}1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{rrr}2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2\end{array}\right]$, then $A B=$
A. $\left[\begin{array}{ccc}5 & 3 & 11 \\ 1 & 2 & 2 \\ 1 & 3 & 5\end{array}\right]$
B. $\left[\begin{array}{lll}\sim & 2 & 4 \\ -1 & 2 & 4 \\ -2 & 2 & 4\end{array}\right]$
C. $\left[\begin{array}{ccc}5 & 8 & 11 \\ 1 & 2 & 3 \\ 2 & 2 & -3\end{array}\right]$
D. $\left[\begin{array}{ccc}5 & 8 & 11 \\ 1 & 2 & 2 \\ 2 & 2 & -3\end{array}\right]$
8. The points $\bar{i}+\bar{j}+\bar{k}, \bar{i}+2 \bar{j}, 2 \bar{i}+2 \bar{j}+\bar{k}$ and $2 \bar{i}+3 \bar{j}+2 \bar{k}$ are
A. Collinear
B. Coplanar but not collinear
C. Non-Coplanar
D. Cannot say

Note: All questions are of objective type (multiple choice questions). Each question has four options of which one is correct. Each correct answer will be awarded 2 marks. The wrong answer and unanswered questions will receive nil marks.
9. The fourth vertex of the square, whose consecutive vertices are (4, 5, 1), (2, 4, -1) and ($3,6,-3$), is
A. $(-4,2,4)$
B. $(4,-2,-4)$
C. $(5,7,-1)$
D. $(5,0,1)$
10. If $\operatorname{Tan} 20^{\circ}=\lambda$, then $\frac{\operatorname{Tan} 250^{\circ}+\operatorname{Tan} 340^{\circ}}{\operatorname{Tan} 200^{\circ}-\operatorname{Tan} 110^{\circ}}=$
A. $\frac{1+\lambda^{2}}{1-\lambda^{2}}$
B. $\frac{1-\Lambda^{2}}{1+\lambda^{2}}$
C. $\frac{1+\lambda^{2}}{2 \lambda}$
D. $\frac{1-\lambda^{2}}{2 \lambda}$
11. In $\triangle \mathrm{ABC}$, if $\angle \mathrm{A}, \angle \mathrm{B}$ and $\angle \mathrm{C}$ are in A.P., then $\frac{a+c}{\sqrt{a^{2}-a c+c^{2}}}=$
A. $\operatorname{Cos}\left(\frac{A-C}{2}\right)$
B. $\operatorname{Sin}\left(\frac{A-C}{2}\right)$
C. $2 \operatorname{Cos}\left(\frac{A-C}{2}\right)$
D. $2 \operatorname{Sin}\left(\frac{A-C}{2}\right)$
12. ${ }^{\operatorname{Lt} \rightarrow \infty} \frac{\sqrt{1+25 x^{2}}+\sqrt{9 x^{2}-1}}{\sqrt{1+25 x^{2}}-\sqrt{9 x^{2}-1}}=$
A. 1
B. 2
C. 3
D. 4

Note: All questions are of objective type (multiple choice questions). Each question has four options of which one is correct. Each correct answer will be awarded 2 marks. The wrong answer and unanswered questions will receive nil marks.
13. The side of a cube is decreased at the rate of $0.04 \mathrm{~cm} / \mathrm{sec}$. The rate of decrease in the volume of the cube when the side is 10 cm is
A. 2 cubic $\mathrm{cm} / \mathrm{sec}$
B. 10 cubic $\mathrm{cm} / \mathrm{sec}$
C. $3 \mathrm{cubic} \mathrm{cm} / \mathrm{sec}$
D. 16 cubic $\mathrm{cm} / \mathrm{sec}$
14. $\int \frac{x^{49} \operatorname{Tan}^{-1}\left(x^{50}\right)}{1+x^{100}} d x=k\left(\operatorname{Tan}^{-1}\left(x^{50}\right)\right)^{2}+c$, then $k=$
A. $1 / 50$
B. $-1 / 50$
C. $1 / 100$
D. $-1 / 100$
15. If $n \neq 1, \int_{0}^{\pi / 4}\left(\operatorname{Tan}^{n} x+\operatorname{Tan}^{n-2} x\right) d(x-[x])=$
A. $\frac{2}{n+1}$
B. $\frac{1}{n+1}$
C. $\frac{2}{n-1}$
D. $\frac{1}{n-1}$

Note: All questions are of objective type (multiple choice questions). Each question has four options of which one is correct. Each correct answer will be awarded 2 marks. The wrong answer and unanswered questions will receive nil marks.

PHYSICS

1. A vector $\overline{\mathbf{Q} f}$ magnitude two units lies in $X Y$ plane. It is inclined at 30° with a positive X-axis and at 60° with a positive Y -axis. Another vector of magn乱ude 5 units lies along the positive x-axis. is equal t $\overline{\boldsymbol{a}} . \overline{\mathrm{B}}$
A. $5 \sqrt{3}$
B. $3 \sqrt{5}$
C. $2 \sqrt{3}$
D. $3 \sqrt{2}$
2. A bus is moving with a velocity of $10 \mathrm{~ms}^{-1}$ on a straight road. A scooterist wishes to overtake the bus in the 100 s . If the bus is at a distance of 1 km from the scooterist, what velocity should the scooterist chase the bus?
A. $50 \mathrm{~ms}^{-1}$
B. $40 \mathrm{~ms}^{-1}$
C. $30 \mathrm{~ms}^{-1}$
D. $20 \mathrm{~ms}^{-1}$
3. The acceleration - time graph of a particle moving in a straight line is shown in the figure. The velocity of the particle at time $t=0$ is $2 \mathrm{~m} / \mathrm{s}$. The velocity after 2 s will be

A. $6 \mathrm{~m} / \mathrm{s}$
B. $4 \mathrm{~m} / \mathrm{s}$
C. $2 \mathrm{~m} / \mathrm{s}$
D. $8 \mathrm{~m} / \mathrm{s}$

Note: All questions are of objective type (multiple choice questions). Each question has four options of which one is correct. Each correct answer will be awarded 2 marks. The wrong answer and unanswered questions will receive nil marks.
4. A particle is projected vertically upwards from point A on the ground. It takes time t_{1} to reach point B , but it continues to move up. If it carries further t_{2} time to reach the ground from point B. Then the height of the point B from the ground is
A. $\frac{1}{2} g\left(t_{1}+t_{2}\right)^{2}$
B. $\mathrm{gt}_{1} \mathrm{t}_{2}$
$\frac{1}{8} g\left(t_{1}+t_{2}\right)^{2}$
C.
D. $\frac{1}{2} g t_{1} t_{2}$
5. A lead ball strikes a wall and falls down. A tennis ball has the same mass, and velocity strikes the same wall and bounces back. Which of the following is correct?
A. The tennis ball suffers a greater change in momentum
B. The lead ball suffers a greater change in momentum
C. Both balls suffer the same change in momentum
D. The momentum of the lead ball is greater than that of the tennis ball
6. Consider the following statements and identify the correct answer (A) The moment of inertia of a rigid body about an axis of rotation is numerically equal to twice the kinetic energy of rotation of the body, when rotating with angular velocity about that axis
(B) Radius of gyration of a body changes with change in location of the axis of rotation
A. A is false, but B is true
B. Both A and B are true
C. A is true, but B is false
D. Both A and B are false
7. A tensile force of 2×10^{5} dyne doubles the length of an elastic cord whose cross section area is $2 \mathrm{~cm}^{2}$. Young's modulus of the material of the cord is
A. $2 \times 105 \mathrm{~N} / \mathrm{m} 2$
B. 2×105 dyne/cm2
C. 1010 dyne/cm2
D. $104 \mathrm{~N} / \mathrm{m} 2$

Note: All questions are of objective type (multiple choice questions). Each question has four options of which one is correct. Each correct answer will be awarded 2 marks. The wrong answer and unanswered questions will receive nil marks.

GITAM ADMISSION TEST (GAT)
8. Starting with the same initial conditions, an ideal gas expands from volume V_{1} to V_{2} in three different ways. The work done by the gas is W_{1} if the process is purely isothermal, W_{2} if purely isobaric and W_{3} if purely adiabatic, then
A. $W_{1}>W_{2}>W_{3}$
B. $\mathrm{W} 2>\mathrm{W} 3>\mathrm{W} 1$
C. $\mathrm{W} 2>\mathrm{W} 1>\mathrm{W} 3$
D. $\mathrm{W} 1>\mathrm{W} 3>\mathrm{W} 2$
9. For the wave shown in the fig, the frequency and wavelength if its speed is 320 $\mathrm{m} / \mathrm{sec}$

A. $8 \mathrm{~cm}, 400 \mathrm{~Hz}$
B. $80 \mathrm{~cm}, 40 \mathrm{~Hz}$
C. $8 \mathrm{~cm}, 4000 \mathrm{~Hz}$
D. $40 \mathrm{~cm}, 8000 \mathrm{~Hz}$
10. The correct between fringe width β and distance between the slits (d) is
A.

B.

Note: All questions are of objective type (multiple choice questions). Each question has four options of which one is correct. Each correct answer will be awarded 2 marks. The wrong answer and unanswered questions will receive nil marks.
C.

D.

Note: All questions are of objective type (multiple choice questions). Each question has four options of which one is correct. Each correct answer will be awarded 2 marks. The wrong answer and unanswered questions will receive nil marks.

CHEMISTRY

1. The number of spectral lines possible when an electron falls from the fifth orbit to ground state in a hydrogen atom is
A. 4
B. 15
C. 10
D. 21
2. The octet rule is not valid for molecules
A. CO_{2}
B. $\mathrm{H}_{2} \mathrm{O}$
C. O_{2}
D. CO
3. BCl_{3} is a planar molecule, whereas NCl_{3} is pyramidal because
A. BCl 3 has no lone pair of electrons, but NCl 3 has a lone pair of electrons
B. $\mathrm{B}-\mathrm{Cl}$ bond is more polar than $\mathrm{N}-\mathrm{Cl}$ bond
C. Nitrogen atom is smaller than boron atom
D. $\mathrm{N}-\mathrm{Cl}$ bond is more covalent than $\mathrm{B}-\mathrm{Cl}$ bond
4. I_{1} and I_{2} of Mg are 178 and $348 \mathrm{Kcal} /$ mole, respectively. The energy required for the reaction $\mathrm{Mg}_{(\mathrm{g})} \rightarrow \mathrm{Mg}_{(\mathrm{g})}{ }^{+2}+2 \mathrm{e}$ is
A. +170 Kcal
B. +526 Kcal
C. -170 Kcal
D. -525 Kcal
5. In the redox reaction,
$\mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4}+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+8 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{CO}_{2}$
The volume of $0.1 \mathrm{M} \mathrm{KMnO}_{4}$ required to oxidize 25 ml of $0.25 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ solution is
A. 25litre
B. 125 ml
C. 25 ml
D. 1.25 litre

Note: All questions are of objective type (multiple choice questions). Each question has four options of which one is correct. Each correct answer will be awarded 2 marks. The wrong answer and unanswered questions will receive nil marks.
6. V vs T curves at constant pressure P_{1} and P_{2} for an ideal gas is shown below

Which is correct
A. $\mathrm{P} 1>\mathrm{P} 2$
B. $\mathrm{P} 1<\mathrm{P} 2$
C. $\mathrm{P} 1=\mathrm{P} 2$
D. All of the above
7. If R is the radius of the spheres in the close-packed arrangement and r is the radius of the octahedral void, then
A. $R=0.414 \mathrm{r}$
B. $r=0.414 \mathrm{R}$
C. $R=0.225 r$
D. $r=0.224 \mathrm{R}$
8. In the reaction $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$, the rate of formation of NO is $1 \times 10-$ $3 \mathrm{~mole} /$ litre-sec. The rate of disappearance of O_{2} is
A. $4 \times 10-3$
B. $5 \times 10-3$
C. $1.25 \times 10-3$
D. $0.8 \times 10-3$
9. Duralumin is an alloy of
A. Al and Mg
B. Al, Mg and Ni
C. $\mathrm{Al}, \mathrm{Mg}, \mathrm{Mn}$ and Cu
D. Al and Ni

Note: All questions are of objective type (multiple choice questions). Each question has four options of which one is correct. Each correct answer will be awarded 2 marks. The wrong answer and unanswered questions will receive nil marks.
10. Copper on reaction with dil HNO_{3} give
A. $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{N}_{2} \mathrm{O}$
B. $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}$
C. $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}_{2}$
D. $\mathrm{CuNO}_{3}+\mathrm{NO}$

Note: All questions are of objective type (multiple choice questions). Each question has four options of which one is correct. Each correct answer will be awarded 2 marks. The wrong answer and unanswered questions will receive nil marks.

