HALF YEARLY EXAMINATION

SEPTEMBER 2019

SET A

CLASS XI

Marking Scheme – PHYSICS [THEORY]

Q.NO.	Answers	Marks (with split up)
1.	(c)Gravitational force	1
2.	(b) distance	1
3.	(a) Tension and surface tension	1
4.	(c) 14%	1
5.	(c)five	1
6.	(a) 4.9cm	1
7.	(b) 100km	1
8.	(b)its acceleration is constant	1
9.	(c) $2r$, πr	1
10.	(d)The particle moves at a constant velocity upto time t₀ and then stops.	1
11.	(d) 2v	1
12.	$(c)90^0$	1
13.	(c)Taking of an aircraft.	1
14.	(b) 55	1
15.	(b) $\sqrt{\frac{2h}{g}}$	1
16.	(a) That ground exerts on the horse	1
17	(c)OR (a)mark is rewarded if any of these options are written	1
18	(a)Larger friction	1
19	(a)zero	1
20	(a) Impulse	1
21	Proving that the given equation is dimensionally correct	2
22	(i) Statement of polygon law of vector addition.	1
	(ii) Definition of displacement vector and unit vector. OR	½+1/2
	(i) Statement of parallelogram law of vector addition.	1
	(ii) Definition of equal vector and null vector.	¹ / ₂ +1/2
23	any two differences between accuracy and precision.	1+1
24	(i) 1:3(formula +answer)	(1/2+1/2)
	(ii) A ball falling freely after being thrown up, on striking the ground rebounds with reduced speed after each hit against the ground.	1
25	(i) any two properties of strong nuclear force.	1

	(ii) the relative strength of various forces in nature.	1
26	(i) In empty space there is no reaction force	1
	(ii) Reason for a cricketer moving his hands backwards while holding a catch. \overline{OR}	1
	(i) Kinetic friction is less than static friction.	1
	(ii) Rolling friction is less than sliding friction.	1
27	any two laws of kinetic friction.	1+1
28	Definition of linear momentum and impulse.	1+1
	Obtaining relation between impulse and linear momentum.	1
29	Free body diagram for a vehicle moving on a banked road obtaining equation for maximum velocity required for a vehicle on a banked circular road	1 2
30	(i) any two advantages of SI system over other systems of units.	1
	(ii) Dimension of a = $\left[ML^{1/2}T^{-2}\right]$	1
	Dimension of $b = [ML T^{-4}]$	1
	OR	
	(i) any two limitations of the method of dimensional analysis.	1
	(ii) Unit of b = m/s	1
	Unit of $c = m/s^2$	1
31	Formula;t=10s	½+1/2
	Formula ;R=980m	½+1/2
	Formula ;v=138.57m/s	½+1/2
	OR	
	Initial KE=1/2 mu ²	1/2
	Velocity at the top=ucosθ	/2
	velocity at the top-deoso	1/2
	KE at the top= $1/2 \text{ mu}^2 \text{cos}^2 \theta$	
		1/2
1	$\frac{3}{4} \frac{1}{2} \text{ mu}^2 = \frac{1}{2} \frac{\text{mu}^2 \cos^2 \theta}{\text{mu}^2 \cos^2 \theta}$	1/2
	$\cos^2\theta = 3/4$	1/2
	θ=30	1/2
32	Angular velocity=π/6 rad/hr	½+1/2
	1	

	diagram and proof of associative property of vector addition	1 ½ 1 ½
33	Instantaneous velocity-definition Deriving expression for distance travelled in the nth second	1 2
34	Proving that the path followed by a projectile is a parabola (diagram +introduction) derivation	1/2 1 1/2
35	(ii) Both the balls will rise to the same height. Because height attained is independent of mass of the body. (iii) velocity-time graph of uniform motion and introduction proving displacement of an object in a time interval is equal to the area under velocity-time graph in that time interval. OR	1 1/2+1/2 1/2+1/2 2 1
	(ii)Yes. Uniform circular motion (iii) velocity-time graph of uniform motion and introduction Deriving the relation $v^2 = u^2 + 2as$ for uniformly accelerated motion	1 1 2
36	of an object along a straight line. (i) Obtaining an expression for centripetal acceleration of an object in	
	uniform circular motion in a plane. (diagram and derivation) (ii) for formula the angle of projection at which the horizontal range and maximum height of	1+2 1/2+1/2
	a projectile are equal= 75.96°(getting the answer) OR	1
	(i) obtaining an expression for time of flight, horizontal range and maximum height attained.	1+1+1

	(ii) getting v=288.68km/h V _y =144.34km/h	1+1
37	 (i) Newton's second law of motion(Statement) Getting first law from second law Getting third law from second law (ii) a = 0.5m/s² v=15m/s OR	1 1 1 1
	(i) law of conservation of linear momentum(statement) Proof T1 cos θ = T2 =60N T1 sin θ = 50N $\tan \theta$ = 5/6 θ = 39.8	1+2 1/2+1/2 1/2 1/2