FIITJ EE
Solutions to JEE(M ain) -2023

Test D ate: $1^{\text {st }}$ February 2023 (Second Shift)

PHYSICS, CHEMISTRY \& MATHEMATICS

Paper - 1

[^0]
PART - A (PHYSICS)

SECTION - A

(One Options Correct Type)

This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct.

Q1. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R.
Assertion A : For measuring the potential difference across a resistance of 600Ω, the voltmeter with resistance 1000Ω will be preferred over voltmeter with resistance 4000Ω.
Reason R : Voltmeter with higher resistance will draw smaller current than voltmeter with lower resistance.
In the light of the above statements, choose the most appropriate answer from the options given below.
(A) Both \mathbf{A} and \mathbf{R} are correct and \mathbf{R} is the correct explanation of \mathbf{A}
(B) \mathbf{A} is not correct but \mathbf{R} is correct
(C) Both \mathbf{A} and \mathbf{R} are correct but R is not the correct explanation of \mathbf{A}
(D) \mathbf{A} is correct but \mathbf{R} is not correct

Q2. Two objects A and B are placed at 15 cm and 25 cm from the pole in front of a concave mirror having radius of curvature 40 cm . The distance between images formed by the mirror is
\qquad
(A) 60 cm
(B) 40 cm
(C) 160 cm
(D) 100 cm

Q3. A coil is placed in magnetic field such that plane of coil is perpendicular to the direction of magnetic field. The magnetic flux through a coil can be changed:
A. By changing the magnitude of the magnetic field within the coil.
B. By changing the area of coil within the magnetic field.
C. By changing the angle between the direction of magnetic field and the plane of the coil.
D. By reversing the magnetic field direction abruptly without changing its magnitude.

Choose the most appropriate answer from the options given below :
(A) A, B and D only
(B) A and B only
(C) A, B and C only
(D) A and C only

Q4. The escape velocities of two planets A and B are in the ratio $1: 2$. If the ratio of their radii respectively is $1: 3$, then the ratio of acceleration due to gravity of planet A to the acceleration of gravity of planet B will be :
(A) $\frac{2}{3}$
(B) $\frac{4}{3}$
(C) $\frac{3}{4}$
(D) $\frac{3}{2}$

Q5. If the velocity of light c , universal gravitational constant G and Planck's constant h are chosen as fundamental quantities. The dimensions of mass in the new system is :
(A) $\left[h^{1 / 2} c^{1 / 2} G^{-1 / 2}\right]$
(B) $\left[h^{-1 / 2} c^{1 / 2} G^{1 / 2}\right]$
(C) $\left[h^{1} c^{1} G^{-1}\right]$
(D) $\left[h^{1 / 2} c^{-1 / 2} G^{1}\right]$

Q6. The Young's modulus of a steel wire of length 6 m and cross-sectional area $3 \mathrm{~mm}^{2}$, is 2×10^{11} $\mathrm{N} / \mathrm{m}^{2}$. The wire is suspended from its support on a given planet. A block of mass 4 kg is attached to the free end of the wire. The acceleration due to gravity on the planet is $\frac{1}{4}$ of its value on the earth. The elongation of wire is (Take g on the earth $=10 \mathrm{~m} / \mathrm{s}^{2}$) :
(A) 1 cm
(B) 0.1 cm
(C) 1 mm
(D) 0.1 mm

Q7. Choose the correct statement about Zener diode :
(A) It work as a voltage regulator in forward bias behaves like simple pn junction diode in reverse bias.
(B) It works as a voltage regulation in both forward and reverse bais.
(C) It works as a voltage regulator in reverse bias behaves like simple pn junction diode in forward bias.
(D) It works as a voltage regulator only in forwards bias.

Q8. Given below are statements: One is labelled as Assertion A and the other is labelled as Reason R.

Assertion A : Two metallic spheres are charged to the same potential. One of them is hollow and another is solid, and both have the same radii. Solid sphere will have charge than the hollow one.

Reason R : Capacitance of metallic sphere depend on the radii of sphere.
In the light of the above statements, choose the correct answer from the options given below.
(A) \mathbf{A} is false but \mathbf{R} is true
(B) \mathbf{A} is true but R is false
(C) Both \mathbf{A} and \mathbf{R} are true but \mathbf{R} is not the correct explanation of \mathbf{A}
(D) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}

Q9. In an amplitude modulation, a modulating signal having amplitude of $X V$ is superimposed with a carrier signal of amplitude Y V in first case. Then, in second case, the same modulating signal is superimposed with different carrier signal of amplitude 2 Y V . The ratio of modulation index in the two cases respectively will be :
(A) $1: 1$
(B) $2: 1$
(C) $4: 1$
(D) $1: 2$

Q10. Equivalent resistance between the adjacent corners of a regular n-sided polygon of uniform wire of resistance R would be :
(A) $\frac{(n-1) R}{n^{2}}$
(B) $\frac{(n-1) R}{n}$
(C) $\frac{n^{2} R}{n-1}$
(D) $\frac{(n-1) R}{(2 n-1)}$

Q11. An electron of a hydrogen like atom, having $Z=4$, jumps from $4^{\text {th }}$ energy state to $2^{\text {nd }}$ energy state. The energy released in this process, will be :
(Given Rch = 13.6 eV)
Where R = Rydberg constant
$c=$ Speed of light on vacuum
h = Planck's constant
(A) 3.4 eV
(B) 40.8 eV
(C) 10.5 eV
(D) 13.6 eV

Q12. As shown in the figure, a long straight conductor with semicircular arc of radius $\frac{\pi}{10} m$ is carrying current $I=3 A$. The magnitude of the magnetic field. at the centre O of the
 arc is :
(The permeability of the vacuum $=4 \pi \times 10^{-7} \mathrm{NA}^{-2}$)
(A) $3 \mu \mathrm{~T}$
(B) $6 \mu \mathrm{~T}$
(C) $4 \mu \mathrm{~T}$
(D) $1 \mu \mathrm{~T}$

Q13. The ratio of average electric energy density and total average energy density of electromagnetic wave is :
(A) 3
(B) $\frac{1}{2}$
(C) 2
(D) 1

Q14. For three low density gases A, B, C pressure versus temperature graphs are plotted while keeping them at constant volume, as shown in the figure. The temperature corresponding to the point ' K ' is :
(A) $-273^{\circ} \mathrm{C}$

(B) $-100^{\circ} \mathrm{C}$
(C) $-373^{\circ} \mathrm{C}$
(D) $-40^{\circ} \mathrm{C}$

Q15. The threshold frequency of a metal of f_{0}. When the light of frequency $2 f_{0}$ is incident on the metal plate, the maximum velocity of photoelectrons is v_{1}. When the frequency of incident radiation is increased to $5 f_{0}$, the maximum velocity of photoelectrons emitted is v_{2}. The ratio of v_{1} to v_{2} is :
(A) $\frac{v_{1}}{v_{2}}=\frac{1}{2}$
(B) $\frac{v_{1}}{v_{2}}=\frac{1}{4}$
(C) $\frac{v_{1}}{v_{2}}=\frac{1}{16}$
(D) $\frac{v_{1}}{v_{2}}=\frac{1}{8}$

Q16. Figures (a), (b), (c) and (d) show variation of force with time.
(a)

(b)

(c)

(d)

The impulse is highest in figure.
(A) Fig (b)
(B) Fig (d)
(C) Fig (a)
(D) Fig (c)

Q17. Choose the correct length (L) versus square of time period $\left(T^{2}\right)$ graph for a simple pendulum executing simple harmonic motion.
(A)

(B)

(C)

(D)

Q18. As shown in the figure a bock of mass 10 kg lying on a horizontal surface is pulled by a force F acting at an angle 30°, with horizontal. For $\mu_{\mathrm{s}}=0.25$, the block will just start to move for the value of F : [Given $g=10 \mathrm{~ms}^{-2}$]
(A) 33.3 N
(B) 25.2 N
(C) 35.7 N
(D) 20 N

Q19. A Carnot engine operating between two reservoirs has efficiency $\frac{1}{3}$. When the temperature of cold reservoir raised by x, its efficiency decreases to $\frac{1}{6}$. The value of x . if the temperature hot reservoir is $99^{\circ} \mathrm{C}$, will be :
(A) 66 K
(B) 16.5 K
(C) 33 K
(D) 62 K

Q20. For a body projected at an angle with the horizontal from the ground, choose the correct statement.
(A) Gravitational potential energy is maximum at the highest point.
(B) The Kinetic Energy (K.E.) is zero at the highest point of projectile motion.
(C) The vertical component of momentum is maximum at the highest point.
(D) The horizontal component of velocity is zero at the highest point.

SECTION - B

(Numerical Answer Type)

This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.

Q1. In the given circuit, the value of $\left|\frac{I_{1}+I_{3}}{I_{2}}\right|$ is \qquad

Q2. Moment of inertia of a disc of mass M and radius ' R ' about any of its diameter is $\frac{M R^{2}}{4}$. The moment of inertia of this disc about an axis normal to the disc and passing through a point on its edge will be, $\frac{x}{2} M R^{2}$. The value of x is \qquad .

Q3. A square shaped coil of area $70 \mathrm{~cm}^{2}$ having 600 turns rotates in a magnetic field of $0.4 \mathrm{wbm}^{-2}$, about an axis which is parallel to one of the side of the coil and perpendicular to the direction of field. If the coil completes 500 revolution in a minute, the instantaneous emf when the plane of the coil is inclined at 60° with the field, will be \qquad V. $\left(\right.$ Take $\left.\pi=\frac{22}{7}\right)$

Q4. The surface of water in a water tank of cross section area $750 \mathrm{~cm}^{2}$ on the top of a house is h m above the tap level. The speed of water coming out through the tap of cross section area 500 mm^{2} is $30 \mathrm{~cm} / \mathrm{s}$. At that instant, $\frac{\mathrm{dh}}{\mathrm{dt}}$ is $\mathrm{x} \times 10^{-3} \mathrm{~m} / \mathrm{s}$. The value of x will be \qquad .

Q5. A block is fastened to a horizontal spring. The block is pulled to a distance $x=10 \mathrm{~cm}$ from its equilibrium position (at $x=0$) on a frictionless surface from rest. The energy of the block at $x=$ 5 cm is 0.25 J . The spring constant of the spring is \qquad Nm^{-1}.

Q6. Nucleus A having $\mathrm{Z}=17$ and equal number of protons and neutrons has 1.2 MeV binding energy per nucleon.
Another nucleus B of $Z=12$ has total 26 nucleons and 1.8 MeV binding energy per nucleons. The difference of binding energy of B and A will be \qquad MeV .

Q7. A cubical volume is bounded by the surfaces $x=0, x=a, y=0, y=a, z=0, z=a$. The electric field in the region is given by $\vec{E}=E_{0} x \hat{i}$. Where $E_{0}=4 \times 10^{4} \mathrm{NC}^{-1} \mathrm{~m}^{-1}$. If $\mathrm{a}=2 \mathrm{~cm}$, the charge contained in the cubical volume is $\mathrm{Q} \times 10^{-14} \mathrm{C}$. The value of Q is \qquad .
(Take $\epsilon_{0}=9 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}$)
Q8. For a train engine moving with speed of $20 \mathrm{~ms}^{-1}$, the driver must apply brakes at a distance of 500 m before the station for the train to come to rest at the station. If the breaks were applied at half of this distance, the train engine would cross the station with speed $\sqrt{x} \mathrm{~ms}^{-1}$. The value of x is

[^1]Q9. A force $\mathrm{F}=\left(5+3 \mathrm{y}^{2}\right)$ acts on a particle in the y -direction, where F is in newton and y is in meter. The work done by the force during a displacement form $y=2 m$ to $y=5 m$ is \qquad J.

Q10. As shown in the figure, in Young's double slit experiment, a thin plate of thickness $t=10 \mu \mathrm{~m}$ and refractive index $\mu=1.2$ is inserted infront of slit S_{1}. The experiment is conducted in $\operatorname{air}(\mu=1)$ and uses a monochromatic light of wavelength $\lambda=500 \mathrm{~nm}$. Due to the insertion of the plate, central maxima is shifted by a distance of $\times \beta_{0} . \beta_{0}$ is the fringe - width before the insertion of the plate. The value of the x is \qquad -.

PART - B (CHEMISTRY)

SECTION - A

(One Options Correct Type)

This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct.

Q1. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R)
Assertion (A): Cu^{2+} in water is more stable than Cu^{+}
Reason (R): Enthalpy of hydration for Cu^{2+} is much less than that of Cu^{+}
In the light of the above statements, choose the correct answer from the options given below:
(A) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
(B) (A) is correct but (R) is not correct
(C) Both (A) and (R) are correct and (R) is the correct explanation of (A)
(D) (A) is not correct but (R) is correct

Q2. Given below are two statements: one is labelled as Assertion (A) and other is labelled as Reason (R)
Assertion (A): α-halocarboxylic acid on reaction with dil NH_{3} gives good yield of α-amino carboxylic acid whereas the yield of amine is very low when prepared from alkyl halides.
Reason (R): Amino acids exist in zwitter ion form in aqueous medium.
In the light of the above statements, choose the correct answer from the options given below:
(A) (A) is not correct but (R) is correct
(B) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
(C) (A) is correct but (R) is not correct
(D) Both (A) and (R) are correct and (R) is the correct explanation of (A)

Q3. The correct order of bond enthalpy $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ is:
(A) $\mathrm{Si}-\mathrm{Si}>\mathrm{C}-\mathrm{C}>\mathrm{Ge}-\mathrm{Ge}>\mathrm{Sn}-\mathrm{Sn}$
(B) $\mathrm{C}-\mathrm{C}>\mathrm{Si}-\mathrm{Si}>\mathrm{Ge}-\mathrm{Ge}>\mathrm{Sn}-\mathrm{Sn}$
(C) $\mathrm{C}-\mathrm{C}>\mathrm{Si}-\mathrm{Si}>\mathrm{Sn}-\mathrm{Sn}>\mathrm{Ge}-\mathrm{Ge}$
(D) $\mathrm{Si}-\mathrm{Si}>\mathrm{C}-\mathrm{C}>\mathrm{Sn}-\mathrm{Sn}>\mathrm{Ge}-\mathrm{Ge}$

Q4. The structure of major products A, B and C in the following reaction sequence are.

Q5. Given below are two statements: one is labelled as Assertion (A) and other is labelled as Reason (R)
Assertion (A): Gypsum is used for making fireproof wall boards
Reason (R): Gypsum is unstable at high temperature
In the light of the above statements, choose the correct answer from the options given below:
(A) (A) is not correct but (R) is correct
(B) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
(C) (A) is correct but (R) is not correct
(D) Both (A) and (R) are correct and (R) is the correct explanation of (A)

Q6.

(A)

(B)

(C)

(D)

Q7. Given below are two statements:
Statement I: Sulphanilic acid gives esterification test for carboxyl group.
Statement II: Sulphanilic acid gives red colour in Lassigne's test for extra element detection. In the light of the above statements, choose the most appropriate answer from the options given below:
(A) Both Statement I and Statement II are correct
(B) Both Statement I and Statement II are incorrect
(C) Statement I is correct but Statement II is incorrect
(D) Statement I is incorrect but Statement II is correct

Q8. In a reaction

Reagents ' X ' and ' Y ' respectively are:
(A) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O} / \mathrm{H}^{+}$and $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}^{+}, \Delta$
(B) $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}^{+}, \Delta$ and $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O} / \mathrm{H}^{+}$
(C) $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}^{+}, \Delta$ and $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}^{+}, \Delta$
(D) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O} / \mathrm{H}^{+}$and $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O} / \mathrm{H}^{+}$

Q9. Which one of the following sets of ions represents a collection of isoelectronic species?
(Given: Atomic Number: $\mathrm{F}: 9, \mathrm{Cl}: 17, \mathrm{Na}=11, \mathrm{Mg}=12, \mathrm{Al}=13, \mathrm{~K}=19, \mathrm{Ca}=20, \mathrm{Sc}=21$)
(A) $\mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}$
(B) $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}$
(C) $\mathrm{K}^{+}, \mathrm{Cl}^{-}, \mathrm{Ca}^{2+}, \mathrm{Sc}^{3+}$
(D) $\mathrm{N}^{3-}, \mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{S}^{2-}$

Q10. Which element is not present in Nessler's reagent?
(A) Oxygen
(B) Mercury
(C) lodine
(D) Potassium

Q11. For electron gain enthalpies of the elements denoted as $\Delta_{\mathrm{eg}} H$, the incorrect option is:
(A) $\Delta_{\text {eg }} \mathrm{H}(\mathrm{I})<\Delta_{\mathrm{eg}} \mathrm{H}(\mathrm{At})$
(B) $\Delta_{\text {eg }} \mathrm{H}(\mathrm{Te})<\Delta_{\text {eg }} \mathrm{H}(\mathrm{Po})$
(C) $\Delta_{\text {eg }} H(C l)<\Delta_{e g} H(F)$
(D) $\Delta_{\text {eg }} \mathrm{H}(\mathrm{Se})<\Delta_{\mathrm{eg}} \mathrm{H}(\mathrm{S})$

Q12. The graph which represents the following reaction is:
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{C}-\mathrm{Cl} \xrightarrow[\text { Pyridine }]{\mathrm{OH}^{-}}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{C}-\mathrm{OH}$
(A)

(B)

(C)

(D)

Q13. All structure given below are of vitamin C. Most stable of them is:
(A)

(B)

(C)

(D)

Q14. The Industrial activity held least responsible for global warming is:
(A) Electricity generation in thermal power plants
(B) Steel manufacturing
(C) Industrial production of urea
(D) manufacturing of cement

Q15. In figure, a straight line is given for Freundrich Adsorption $(y=3 x+2.505)$. The vale of $\frac{1}{n}$ and $\log K$ are respectively.
(A) 0.3 and 0.7033
(B) 3 and 2.505
(C) 0.3 and $\log 2.505$
(D) 3 and 0.7033

Q16. The complex cation which has two isomers is :
(A) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$
(B) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{+}$
(C) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}_{2}\right]^{2+}$
(D) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Q17. The starting material for convenient preparation of deuterated hydrogen peroxide $\left(\mathrm{D}_{2} \mathrm{O}_{2}\right)$ in laboratory is :
(A) $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
(B) BaO_{2}
(C) 2- ethylanthraquinol
(D) BaO

Q18. The effect of addition of helium gas to the following reaction in equilibrium state, is
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
(A) The equilibrium will shift in the forward direction and more of Cl_{2} and PCl_{3} gases will be produced.
(B) The equilibrium will go backward due to suppression of dissociation of PCl_{5}.
(C) Helium will deactivate PCl_{5} and reaction will stop.
(D) Addition of helium will not effect the equilibrium.

Q19. Given below are two statements: one is labelled as Assertion (A) and other is labelled as Reason (R)
Assertion (A): An aqueous solution of KOH when used for volumetric analysis, its concentration should be checked before the use.
Reason (R): On aging, KOH solution absorbs atmospheric CO_{2}.
In the light of the above statements, choose the correct answer from the options given below:
(A) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
(B) (A) is not correct but (R) is correct
(C) Both (A) and (R) are correct and (R) is the correct explanation of (A)
(D) (A) is correct but (R) is not correct

Q20. O-O bond length in $\mathrm{H}_{2} \mathrm{O}_{2}$ is \underline{X} than the $\mathrm{O}-\mathrm{O}$ bond length in $\mathrm{F}_{2} \mathrm{O}_{2}$. The $\mathrm{O}-\mathrm{H}$ bond length in $\mathrm{H}_{2} \mathrm{O}_{2}$ is \underline{Y} than that of the $\mathrm{O}-\mathrm{F}$ bond in $\mathrm{F}_{2} \mathrm{O}_{2}$.
Choose the correct option for \underline{X} and \underline{Y} from those given below:
(A) X - shorter, $\mathrm{Y}=$ longer
(B) X - longer, Y - shorter
(C) X-shorter, Y-shorter
(D) X - longer, Y - longer

SECTION - B

(Numerical Answer Type)

This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.

Q1. The molality of a $10 \%(v / v)$ solution of di-bromine solution in CCl_{4} (Carbon tetrachloride) is ' x ' $\mathrm{x}=$ \qquad $\times 10^{-2} \mathrm{~m}$. (Nearest integer)
[Given: molar mass of $\mathrm{Br}_{2}=160 \mathrm{~g} \mathrm{~mol}^{-1}$
Atomic mass of $\mathrm{C}=12 \mathrm{~g} \mathrm{~mol}^{-1}$, Atomic mass of $\mathrm{Cl}=35.5 \mathrm{~g} \mathrm{~mol}^{-1}$
Density of dibromine $=3.2 \mathrm{~g} \mathrm{~cm}^{-3}$
Density of $\mathrm{CCl}_{4}=1.6 \mathrm{~g} \mathrm{~cm}^{-3}$]
Q2. $\quad 0.3 \mathrm{~g}$ of ethane undergoes combustion at $27^{\circ} \mathrm{C}$ in a bomb calorimeter. The temperature of calorimeter system (including the water) is found to rise by $0.5^{\circ} \mathrm{C}$. The heat evolved during combustion of ethane at constant pressure is \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$. (Nearest integer)
[Given: The heat capacity of the calorimeter system is $20 \mathrm{~kJ} \mathrm{~K}^{-1}, \mathrm{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.
Assume ideal gas behaviour.
Atomic mass of C and H are 12 and $1 \mathrm{~g} \mathrm{~mol}^{-1}$ respectively]
Q3. $\mathrm{A} \rightarrow \mathrm{B}$
The above reaction is of zero order. Half life of this reaction is 50 min . the time taken for the concentration of A to reduced to one- fourth of its initial value is \qquad min. (Nearest integer)

Q4. 20% of acetic acid is dissociated when its 5 g is added to 500 mL of water.
The depression in freezing point of such water is \qquad $\times 10^{-3} \mathrm{C}$.
Atomic mass of C, H and O are 12,1 and 16 a.m.u respectively.
[Given: Molal depression constant and density of water are $1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$ and $1 \mathrm{~g} \mathrm{~cm}^{-3}$ respectively].

Q5. Among following compounds, the number of those present in copper matte is \qquad .
(A) CuCO_{3}
(B) $\mathrm{Cu}_{2} \mathrm{~S}$
(C) $\mathrm{Cu}_{2} \mathrm{O}$
(D) FeO

Q6. Among the following, the number of tranquilizer is / are \qquad .
(A) Chloroliazepoxide
(B) Veronal
(C) Valium
(D) Salvarsan

Q7. Testosterone, which is a steroidal hormone, has the following structure.

The total number of asymmetric carbon atom/s in testosterone is \qquad .

Q8. $\quad 1 \times 10^{-5} \mathrm{M} \mathrm{AgNO}_{3}$ is added to 1 L of saturated solution of AgBr . The conductivity of this solution at 298 K is \qquad $\times 10^{-8} \mathrm{Sm}^{-1}$.

$\lambda_{\mathrm{Ag}^{+}}^{0}=6 \times 10^{-3} \mathrm{Sm}^{2} \mathrm{~mol}^{-1}$
$\lambda_{\mathrm{Br}^{-}}^{0}=8 \times 10^{-3} \mathrm{Sm}^{2} \mathrm{~mol}^{-1}$
$\left.\lambda_{\mathrm{NO}_{3}^{-}}^{0}=7 \times 10^{-3} \mathrm{Sm}^{2} \mathrm{~mol}^{-1}\right]$
Q9. The spin only magnetic moment of $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ complexes is \qquad B.M (Nearest integer) (Given: Atomic no. of Mn is 25)

Q10. A metal M crystallizes into two lattices:- face centred cubic (fcc) and body centred cubic (bcc) with unit cell edge length of 2.0 and $2.5 \AA$ respectively. The ratio of densities of lattices fcc to bcc for the metal M is \qquad (Nearest integer)

PART - C (MATHEMATICS)

SECTION - A

(One Options Correct Type)

This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct.

Q1. The sum of the absolute maximum and minimum values of the function $f(x)=\left|x^{2}-5 x+6\right|-3 x+2$ in the interval $[-1,3]$ is equal to :
(A) 10
(B) 12
(C) 13
(D) 24

Q2. The area of the region given by $\left\{(x, y): x y \leq 8,1 \leq y \leq x^{2}\right\}$ is :
(A) $8 \log _{e} 2+\frac{7}{6}$
(B) $8 \log _{\mathrm{e}} 2-\frac{13}{3}$
(C) $16 \log _{e} 2-\frac{14}{3}$
(D) $16 \log _{e} 2+\frac{7}{3}$

Q3. Let $f: R-\{0,1\} \rightarrow R$ be a function such that $f(x)+f\left(\frac{1}{1-x}\right)=1+x$. Then $f(2)$ is equal to
(A) $\frac{7}{4}$
(B) $\frac{7}{3}$
(C) $\frac{9}{4}$
(D) $\frac{9}{2}$

Q4. The number of integral values of k, for which one root of the equation $2 x^{2}-8 x+k=0$ lies in the interval $(1,2)$ and its other root lies in the interval $(2,3)$, is :
(A) 0
(B) 1
(C) 2
(D) 3

Q5. If $y(x)=x^{x}, x>0$, then $y^{\prime \prime}(2)-2 y^{\prime}(2)$ is equal to :
(A) $8 \log _{\mathrm{e}} 2-2$
(B) $4 \log _{\mathrm{e}} 2+2$
(C) $4\left(\log _{e} 2\right)^{2}+2$
(D) $4\left(\log _{e} 2\right)^{2}-2$

Q6. Let $\vec{a}=2 \hat{i}-7 \hat{j}+5 \hat{k}, \vec{b}=\hat{i}+\hat{k}$ and $\vec{c}=\hat{i}+2 \hat{j}-3 \hat{k}$ be three given vectors. If \vec{r} is vector such that $\vec{r} \times \vec{a}=\vec{c} \times \vec{a}$ and $\vec{r} \cdot \vec{b}=0$, then $|\vec{r}|$ is equal to :
(A) $\frac{\sqrt{914}}{7}$
(B) $\frac{11}{7}$
(C) $\frac{11}{5} \sqrt{2}$
(D) $\frac{11}{7} \sqrt{2}$

Q7. Let $S=\left\{x \in R: 0<x<1\right.$ and $\left.2 \tan ^{-1}\left(\frac{1-x}{1+x}\right)=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\right\}$.
If $n(S)$ denotes the number of elements in S then :
(A) $n(S)=1$ and the element in S is less than $\frac{1}{2}$.
(B) $n(S)=1$ and the elements in S is more than $\frac{1}{2}$.
(C) $n(S)=0$
(D) $n(S)=2$ and only one element in S is less than $\frac{1}{2}$.

Q8. Let $P(S)$ denote the power set of $S=\{1,2,3, \ldots, 10\}$. Define the relations R_{1} and R_{2} on $P(S)$ as $A R_{1} B$ if $\left(A \cap B^{C}\right) \cup\left(B \cap A^{C}\right)=\phi$ and $A R_{2} B$ if $A \cup B^{C}=B \cup A^{C}, \forall A, B \in P(S)$. Then :
(A) both R_{1} and R_{2} are not equivalence relations
(B) only R_{1} is an equivalence relation
(C) both R_{1} and R_{2} are equivalence relations
(D) only R_{2} is an equivalence relation

Q9. Let $9=x_{1}<x_{2}<\ldots .<x_{7}$ be in an A.P. with common difference d. If the standard deviation of $x_{1}, x_{2}, \ldots, x_{7}$ is 4 and the mean is \bar{x}, then $\bar{x}+x_{6}$ is equal to :
(A) $2\left(9+\frac{8}{\sqrt{7}}\right)$
(B) $18\left(1+\frac{1}{\sqrt{3}}\right)$
(C) 25
(D) 34

Q10. Let $P\left(x_{0}, y_{0}\right)$ be the point on the hyperbola $3 x^{2}-4 y^{2}=36$, which is nearest to the line $3 x+2 y=1$. Then $\sqrt{2}\left(y_{0}-x_{0}\right)$ is equal to :
(A) 9
(B) -3
(C) 3
(D) -9

Q11. If $A=\frac{1}{2}\left[\begin{array}{cc}1 & \sqrt{3} \\ -\sqrt{3} & 1\end{array}\right]$, then :
(A) $\mathrm{A}^{30}+\mathrm{A}^{25}-\mathrm{A}=1$
(B) $\mathrm{A}^{30}-\mathrm{A}^{25}=21$
(C) $A^{30}=A^{25}$
(D) $\mathrm{A}^{30}+\mathrm{A}^{25}+\mathrm{A}=\mathrm{I}$

Q12. The sum $\sum_{n=1}^{\infty} \frac{2 n^{2}+3 n+4}{(2 n)!}$ is equal to :
(A) $\frac{11 e}{2}+\frac{7}{2 e}$
(B) $\frac{11 \mathrm{e}}{2}+\frac{7}{2 e}-4$
(C) $\frac{13 e}{4}+\frac{5}{4 e}$
(D) $\frac{13 e}{4}+\frac{5}{4 e}-4$

Q13. Which of the following statements is a tautology?
(A) $(p \wedge(p \rightarrow q)) \rightarrow \sim q$
(B) $p \vee(p \wedge q)$
(C) $(p \wedge q) \rightarrow(\sim(p) \rightarrow q)$
(D) $p \rightarrow(p \wedge(p \rightarrow q))$

Q14. Two dice are thrown independently. Let A be the event that the number appeared on the $1^{\text {st }}$ die is less than the number appeared on the $2^{\text {nd }}$ die, B be the even that the number appeared on the $1^{\text {st }}$ die is even and that on the second die is odd, and C be the event that the number appeared on the $1^{\text {st }}$ die is odd and that on the $2^{\text {nd }}$ is even. Then :
(A) the number of favourable cases of the events A, B and C are 15,6 and 6 respectively
(B) the number of favourable cases of the event $(A \cup B) \cap C$ is 6
(C) A and B are mutually exclusive
(D) B and C are independent

Q15. Let a, b, be two real numbers such that $a b<0$. If the complex number $\frac{1+a i}{b+i}$ is of unit modulus and $a+i b l i e s$ on the circle $|z-1|=|2 z|$, then a possible value of $\frac{1+[a]}{4 b}$, where $[t]$ is greatest integer function, is :
(A) $\frac{1}{2}$
(B) -1
(C) $-\frac{1}{2}$
(D) 1

Q16. The value of the integral $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x+\frac{\pi}{4}}{2-\cos 2 x} d x$ is :
(A) $\frac{\pi^{2}}{6 \sqrt{3}}$
(B) $\frac{\pi^{2}}{3 \sqrt{3}}$
(C) $\frac{\pi^{2}}{6}$
(D) $\frac{\pi^{2}}{12 \sqrt{3}}$

Q17. Let $\alpha x=\exp \left(x^{\beta} y^{\gamma}\right)$ be the solution of the differential equation $2 x^{2} y d y-\left(1-x y^{2}\right) d x=0, x>0, y(2)=\sqrt{\log _{e} 2}$. Then $\alpha+\beta-\gamma$ equals :
(A) -1
(B) 3
(C) 1
(D) 0

Q18. For the system of linear equations $\alpha x+y+z=1, x+\alpha y+z=1, x+y+\alpha z=\beta$, which one of the following statements is NOT correct?
(A) It has infinitely many solutions if $\alpha=2$ and $\beta=-1$
(B) It has no solution if $\alpha=-2$ and $\beta=1$
(C) $x+y+z=\frac{3}{4}$ if $\alpha=2$ and $\beta=1$
(D) It has infinitely many solutions if $\alpha=1$ and $\beta=1$

Q19. Let $\vec{a}=5 \hat{i}-\hat{j}-3 \hat{k}$ and $\vec{b}=\hat{i}+3 \hat{j}+5 \hat{k}$ be two vectors. Then which one of the following statements is TRUE?
(A) Projection of \vec{a} on \vec{b} is $\frac{17}{\sqrt{35}}$ and the direction of the projection vector is opposite to the direction of \vec{b}.

JEE-MAIN-2023 (1 ${ }^{\text {st }}$ February-Second Shift)-PCM-18

(B) Projection of \vec{a} on \vec{b} is $\frac{-17}{\sqrt{35}}$ and the direction of the projection vector is same as of \vec{b}.
(C) Projection of \vec{a} on \vec{b} is $\frac{-17}{\sqrt{35}}$ and the direction of the projection vector is opposite to the direction of \vec{b}.
(D) Projection of \vec{a} on \vec{b} is $\frac{17}{\sqrt{35}}$ and the direction of the projection vector is same as of \vec{b}.

Q20. Let the plane P pass through the intersection of the planes $2 x+3 y-z=2$ and $x+2 y+3 z=6$, and be perpendicular to the plane $2 x+y-z+1=0$. If d is the distance of P from the point $(-7,1,1)$, then d^{2} is equal to :
(A) $\frac{250}{83}$
(B) $\frac{15}{53}$
(C) $\frac{25}{83}$
(D) $\frac{250}{82}$

SECTION - B

(Numerical Answer Type)

This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.

Q1. If $\int_{0}^{\pi} \frac{5^{\cos x}\left(1+\cos x \cos 3 x+\cos ^{2} x+\cos ^{3} x \cos 3 x\right) d x}{1+5^{\cos x}}=\frac{k \pi}{16}$, then k is equal to.........

Q2. Let $\alpha x+\beta y+y z=1$ be the equation of a plane passing through the point $(3,-2,5)$ and perpendicular to the line joining the points $(1,2,3)$ and $(-2,3,5)$. Then the value of $\alpha \beta \gamma$ is equal to \qquad

Q3. Number of integral solutions to the equation $x+y+z=21$, where $x \geq 1, y \geq 3, z \geq 4$, is equal to \qquad
Q4. The total number of six digit numbers, formed using the digits $4,5,9$ only and divisible by 6 , is. \qquad

Q5. The point of intersection C of the plane $8 x+y+2 z=0$ and the line joining the points $A(-3,-6,1)$ and $B(2,4,-3)$ divides the line segment $A B$ internally in the ratio $k: 1$. If $a, b, c,(|a|,|b|,|c|$ are coprime $)$ are the directions ratios of the perpendicular from the point C on the line $\frac{1-x}{1}=\frac{y+4}{2}=\frac{z+2}{3}$, then $|a+b+c|$ is equal to.

Q6. The sum of the common terms of the following three arithmetic progressions
3,7,11,15,.......,399,
$2,5,8,11, \ldots . ., 359$ and
$2,7,12,17, \ldots . ., 197$, is equal to \qquad
Q7. If the x-intercept of a focal chord of the parabola $y^{2}=8 x+4 y+4$ is 3 , then the length of this chord is equal to.......

Q8. Let the sixth term in the binomial expansion of $\left(\sqrt{2^{\log _{2}\left(10-3^{x}\right)}}+\sqrt[5]{2^{(x-2) \log _{2} 3}}\right)^{m}$, in the increasing powers of $2^{(x-2) \log _{2} 3}$, be 21 . If the binomial coefficients of the second, third and fourth terms in the expansion are respectively the first, third and fifth terms of A.P., then the sum of the squares of all possible values of x is. \qquad
Q9. The line $x=8$ is the directrix of the ellipse is $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with the corresponding focus $(2,0)$. If the tangent to E at the point P in the first quadrant passes through the point $(0,4 \sqrt{3})$ and intersects the x-axis at Q, then (3PQ) $)^{2}$ is equal to \qquad

Q10. If the term without x in the expansion of $\left(x^{\frac{2}{3}}+\frac{\alpha}{x^{3}}\right)^{22}$ is 7315 , then $|\alpha|$ is equal to. \qquad

FIIT EE

KEYS to JEE (Main)-2023
PART - A (PHYSICS)

SECTION - A

1.	B	2.	C	3.	C	4.	C
5.	A	6.	D	7.	C	8.	A
9.	B	10.	A	11.	B	12.	A
13.	B	14.	A	15.	A	16.	A
17.	C	18.	B	19.	D	20.	A
	SECTION - B						
1.	2	2.	3	3.	44	4.	2
5.	50	6.	6	7.	288	8.	200
9.	132	10.	4				

PART - B (CHEMISTRY) SECTION - A

1.	C	2.	D	3.	B	4.	B
5.	B	6.	A	7.	D	8.	A
9.	C	10.	A	11.	D	12.	D
13.	C	14.	C	15.	B	16.	C
17.	A	18	A OR D	19.	C	20.	B

SECTION - B

1.	139	2.	1006	3.	75	4.	372
5.	1	6.	3	7.	6	8.	14
9.	6	10.	4				

PART - C (MATHEMATICS)

SECTION - A

1.	A	2.	C	3.	C	4.	B
5.	D	6.	D	7.	A	8.	C
9.	D	10.	D	11.	A	12.	D
13.	C	14.	B	15.	DROP	16.	A
17.	C	18	A	19.	DROP	20.	A

SECTION - B

1.	13	2.	6	3.	105	4.	81
5.	10	6.	321	7.	16	8.	4
9.	39	10	1				

FIITJ EE
 Solutions to J EE (Main)-2023 PART - A (PHYSICS)

SECTION - A

Sol1. To measure the potential difference between two points, voltmeter is used. But this voltmeter should be with higher resistance so that it cannot draw any current. Now to measure the potential difference across 600Ω, voltmeter of 4000Ω is much better than 1000Ω voltmeter.

Sol2. Using mirror formula
$\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$
$\Rightarrow v=\frac{u f}{u-f}$
For object $O_{1}, u_{1}=-15 \mathrm{~cm}, f=-20 \mathrm{~cm}, v_{1}=$?
$v_{1}=\frac{u_{1} f}{u_{1}-f}=\frac{(-15)(-20)}{(-15)-(-20)}=\frac{300}{5} \mathrm{~cm}=60 \mathrm{~cm}$
For object $\mathrm{O}_{2}, \mathrm{u}_{2}=-25 \mathrm{~cm}, \mathrm{f}=-20 \mathrm{~cm}, \mathrm{v}_{2}=$?
$v_{2}=\frac{u_{2} f}{u_{2}-f}=\frac{(-25)(-20)}{(-25)-(-20)}=\frac{500}{-5} \mathrm{~cm}=-100 \mathrm{~cm}$
Hence, the distance between images formed by the mirror is $d=160 \mathrm{~cm}$
Sol3. $\quad \phi=B A \cos \theta$
From above expression, we can say that, the flux can be changed by

- changing the magnitude of field,
- changing the area of coil
- changing the angle between the direction of field and the plane of the coil.

Sol4. Given: $\frac{v_{A}}{v_{B}}=\frac{1}{2} \& \frac{r_{A}}{r_{B}}=\frac{1}{3}$
$\frac{g_{A}}{g_{B}}=$?
As we know that $v_{\text {escape }}=\sqrt{\frac{2 G M}{R}}$
Hence,
$\frac{v_{A}}{v_{B}}=\frac{\sqrt{\frac{2 \mathrm{GM}_{A}}{R_{A}}}}{\sqrt{\frac{2 G M}{R_{B}}}}=\sqrt{\frac{\mathrm{M}_{A} \mathrm{R}_{B}}{\mathrm{M}_{\mathrm{B}} \mathrm{R}_{\mathrm{A}}}}=\frac{1}{2}$.

Also, $\frac{r_{A}}{r_{B}}=\frac{1}{3}$
On solving (1) \& (2), we get
$\therefore \frac{g_{A}}{g_{B}}=\frac{\mathrm{M}_{A} R_{A}^{2}}{\mathrm{M}_{B} R_{B}^{2}}=\frac{1}{4} \times \frac{1}{3} \times 9=\frac{3}{4}$
Sol5. Let the mass is represented as

$$
\begin{aligned}
& M=G^{x} h^{y} c^{z} \\
& {[M]=[G]^{x}[h]^{y}[c]^{z}} \\
& {[M]=\left[M^{-1} L^{3} T^{-2}\right]^{x}\left[M^{2} T^{-1}\right]^{y}\left[L T^{-1}\right]^{z}} \\
& {\left[M^{1} L^{0} T^{0}\right]=\left[M^{-x+y}\right]\left[L^{3 x+2 y+z}\right]\left[T^{-2 x-y-z}\right]}
\end{aligned}
$$

So, on comparing we get

$$
\begin{gather*}
-x+y=1 \ldots \ldots \tag{1}\\
3 x+2 y+z=0 \tag{2}\\
-2 x-y-z=0 . \tag{3}
\end{gather*}
$$

On solving (1), (2) \& (3), we get
$\mathrm{x}=-\frac{1}{2}, \mathrm{y}=\frac{1}{2}, \mathrm{z}=\frac{1}{2}$
$\mathrm{m}=\sqrt{\frac{\mathrm{hc}}{\mathrm{G}}}$ So,
Sol6. As we know that,
Young's modulus, $Y=\frac{\text { stress }}{\text { strain }} \Rightarrow Y=\frac{F L}{A \Delta L}$
Given: $\mathrm{Y}=2 \times 10^{11}, \mathrm{~N} / \mathrm{m}^{2} \mathrm{~L}=6 \mathrm{mg}_{\mathrm{P}}=\frac{\mathrm{g}}{4}, \mathrm{~A}=3 \mathrm{~mm}^{2}$
Hence, $M=4 \mathrm{kgF}=\mathrm{mg}_{\mathrm{P}}=4 \times \frac{10}{4}=10 \mathrm{~N}$
$2 \times 10^{11}=\frac{10 \times 6}{3 \times 10^{-6} \times \Delta \mathrm{L}}$
$\Rightarrow \Delta \mathrm{L}=0.1 \mathrm{~mm}$

Sol7. Zener diode act as a voltage regulator \& it is used in reverse bias. Similarly it behaves as a p-n junction diode in forward bias.

Sol8. As we know, capacitance of spherical conductor is $\mathrm{C}=4 \pi \varepsilon_{0} \mathrm{R}$
So, capacitance does not depend on its charge, it depends only on the radius of the conductor (R).
Therefore, assertion is false, R is true.
Sol9. $\quad \mu=$ ratio of modulation index
$A_{m}=x, A_{c}=y$
$\mathrm{A}_{\mathrm{m}}=\mathrm{x}, \mathrm{A}_{\mathrm{c}}=2 \mathrm{y}$
$\mu_{1}=\frac{A_{m}}{A_{c}}=\frac{x}{y}$.
$\mu_{2}=\frac{A_{m}}{A_{c}}=\frac{x}{2 y}$
On solving both eq ${ }^{\mathrm{n}}$, we get
$\frac{\mu_{1}}{\mu_{2}}=\frac{2}{1}$
Sol10. When, a uniform wire of resistance R is shaped into a regular n-sided polygon, the resistance of each side will be
$R_{1}=\frac{R}{n}$
Let $R_{1} \& R_{2}$ be the resistance between adjacent corners of a regular polygon.
Thus, the resistance of ($n-1$) side,
$\mathrm{R}_{2}=\frac{(\mathrm{n}-1) \mathrm{R}}{\mathrm{n}}$
As the two parts are in parallel, So,
$R_{e q}=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}}=\frac{\left(\frac{R}{n}\right)\left(\frac{n-1}{n}\right) R}{\left(\frac{R}{n}\right)+\left(\frac{n-1}{n}\right) R}$
$R_{\text {eq }}=\frac{(n-1) R^{2}}{n^{2}} \times \frac{n}{R+n R-R}$
So, $R_{\text {eq }}=\frac{(n-1) R}{n^{2}}$
Sol11. $\Delta \mathrm{E}=13.6 \times \mathrm{Z}^{2}\left(\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right)$
$\mathrm{Z}=4, \mathrm{n}_{1}=2, \mathrm{n}_{2}=4$
$\Delta \mathrm{E}=13.6 \times 4^{2}\left(\frac{1}{4}-\frac{1}{16}\right)$
$\Delta \mathrm{E}=13.6 \times(4)^{2}\left(\frac{16-4}{16}\right)$
$\Delta \mathrm{E}=40.8 \mathrm{eV}$
Sol12. Given: $R=\frac{\pi}{10} m, I=3 A, \mu_{0}=4 \mu \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2}$
Magnetic field due to semi-circular arc is
$B=\frac{\mu_{0} I}{4 R}=\frac{4 \mu \times 10^{-7} \times 3}{4 \times \frac{\mu}{10}}=3 \mu \mathrm{~T}$
Sol13. Average electric energy density $=\frac{1}{4} \varepsilon_{0} \mathrm{E}_{0}^{2}$

Total average energy density $=\frac{1}{2} \varepsilon_{0} E_{0}^{2}$
So,
The ratio of average electric energy density and total average energy density is
$\Rightarrow \frac{\frac{1}{4} \varepsilon_{0} \mathrm{E}_{0}^{2}}{\frac{1}{2} \varepsilon_{0} \mathrm{E}_{0}^{2}}=\frac{1}{2}$
Sol14. From ideal gas equation
PV = nRT
\because volume is constant
$\mathrm{P} \propto \mathrm{T}$
It is clear from graph that for all the gases lines of grpahs meet at the same value.
At x-axis i.e, temperature axis, P is zero but temperature is negative and it will be equal to 0 K or $-273^{\circ} \mathrm{C}$.

Sol15. Using photoelectric equation
$\mathrm{hf}-\mathrm{hf}_{0}=\mathrm{e} \mathrm{V}_{0}$
According to the question,
$h\left(2 f_{0}\right)-h\left(f_{0}\right)=e V_{1}$
$h\left(2 f_{0}-f_{0}\right)=e V_{1}$
Again,
$h_{0}=\mathrm{eV}_{1}$
$h\left(5 f_{0}\right)-h f_{0}=V_{2}$
Using eq (i) \& eq (ii), we get
$\mathrm{h}\left(5 \mathrm{f}_{0}-\mathrm{f}_{0}\right)=\mathrm{eV} \mathrm{V}_{2}$
$4 \mathrm{hf}_{0}=\mathrm{eV}$ 2
$\frac{4 \mathrm{hf}_{0}}{\mathrm{hf}} \mathrm{f}_{0}=\frac{\mathrm{eV} \mathrm{V}_{2}}{\mathrm{eV} \mathrm{V}_{1}}$
$\frac{V_{2}}{V_{1}}=4$
Or,
As we know that
$K E_{\text {max }}=e V=\frac{1}{2} m v_{\text {max }}^{2}$
$\therefore \mathrm{V}_{\text {max }} \propto \sqrt{\mathrm{V}}$
Thus, $\frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}=\sqrt{\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}}=\sqrt{4}=2$
$\frac{v_{1}}{v_{2}}=\frac{1}{2}$

Sol16. As we know that impulse is given by

$$
J=\Delta P=F \times \Delta t
$$

or, $\quad \mathrm{J}=$ Area of $\mathrm{f}-\mathrm{t}$ graph
For fig (a) $\rightarrow \mathrm{J}=\frac{1}{2} \times$ base \times height

$$
=\frac{1}{2} \times 0.5 \times 1=0.25 \mathrm{~N}-\mathrm{sec}
$$

For fig (b) $\rightarrow \mathrm{J}=$ length \times height

$$
=2 \times 0.5=1 \mathrm{~N}-\mathrm{sec}
$$

For fig (c) $\rightarrow \mathrm{J}=\frac{1}{2} \times$ base \times height

$$
=\frac{1}{2} \times 1 \times 0.75=0.375 \mathrm{~N}-\mathrm{sec}
$$

For fig (d) $\rightarrow J=\frac{1}{2} \times$ base \times height

$$
=\frac{1}{2} \times 2 \times 0.5=0.5 \mathrm{~N}-\mathrm{sec}
$$

So, impulse is highest for fig (b) whose area under F-t curve is maximum.
Sol17. As we know, time period of simple pendulum is

$$
\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~L}}{\mathrm{~g}}}
$$

or, $\quad \mathrm{T}^{2}=\frac{4 \pi^{2}}{\mathrm{~g}} \mathrm{~L}$
or, $\mathrm{T}^{2} \propto \mathrm{~L}$
Thus, the graph between $T^{2} \& L$ is a straight line.

Sol18. Given: $\mathrm{m}=10 \mathrm{~kg}, \mu_{\mathrm{s}}=0.25, \theta=30^{\circ}, \mathrm{g}=10 \mathrm{~ms}^{-2}$
Free Body Diagram of the block is shown below:
Along horizontal direction
$F \cos 30^{\circ}=f$ \qquad
Along horizontal direction
$\mathrm{F} \sin 30^{\circ}+\mathrm{N}=\mathrm{mg}$
$\Rightarrow \mathrm{N}=\mathrm{mg}-\mathrm{F} \sin 30^{\circ}$
So, from eq (i),
$F \cos 30^{\circ}=\mu_{S}\left(m g-F \sin 30^{\circ}\right)$
$F=\frac{\mu_{\mathrm{s}} \mathrm{mg}}{\cos 30^{\circ}+\mu_{\mathrm{s}} \sin 30^{\circ}}=\frac{0.25 \times 10 \times 10}{\frac{\sqrt{3}}{2} \times 0.25 \times \frac{1}{2}}=25.2 \mathrm{~N}$

Sol19. Given: $\eta=\frac{1}{3}$
When $T_{2} \rightarrow\left(T_{2}+x\right)$ i.e, temperature of the cold reservoir
$\eta^{\prime}=\frac{1}{6}$
Temperature of hot reservoir $\left(\mathrm{T}_{1}\right)=99^{\circ} \mathrm{C}$

$$
=99+273=372 \mathrm{~K}
$$

As we know,
$\eta=1-\frac{T_{2}}{T_{1}}=\frac{1}{3}$
$\eta^{\prime}=1-\frac{\left(T_{2}-x\right)}{T_{1}}=\frac{1}{6}$
From eq (i), we get

$$
\frac{1}{3}=1-\frac{T_{2}}{372}
$$

$\Rightarrow \mathrm{T}_{2}=248 \mathrm{~K}$
Using value of T_{2} in eq (ii), we get

$$
x=62 K
$$

Sol20. At the highest point vertical component of velocity is zero. So the momentum of the particle is zero. At highest point horizontal component of velocity is not zero but vertical component of velocity is equal to zero and because of this K.E. will not be equal to zero.

SECTION - B

Sol1.

Sol2. By using parallel axis theorem
$I=I_{0}+M R^{2}$
$I=\frac{M R^{2}}{2}+M R^{2}$
$\mathrm{I}=\frac{3}{2} M R^{2}$
But $\mathrm{I}=\frac{\mathrm{x}}{2} \mathrm{MR}^{2}$
So, $x=3$

Sol3. Area $(A)=70 \mathrm{~cm}^{2}=70 \times 10^{-4} \mathrm{~m}^{2}, B=0.4 \mathrm{~T}$
$f=500 \frac{\mathrm{rev}}{\mathrm{min}}=\frac{500}{60} \frac{\mathrm{rev}}{\mathrm{sec}}$
As we know that,
Induced emf in a coil is given by
$\mathrm{e}=\mathrm{N} \omega \mathrm{BA} \sin \theta$
$=600 \times 2 \times \frac{22}{7} \times \frac{500}{60} \times 0.4 \times 70 \times 10^{-4} \sin 30^{\circ}$
$=44$ volt
Sol4. Using equation of continuity
$A_{1} v_{1}=A_{2} v_{2}$
$750 \times 10^{-4} \times v_{1}=500 \times 10^{-6} \times 30 \times 10^{-2}$

$$
\mathrm{v}_{1}=20 \times 10^{-4} \mathrm{~m} / \mathrm{sec}
$$

$$
v_{1}=2 \times 10^{-3} \mathrm{~m} / \mathrm{sec}
$$

Given: $\frac{\mathrm{dh}}{\mathrm{dt}}=\mathrm{v}=\mathrm{x} \times 10^{-3} \mathrm{~m} / \mathrm{sec}$

$$
\therefore \mathrm{x}=2
$$

Sol5. As we know that the total energy for free oscillation remains constant.
So, Total energy is equal to $\frac{1}{2} m \omega^{2} A^{2}=\frac{1}{2} k A^{2}$
$\Rightarrow \frac{1}{2} \mathrm{kA}^{2}=0.25 \mathrm{~J}$
$\Rightarrow k=\frac{0.25 \times 2}{A^{2}}=\frac{0.25 \times 2}{\left(10 \times 10^{-2}\right)^{2}}=50 \mathrm{~N} / \mathrm{m}$

PART - B (CHEMISTRY)
 SECTION - A

Sol1. Cu^{2+} in water is more stable than Cu^{+}due to more negative hydration enthalpy of Cu^{2+} which is due to high charge density.

Sol2.

α - amino acids exists as zwitter ion in aqueous solution as,

Sol3. Down the group as atomic size increases, bond length increases \& bond enthalpy decreases.
Sol4.

Sol5. Gypsum $\left(\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ is used to make fireproof wall boards.
Gypsum is unstable at high temperature as;
$\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\Delta} \mathrm{CaSO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}+\frac{3}{2} \mathrm{H}_{2} \mathrm{O}$

Sol6.

Sol7. Sulphanilic acid does not have -COOH group so it does not gives esterification for carboxyl group.

Sulphanilic acid
Here, both $\mathrm{N} \& \mathrm{~S}$ are present so gives red colour in Lassigne's test for extra element detection.

Sol8.

X is $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O} / \mathrm{H}^{+} \& \mathrm{Y}$ is $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}^{+}, \Delta$
Sol9. $\mathrm{K}^{+}, \mathrm{Cl}^{-}, \mathrm{Ca}^{2+}, \mathrm{Sc}^{3+}$ all are isoelectronic species with 18 electrons.
Sol10. Nessler's reagent is $\mathrm{K}_{2}\left[\mathrm{Hgl}_{4}\right]$.
Sol11. $\Delta_{\mathrm{eg}} \mathrm{H}$ of S is more negative than $\Delta_{\mathrm{eg}} \mathrm{H}$ of Se .

Sol12. Here, rate of reaction $\propto\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{C}-\mathrm{Cl}\right]$; so correct graph is.

Sol13. Most stable structure of vitamin C is

Due to intramolecular H - bond
Sol14. In manufacturing of urea, NH_{3} and CO_{2} are used. CO_{2} is green house gas which is used in manufacturing of urea. So manufacturing of urea is least responsible for global warming.

Sol15. $\log \frac{x}{m}=\frac{1}{n} \log p+\log k$
$y=3 x+2.505$
Comparing (i) \& (ii);
$\frac{1}{n}=3$
$\log \mathrm{k}=2.505$
Sol16. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}_{2}\right]^{2+}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{ONO}\right]^{2+}$ are linkage isomers.
Sol17. $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(\mathrm{~s})+2 \mathrm{D}_{2} \mathrm{O}(\ell) \longrightarrow 2 \mathrm{KDSO}_{4}(\mathrm{aq})+\mathrm{D}_{2} \mathrm{O}_{2}(\mathrm{aq})$
Sol18. For given equilibrium, addition of He gas at constant volume will not affect equilibrium while at constant pressure, equilibrium shifts in forward direction \& more $\mathrm{Cl}_{2} \& \mathrm{PCl}_{3}$ will from.

Sol19. KOH solution being basic in nature absorbs atmospheric CO_{2} so its concentration get changed, therefore concentration should be checked before use in titration.

Sol20. $\mathrm{O}-\mathrm{O}$ bond length $\Rightarrow \mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{O}_{2} \mathrm{~F}_{2}$ $\mathrm{O}-\mathrm{H}$ bond in $\mathrm{H}_{2} \mathrm{O}_{2}<\mathrm{O}-\mathrm{F}$ bond in $\mathrm{O}_{2} \mathrm{~F}_{2}$.

SECTION - B

Sol1. 10% by volume means $10 \mathrm{~mL} \mathrm{Br}_{2}$ in 100 mL solution
Volume of $\mathrm{Br}_{2}=10 \mathrm{~mL}$
Volume of $\mathrm{CCl}_{4}=90 \mathrm{~mL}$
Mass of $\mathrm{Br}_{2}=10 \times 3.2 \mathrm{~g}$

$$
=32 \mathrm{~g}
$$

Mass of $\mathrm{CCl}_{4}=90 \times 1.6 \mathrm{~g}$

$$
=144 \mathrm{~g}
$$

Moles of $\mathrm{Br}_{2}=\frac{32}{160} \mathrm{~mol}$.
Molality $=\frac{32}{160 \times 144} \times 1000 \mathrm{~m}$
$=1.389 \mathrm{~m}$

$$
=138.9 \times 10^{-2} \mathrm{~m}
$$

Sol2. Heat released in bomb calorimeter $=20 \times 0.5 \mathrm{KJ}=10 \mathrm{KJ}$
Moles of ethane $=\frac{0.3}{30}=0.01 \mathrm{~mol}$
$\Delta U=-\frac{10}{0.01} \mathrm{KJ}=-1000 \mathrm{KJ}$
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\frac{7}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\ell)$
$\Delta n_{g}=-2.5$
$\Delta H=\Delta U+\Delta n_{g} R T$
$=-1000+(-2.5) \times 8.3 \times 10^{-3} \times 300$
$=-1006.225 \mathrm{KJ}$
Sol3. Half life, $\mathrm{t}_{1 / 2}=50 \mathrm{~min}$;
$t_{3 / 4}=\frac{3}{2} \times t_{1 / 2}$
$=\frac{3}{2} \times 50 \mathrm{~min}$
$\mathrm{t}_{3 / 4}=75 \mathrm{~min}$
Sol4. $\quad \alpha=\frac{i-1}{n-1}$
$0.2=\frac{i-1}{2-1}$
$\mathrm{i}=1.2$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{ik} . \mathrm{m}$
$\Delta T_{f}=1.2 \times 1.86 \times \frac{5}{60 \times 500} \times 1000^{\circ} \mathrm{C}$
$=0.372^{\circ} \mathrm{C}=372 \times 10^{-30} \mathrm{C}$
Sol5. Copper matte is $\mathrm{Cu}_{2} \mathrm{~S}$. FeS .
Sol6. Chloroliazepoxide, veronal and valium are tranquilizers while salvarsan is antibiotic.

Sol7.

* marks are chiral carbons.

Sol8. $\left[\mathrm{Ag}^{+}\right]=10^{-5} \mathrm{M}$
$\left[\mathrm{NO}_{3}^{-}\right]=10^{-5} \mathrm{M}$
$\left[\mathrm{Br}^{-}\right]=\frac{\mathrm{K}_{\mathrm{sp}}}{\left[\mathrm{Ag}^{+}\right]}=\frac{4.9 \times 10^{-13}}{10^{-5}}=4.9 \times 10^{-8} \mathrm{M}$
Using; $\lambda_{m}=\frac{\kappa}{1000 \times M}$
For Ag^{+};

$$
\begin{aligned}
& 6 \times 10^{-3}=\frac{\kappa}{1000 \times 10^{-5}} \\
& \kappa=6 \times 10^{-5} \mathrm{Sm}^{-1}
\end{aligned}
$$

For NO_{3}^{-};

$$
\begin{aligned}
& 7 \times 10^{-3}=\frac{\kappa}{1000 \times 10^{-5}} \\
& \kappa=7 \times 10^{-5} \mathrm{Sm}^{-1}
\end{aligned}
$$

For Br^{-}

$$
\begin{aligned}
& 8 \times 10^{-3}=\frac{\kappa}{1000 \times 4.9 \times 10^{-8}} \\
& \kappa=39.2 \times 10^{-8} \mathrm{Sm}^{-1}
\end{aligned}
$$

Conductivity of solution $=(6000+7000+39.2) \times 10^{-8}$

$$
=13039.2 \times 10^{-8} \mathrm{Sm}^{-1}
$$

Sol9. $\quad M n^{2+}=4 s^{0} 3 d^{5}$
$\mathrm{n}=5$
$\mu=\sqrt{n(n+2)} B . M$
$=\sqrt{5 \times 7}$ В. М
$=\sqrt{35} \mathrm{~B} \cdot \mathrm{M}$
$=5.91 \mathrm{~B} . \mathrm{M}$
Sol10. Using; $d=\frac{Z \times A}{N_{A} \times a^{3}}$

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{fcc}}=\frac{4 \times \mathrm{A}}{\mathrm{~N}_{\mathrm{A}} \times(2)^{3}} \\
& \mathrm{~d}_{\mathrm{bcc}}=\frac{2 \times \mathrm{A}}{\mathrm{~N}_{\mathrm{A}} \times(2.5)^{3}}
\end{aligned}
$$

$\frac{d_{\mathrm{fcc}}}{d_{\mathrm{bcc}}}=\frac{4}{(2)^{3}} \times \frac{(2.5)^{3}}{2}$
$=3.9$

PART - C (MATHEMATICS)
 SECTION - A

Sol1. $f(x)=\left|x^{2}-5 x+6\right|-3 x+2[-1,3]$
$f(x)=\left\{\begin{array}{cc}x^{2}-8 x+8 & x \in[-1,2] \\ -x^{2}+2 x-4 & x \in(2,3]\end{array}\right.$
f^{n} is continuous at everywhere.
$f^{\prime}(x)= \begin{cases}2 x-8 & x \in(-1,2) \\ -2 x+2 & x \in(2,3)\end{cases}$
$f^{\prime}(x)=0, x=4, x=1$
Vertex not lies in interval. So maximum and minimum found in boundary point.
$f(-1)=17, f(2)=-4, f(3)=-7$
Maximum $=17$, minimum $=-7$
$\max +\min =17-7=10$
Sol2. $\quad x y \leq 8, \quad 1 \leq y \leq x^{2}$
Required area $=\int_{1}^{2}\left(x^{2}-1\right) d x+\int_{2}^{8}\left(\frac{8}{x}-1\right) d x$
Simplify
$\mathrm{A}=16 \log _{\mathrm{e}} 2-\frac{14}{3}$

Sol3. $f(x)+f\left(\frac{1}{1-x}\right)=1+x, f(2)=$?
Put $x=2$
$f(2)+f(-1)=3$
Put $x=-1$
$f(-1)+f\left(\frac{1}{2}\right)=0$
(i) - (ii)
$f(2)-f\left(\frac{1}{2}\right)=3$
Put $x=\frac{1}{2}$
$f\left(\frac{1}{2}\right)+f(2)=\frac{3}{2}$
(iii) + (iv)
$f(2)=\frac{9}{4}$

Sol4. $f(1) f(2)<0$
$f(2) f(3)<0$
After simplification
$k \in(6,8)$

$\mathrm{k}=7$
Sol5. $y(x)=x^{x} \quad x>0, \quad y \prime(2)-2 y^{\prime}(2)$
$y^{\prime}(x)=x^{x}\left(1+\log _{e} x\right)$
$y^{\prime \prime}(x)=x^{x}\left(\frac{1}{x}\right)+x^{x}\left(1+\log _{e} x\right)^{2}$
$y^{\prime \prime}(2)-2 y^{\prime}(2)$
$2+9\left(1+\log _{e} 2\right)^{2}-\left[8\left(1+\log _{e} 2\right)\right]$
$=4\left(\log _{\mathrm{e}} 2\right)^{2}-2$
Sol6. $\vec{a}=(2,-7,5), \vec{b}=(1,0,1), \vec{c}=(1,2,-3)$
$=\vec{r} \times \vec{a}=\vec{c} \times \vec{a}, \vec{r} \cdot \vec{b}=0$
$=(\vec{r} \cdot \vec{c}) \times \vec{a}$
$\Rightarrow \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{c}}+\alpha \overrightarrow{\mathrm{a}}$
$\vec{r} \cdot \vec{b}=0$ (given)
$(\vec{c}+\alpha \vec{a}) \cdot \vec{b}=0$
$[(1,2,-3)+\alpha(2,-7,5)] \cdot(1,0,1)=0$
$[1+2 \alpha, 2-7 \alpha,-3+5 \alpha] \quad[1,0,1]=0$
$1+2 \alpha+0-3+5 \alpha=0$
$\alpha=\frac{2}{7}$
$\vec{r}=(1,2,-3)+\frac{2}{7}(2,-7,5)$
$\vec{r}=\left(\frac{11}{7}, 0, \frac{-11}{7}\right),|\vec{r}|=\sqrt{\left(\frac{11}{7}\right)^{2}+\left(\frac{-11}{7}\right)^{2}}=\frac{11}{7} \sqrt{2}$
Sol7. $2 \tan ^{-1}\left(\frac{1-x}{1+x}\right)=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$
$\cos ^{-1} \frac{2 x}{1+x^{2}}=\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}$
$x^{2}+2 x-1=0$
$x=\sqrt{2}-1, x=-\sqrt{2}-1$
$0<x<1$
$x=\sqrt{2}-1$
Sol8. $\quad A R_{1} B$ if $\left(A \cap B^{C}\right) \cup\left(B \cap A^{c}\right)=\phi$
$\Rightarrow A \cap B^{C}=\phi$ and $B \cap A^{C}=\phi$
$\Rightarrow A=B$
$\therefore \mathrm{R}_{1}$ is reflexive and symmetric.
Again $\left.\begin{array}{l}A R_{1} B \Rightarrow A=B \\ B R_{1} C \Rightarrow B=C\end{array}\right\} \Rightarrow A=C$
$\therefore R_{1}$ is transitive
Hence R_{1} is equivalence relation.
$A R_{2} B$ if $A \cup B^{C}=B \cup A^{C}$
$\Rightarrow \mathrm{V}-\mathrm{B}=\mathrm{V}-\mathrm{A}$
$\Rightarrow B=A$
$\therefore \mathrm{R}_{2}$ is also reflexive, symmetric and transitive
R_{2} is equivalence relation.
Sol9. $x_{1}=9$
$x_{1}=9, x_{2}=9+d, x_{3}=9+2 d, x_{4}=9+3 d, x_{5}=9+4 d$
$x_{6}=9+5 d, x_{7}=9+6 d$
$\vec{x}=\frac{d+2 d+3 d+4 d+5 d+6 d}{7}=3 d$
$16=\frac{1}{7}\left(0^{2}+1^{2} \ldots .+6^{2}\right)-9 d^{2}$
$16=4 d^{2}$
$d= \pm 2, d>0$
$d=2$
$\bar{x}+x_{6}=15+19=34$
$S . D=4$
$\overrightarrow{\mathrm{x}}=6$
$\sqrt{\frac{\left(0^{2}+1^{2} \ldots . .6^{2}\right)}{7}}=4$
$\bar{x}+x_{6}=15+19=34$
Sol10. $3 x^{2}-4 y^{2}=36$
$\frac{d y}{d x}=\frac{3 x}{4 y}=\frac{3 x_{0}}{4 y_{0}}$
Point ($\mathrm{x}_{0}, \mathrm{y}_{0}$) on curve.

$\frac{3 x_{0}}{4 y_{0}}=\frac{-3}{2}$
$\mathrm{x}_{0}=-2 \mathrm{y}_{0}$
$3 x_{0}^{2}-4 y_{0}^{2}=36$
$y_{0}= \pm 3 / \sqrt{2} \quad x_{0}=-2 y_{0}$
$\left(\frac{-6}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right),\left(\frac{6}{\sqrt{2}}, \frac{-3}{\sqrt{2}}\right)$
Calculating \perp distance from both co-ordinate
$\left(\frac{6}{\sqrt{2}}, \frac{-3}{\sqrt{2}}\right)$ is nearest to line.
$\sqrt{2}\left(y_{0}-x_{0}\right)=-9$
Sol11. $A=\frac{1}{2}\left[\begin{array}{cc}1 & \sqrt{3} \\ -\sqrt{3} & 1\end{array}\right]$
$|A-x| \mid=0$
$x^{2}-x+1=0$
$A^{2}-A+I=0$
$\mathrm{A}^{2}=\mathrm{A}-\mathrm{I}$
$\mathrm{A}^{4}=-\mathrm{A}$
$\left(A^{4}\right)^{6}=(-A)^{6}$
$A^{24}=1$
$A^{30}=1$
$\mathrm{A}^{25}=\mathrm{A}$
Put in equation
$A^{30}+A^{25}-A$
$1+A-A=1$
Sol12. $\sum_{n=1}^{\infty} \frac{2 n^{2}+3 n+4}{\lfloor 2 n}$
$\sum_{n=1}^{\infty} \frac{2 n(n+1)+(n+4)}{2 n}$
$\frac{1}{2} \sum_{n=1}^{\infty}\left(\frac{1}{2 n-2}+\frac{3}{\lfloor 2 n-1}\right)+\frac{1}{2}\left(\sum_{n=1}^{\infty} \frac{1}{\underline{2 n-1}}+\frac{8}{\lfloor 2 n}\right)$
$\frac{1}{2}\left[\frac{e+e^{-1}}{2}+\frac{3\left(e-e^{-1}\right)}{2}\right]+\frac{1}{2}\left[\frac{e-e^{-1}}{2}+8\left(\frac{e+e^{-1}}{2}\right)-\mathrm{i}\right]$
Using $e^{x}=1+\frac{x}{L 1}+\frac{x^{2}}{\underline{L 2}}$.
Simplify $=\frac{13-e}{4}+\frac{5}{4 e}-4$
Sol13. $(p \wedge(p \rightarrow q)) \rightarrow n q$
$n(p \wedge(n p \vee q)) \vee n q$
$n(p \wedge q) \vee q$
$=n p \vee n q$
Sol14. $A=(1,2)(1,3)(1,4)(2,3)(2,4) \ldots(2,1)(3,4)(3,0)(3,6)(4,5)(4,6),(5,6)$
$n(A)=15$
$n(B)=9$
$n(C)=9$
$n((A \cup B) \cap C)$
$n((A \cap C) \cup(B \cap C))=6$

Sol15. $a b<0\left|\frac{1+a i}{b+i}\right|=1,|1+a i|=|b+i|$
$a= \pm b$
$\mathrm{a}=-\mathrm{b}$
$a+i b l i e s|z-1|=|2 z|$
$|a+i b|=|2 a+2 i b|$
$|(a-1)+i b|=|2 a+2 i b|$ put $b=-a$
$6 a^{2}+2 a-1=0$
$a=\frac{\sqrt{7}-1}{6}, a=\frac{-\sqrt{7}-1}{6}$
$a=\frac{\sqrt{7}-1}{6}, b=\frac{1-\sqrt{7}}{6}(a=-b)$
$\frac{1+[\mathrm{a}]}{4 \mathrm{~b}}=\frac{1+0}{4\left(\frac{1-\sqrt{7}}{6}\right)}=\frac{-1}{4}(\sqrt{7}+1)$
$a=\frac{-\sqrt{7}-1}{6}, b=\frac{\sqrt{7}+1}{6}$
Not match with any option.
Sol16. $=\int_{-\pi / 4}^{\pi / 4} \frac{x+\pi / 4}{2-\cos 2 x} d x$
$=\int_{-\pi / 4}^{\pi / 4} \frac{x d x}{2-\cos 2 x}+\frac{\pi}{4} \int_{-\pi / 4}^{\pi / 4} \frac{d x}{1+2 \sin ^{2} x}$
$\frac{\pi}{4} \times 2 \int_{0}^{\pi / 4} \frac{d x}{1+2 \sin ^{2} x}$
$\frac{\pi^{\pi / 4}}{2} \int_{0} \frac{\sec ^{2} x d x}{1+(\sqrt{3} \tan x)^{2}}$
$\frac{\pi}{2} \int_{0}^{1} \frac{d_{2}}{1+(\sqrt{3} z)^{2}}=\frac{\pi}{2 \sqrt{3}}\left[\tan ^{-1} \frac{\sqrt{3} z}{1}\right]_{0}^{1}$
$\frac{\pi}{2 \sqrt{3}}\left[\frac{\pi}{3}\right]=\frac{\pi^{2}}{6 \sqrt{3}}$
Sol17. $2 x^{2} y=\left(1-x y^{2}\right) d x$
$2 y \frac{d y}{d x}=\frac{1-x y^{2}}{x^{2}}$
Let $p=y^{2}$
$\frac{d p}{d x}=\frac{1-p x}{x^{2}}$
$\frac{d p}{d x}+\frac{p}{x}=\frac{1}{x}$
l.f $=x$
$p \times x=\int\left(\frac{1}{x^{2}} \times x\right) d x+c$
$y^{2} \cdot x=\log _{e} x+\log _{e} 2$
$2 x=e^{x^{\prime} y^{2}}$
$\alpha=2, \beta=1, \gamma=2$
$\alpha+B-\gamma=1$
Sol18. For $\alpha=2, \Delta \neq 0$
Sol19. Not match with anyone
$\vec{a}=(5,-1,-3), \vec{b}=(1,3,5)$
Projection of \vec{a} on $\vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
$=\frac{(5,-1,-3) \cdot(1,3,5)}{|1,3,5|}$
$=\frac{5-3-15}{\sqrt{1+9+25}}=\frac{-13}{\sqrt{35}}$
Sol20. $(2 x+3 y-z-2)+\lambda(x+2 y+3 z-6)=0$
$x(2+\lambda)+y(3+2 \lambda)+z(-1+3 \lambda)-6 \lambda-2=0$
$x(2+\lambda)+y(3+2 \lambda)+z(-1+3 \lambda)-6 \lambda-2=0$
\perp to $2 x+y-z+1=0$
$2(2+\lambda)+1(3+2 \lambda)-1(-1+3 \lambda)=0$
$\lambda=-8$
Put in (i)
$6 x+13 y+252-46=0$
\perp distance $(-7,1,1)$
$d=\left|\frac{6 \times-7+13 \times 1+25(1)-46}{\sqrt{6^{2}+13^{2}+25^{2}}}\right|=\frac{50}{\sqrt{830}}$
$\mathrm{d}^{2}=\frac{250}{83}$

SECTION - B

Sol1. $\mathrm{I}=\int_{0}^{\pi} \frac{5^{\cos x}\left(1+\cos x \cos 3 x+\cos ^{2} x+\cos ^{3} x \cos 3 x\right)}{1+5^{\cos x}} d x$
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x \& A d d$.
$21=\int_{0}^{\pi}\left(1+\cos x \cos 3 x+\cos ^{2} x+\cos ^{3} x \cos 3 x\right) d x$
$2 \mid=\int_{0}^{\pi} d x+\int_{0}^{\pi} \cos x \cos 3 x+2 \cdot \int_{0}^{\pi / 2} \cos ^{2} x d x+\int_{2}^{\pi} \cos ^{3} x \cos 3 x d x$
$2 \mathrm{l}=\pi+0+2 \int_{0}^{\pi / 2} \cos ^{2} x d x+\int_{0}^{\pi}\left(4 \cos ^{6} x-3 \cos ^{4} x\right) d x$
$2 I=\pi+2\left(\frac{2-1}{2} \times \frac{\pi}{2}\right)+4 \int_{0}^{\pi} \cos ^{6} x d x-3 \int_{0}^{\pi} \cos ^{4} x d x$
$2 \mathrm{I}=\pi+\frac{\pi}{2}+4 \times 2 \int_{6}^{\pi / 2} \cos ^{6} x d x-3 \times 2 \int_{0}^{\pi / 2} \cos ^{4} x d x$
$2 \mathrm{I}=\frac{3 \pi}{2}+8\left(\frac{6-1}{6} \times \frac{6-3}{4} \times \frac{1}{2} \times \frac{\pi}{2}\right)-6\left(\frac{4-1}{4} \times \frac{4-3}{4-2}\right)$
$2 l=\frac{3 \pi}{2}+\frac{5 \pi}{4}-\frac{9 \pi}{8}$
$I=\frac{13 \pi}{16}$
$k=13$
Sol2. $\quad \alpha \beta \gamma=6$
$[\overrightarrow{\mathrm{r}}-(3,-2,5)] \cdot[3,-1,-2]=0$
$3 x-y-2 z=1$
$\alpha=3, \beta=-1, \gamma=-2$

Sol3. $x+y+z=21$

$$
\alpha+\beta+\gamma=13
$$

$$
\begin{aligned}
& x \geq 1, y \geq 3, z \geq 4 \\
& x-1 \geq 0, y-3 \geq 0, z-4 \geq 0 \\
& \alpha \geq 0, \beta \geq 0, \gamma \geq 0
\end{aligned}
$$

$x-1+y-3+z-4=13$
$\Rightarrow{ }^{13+3-1} \mathrm{C}_{3}={ }^{15} \mathrm{C}_{2}=105$

Sol4. (i) Using single digit...........4 $=\frac{\underline{5}}{\underline{5}}=1$
(ii) Using $4,5 \ldots \ldots \ldots \ldots .4=\frac{\underline{5}}{\underline{3} \underline{\underline{2}}}=10$
(iii) Using $(4,9)=444499 \ldots \ldots \ldots .4=\frac{\underline{5}}{\boxed{2\lfloor 3}}=10$
(iv) Using 3 digit 4,5,9 $(459444)=\ldots \ldots \ldots .4=\frac{\underline{5}}{\underline{3}}=20$
(v) $459555=\ldots \ldots \ldots .4=\frac{\underline{5}}{\underline{4}}=5$

4,5,9999 $.4=\frac{\underline{5}}{\underline{4}}=5$
$4,5,9,4,5,9 \ldots \ldots \ldots \ldots .4=\frac{\underline{5}}{\underline{2} \underline{2}}=\frac{5 \times 4 \times 3 \times 23}{\underline{2} \cdot 2}=30$
Total digit $=81$

Sol5. $\quad \mathrm{C} \equiv\left(\frac{2 \mathrm{k}-3}{\mathrm{k}+1}, \frac{4 \mathrm{k}-6}{\mathrm{k}+1}, \frac{-3 \mathrm{k}+1}{\mathrm{k}+1}\right)$
$8 \mathrm{x}+\mathrm{y}+2 \mathrm{z}=8$
$8\left(\frac{2 k-3}{k+1}\right)+\left(\frac{4 k-6}{k+1}\right)+2\left(\frac{-3 k+1}{k+1}\right)=8$
$\mathrm{k}=2$
$C \equiv\left(\frac{1}{3}, \frac{2}{3}, \frac{-5}{3}\right)$
$\ell_{1} \equiv \frac{x-1}{-1}=\frac{y+4}{2}=\frac{z-(-2)}{3}=\mu$
d.r $C D=\left(-\mu+1-\frac{1}{3}\right),\left(2 \mu-4-\frac{2}{3}\right),\left(3 \mu-2+\frac{5}{3}\right)$
d.r of $\ell_{1}=-1,2,3$
$-1\left(-\mu+1-\frac{1}{3}\right)+2\left(2 \mu-\frac{14}{3}\right)+3\left(\frac{3 \mu-1}{3}\right)=6$
$\mu=\frac{11}{14}$
$\left(\frac{-5}{42}, \frac{-130}{42}, \frac{85}{42}\right)=(-1,-26,17)$
$=|a+b-c|=|-1-26+17|=10$
Sol6. $\quad S_{1}=3,7,11,15,19,23,27,31,35,39,43,47,51,55,59$
$S_{2}=2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50$
$S_{3}=2,7,12,17,22,27,32,37,42,47$
$\mathrm{d}_{1}=4$
$d_{2}=3$
$d_{3}=5$
$d_{4}=60$
$\mathrm{S}_{4}=47,107,167=47+107+167=321$
Sol7. $(y-2)^{2}=8[x+1)$
$L_{f}=4 a \operatorname{cosec}^{2} \theta$
$m=-1, \cot \theta=-1$
$8(2)=16$

Sol8. $\left[\sqrt{10-3^{x}}+3^{\frac{x-2}{5}}\right]^{m}$
$\mathrm{T}_{6}=21 \Rightarrow{ }^{m} \mathrm{C}_{5}\left(10-3^{\mathrm{x}}\right)^{\frac{m-5}{2}} 3^{\mathrm{x}-2}=21$
$\mathrm{T}_{1+1}={ }^{m} \mathrm{C}_{1}, \mathrm{~T}_{2+1}={ }^{m} \mathrm{C}_{2}, \mathrm{~T}_{3+1}={ }^{\mathrm{m}} \mathrm{C}_{3}$ (Binomial) in A.P
$\mathrm{T}_{1}^{1}={ }^{m} \mathrm{C}_{1}, \mathrm{~T}_{3}^{1}={ }^{m} \mathrm{C}_{2}, \mathrm{~T}_{5}^{1}={ }^{m} \mathrm{C}_{3}$
${ }^{2 m} \mathrm{C}_{2}={ }^{m} \mathrm{C}_{1}+{ }^{m} \mathrm{C}_{3}$
$m=7$
${ }^{7} C_{5}\left(10-3^{x}\right)^{\frac{2}{2}} 3^{x-2}=21$
$\left(10-3^{x}\right) \cdot 3^{x}=9$
$(10-t) \cdot t=9$
$10 t-t^{2}=9$
$t^{2}-10 t+9=0$
$t^{2}-9 t-t+9=0$
$t(t-9)-1(t-9)=0$
$(t-1)(t-9)=0$
$t=1, t=9$
$3^{x}=1,3^{x}=9 \Rightarrow x=0, x=2 \Rightarrow(0+2)^{2}=4$
Sol9. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$\frac{a}{e}=8, a b=2$
$e=\frac{1}{2}$

$a=4, b^{2}=12$
equation of tangent at $(a \cos \theta, b \sin \theta)$
$\frac{x \cos \theta}{4}+\frac{y \sin \theta}{\sqrt{12}}=1$
passing $Q(0,4 \sqrt{3})$
$\sin \theta=\frac{1}{2}$
$\theta=30^{\circ}$
$P Q=\sqrt{(\sqrt{3}-0)^{2}+\left(2 \sqrt{3}-\frac{8}{\sqrt{3}}\right)^{2}}=\sqrt{\frac{13}{3}}$
$(3 P Q)^{2}=9(P Q)^{2}=9 \times \frac{13}{3}=39$
Sol10. $|\alpha|=1=9 \times \frac{13}{3}=39$
$\left[x^{2 / 3}+\frac{\alpha}{x^{3}}\right)^{22}$
$T_{r+1}={ }^{22} C_{r} x^{\frac{44-2 r}{3}-3 r}$
$\frac{44-2 r}{3}-3 r=0$
$r=4$
$\mathrm{T}_{4+1}=\mathrm{T}_{5}={ }^{22} \mathrm{C}_{4} \alpha^{4}=7315$
$\alpha^{4}=1$
$\alpha= \pm 1 \quad|\alpha|=1$

[^0]: - Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose.

 ## Important Instructions:

 1. The test is of 3 hours duration.
 2. This test paper consists of 90 questions. Each subject (PCM) has 30 questions. The maximum marks are 300.
 3. This question paper contains Three Parts. Part-A is Physics, Part-B is Chemistry and Part-C is Mathematics. Each part has only two sections: Section-A and Section-B.
 4. Section - A : Attempt all questions.
 5. Section - B : Do any 5 questions out of 10 Questions.
 6. Section-A (01-20) contains 20 multiple choice questions which have only one correct answer. Each question carries +4 marks for correct answer and -1 mark for wrong answer.
 7. Section-B (1 - 10) contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value. Each question carries $\mathbf{+ 4}$ marks for correct answer and -1 mark for wrong answer.
[^1]: (Assuming same retardation is produced by brakes)

