Test D ate: 30 ${ }^{\text {th }}$ January 2023 (Second Shift)

PHYSICS, CHEMISTRY \& MATHEMATICS

Paper - 1

[^0]
PART - A (PHYSICS)

SECTION - A

(One Options Correct Type)

This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct.

Q1. A vehicle travels 4 km with speed of $3 \mathrm{~km} / \mathrm{h}$ and another 4 km with speed of $5 \mathrm{~km} / \mathrm{h}$, then its average speed is
(A) $3.50 \mathrm{~km} / \mathrm{h}$
(B) $3.75 \mathrm{~km} / \mathrm{h}$
(C) $4.25 \mathrm{~km} / \mathrm{h}$
(D) $4.00 \mathrm{~km} / \mathrm{h}$

Q2. A thin prism P_{1} with an angle 6° and made of glass of refractive index 1.54 is combined with another prism P_{2} made from glass of refractive index 1.72 to produce dispersion without average deviation. The angle of prism P_{2} is
(A) 1.3°
(B) 4.5°
(C) 6°
(D) 7.8°

Q3. An electron accelerated through a potential difference V_{1} has a de-Broglie wavelength of λ. When the potential is changed to V_{2}, its de-Broglie wavelength increases by 50%. The value of $\left(\frac{V_{1}}{V_{2}}\right)$ is equal to
(A) 4
(B) $\frac{3}{2}$
(C) $\frac{9}{4}$
(D) 3

Q4. Match List I with List II:

List-I		List-II	
A.	Attenuation	I.	Combination of a receiver and transmitter.
B.	Transducer	II.	Process of retrieval of information from the carrier wave at receiver
C.	Demodulation	III.	Converts one form of energy into another
D.	Repeater	IV.	Loss of strength of a signal while propogating through a medium.

Choose the correct answer from the options given below :
(A) A - IV, B - III, C - II, D - I
(B) A - IV, B - III, C - I, D - II
(C) A - I, B - II, C - III, D - IV
(D) A - II, B - III, C - IV, D - I

Q5. As shown in the figure, a point charge Q is placed at the centre of conducting spherical shell of inner radius a and outer radius b . The electric field due to charge Q in three different regions I, II and III is given by :
(I : r < a, II : a < b, III : r > b)
(A) $\mathrm{E}_{1} \neq 0, \mathrm{E}_{\mathrm{II}}=0, \mathrm{E}_{\text {III }} \neq 0$
(B) $\mathrm{E}_{1}=0, \mathrm{E}_{11}=0, \mathrm{E}_{1 \mid 1}=0$
(C) $\mathrm{E}_{1}=0, \mathrm{E}_{11}=0, \mathrm{E}_{\text {III }} \neq 0$

(D) $\mathrm{E}_{1} \neq 0, \mathrm{E}_{1 \mid}=0, \mathrm{E}_{1 \mid 1}=0$

Q6. As shown in the figure, a current of 2 A flowing in an equilateral triangle of side $4 \sqrt{3} \mathrm{~cm}$. The magnetic field at the centroid O of the triangle is (Neglect the effect of earth's magnetic field)
(A) $3 \sqrt{3} \times 10^{-5} \mathrm{~T}$
(B) $4 \sqrt{3} \times 10^{-4} \mathrm{~T}$
(C) $4 \sqrt{3} \times 10^{-5} \mathrm{~T}$
(D) $\sqrt{3} \times 10^{-4} \mathrm{~T}$

Q7. A point source of 100 W emits light with 5% efficiency. At a distance of 5 m from the source, the intensity produced by the electric field component is :
(A) $\frac{1}{10 \pi} \frac{W}{\mathrm{~m}^{2}}$
(B) $\frac{1}{20 \pi} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
(C) $\frac{1}{2 \pi} \frac{W}{m^{2}}$
(D) $\frac{1}{40 \pi} \frac{W}{\mathrm{~m}^{2}}$

Q8. A force is applied to a steel wire ' A ', rigidly clamped at one end. As a result elongation in the wire is 0.2 mm . If same force is applied to another steel wire ' B ' of double the length and a diameter 2.4 times that of the wire ' A ', the elongation in the wire ' B ' will be (wires having uniform circular cross sections)
(A) $6.06 \times 10^{-2} \mathrm{~mm}$
(B) $3.0 \times 10^{-2} \mathrm{~mm}$
(C) $6.9 \times 10^{-2} \mathrm{~mm}$
(D) $2.77 \times 10^{-2} \mathrm{~mm}$

Q9. The output Y for the input A and B of circuit is given by truth table of the shown circuit is:

(A)

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

(B)
B)
(C)

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

(D)

A	B	Y
0	0	1
0	1	0
1	0	0
1	1	1

Q10. A flask contains hydrogen and oxygen in the ratio of $2: 1$ by mass at temperature $27^{\circ} \mathrm{C}$. The ratio of average kinetic energy per molecule of hydrogen and oxygen respectively is :
(A) $4: 1$
(B) $1: 4$
(C) $2: 1$
(D) $1: 1$

Q11. Match List I with List II :

List I

A. Torque
B. Energy density
C. Pressure gradient
D. Impulse

List II

I. $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}$
II. $\mathrm{Kg} \mathrm{ms}^{-1}$
III. $\mathrm{kg} \mathrm{m}^{-2} \mathrm{~s}^{-2}$
IV. $\mathrm{Kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$

Choose the correct answer from the options given below :
(A) $\mathrm{A}-\mathrm{IV}, \mathrm{B}-\mathrm{I}, \mathrm{C}-\mathrm{III}, \mathrm{D}-\mathrm{II}$
(B) $A-I V, B-I, C-I I, D-$ III
(C) A - I, B - IV, C - III, D - II
(D) A - IV, B - III, C - I, D - II

Q12. For a simple harmonic motion in a mass spring system shown, the surface is frictionless. When the mass of the block is 1 kg , the angular frequency is ω_{1}. When the mass block is 2 kg the angular frequency is ω_{2}. The ratio ω_{2} / ω_{1} is
(A) $1 / \sqrt{2}$
(B) $1 / 2$
(C) 2
(D) $\sqrt{2}$

Q13. Other is labeled as Reason \mathbf{R}
Assertion A : Efficiency of a reversible heat engine will be highest at $-273^{\circ} \mathrm{C}$ temperature of cold reservoir.
Reason R : The efficiency of carnot's engine depends not only on temperature of cold reservoir but it depends on the temperature of hot reservoir too and is given as $n=\left(1-\frac{T_{2}}{T_{2}}\right)$.
In the light of the above statements, choose the correct answer from the options given below
(A) \mathbf{A} is true but \mathbf{R} is false
(B) \mathbf{A} is false but \mathbf{R} is true
(C) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}
(D) Both \mathbf{A} and \mathbf{B} are true but \mathbf{R} is NOT the correct explanation of \mathbf{A}

Q14. A current carrying rectangular loop PQRS is made of uniform wire. The length $P R=Q S=5 \mathrm{~cm}$ and $P Q=R S=$ 100 cm . If ammeter current reading change from I to 21 , the ratio of magnetic forces per unit length on the wire $P Q$ due to wire RS in the two cases respectively $\left(f_{P Q}^{1}: f_{P Q}^{21}\right)$ is :

(A) $1: 3$
(B) $1: 2$
(C) $1: 4$
(D) $1: 5$

Q15. In the given circuit, rms value of current ($l_{\text {rms }}$) through the resistor R is :
(A) $\frac{1}{2} \mathrm{~A}$
(B) 2 A
(C) $2 \sqrt{2} \mathrm{~A}$
(D) 20 A

Q16. A machine gun of mass 10 kg fires 20 g bullets at the rate of 180 bullets per minute with a speed of $100 \mathrm{~ms}^{-1}$ each. The recoil velocity of gun is
(A) $1.5 \mathrm{~m} / \mathrm{s}$
(B) $0.6 \mathrm{~m} / \mathrm{s}$
(C) $2.5 \mathrm{~m} / \mathrm{s}$
(D) $0.02 \mathrm{~m} / \mathrm{s}$

Q17. An object is allowed to fall from a height R above the earth, where R is the radius of earth. Its velocity when it strikes the earth's surface, ignoring air resistance, will be
(A) $\sqrt{2 g R}$
(B) $\sqrt{g R}$
(C) $\sqrt{\frac{g R}{2}}$
(D) $2 \sqrt{g R}$

Q18. A block of $\sqrt{3} \mathrm{~kg}$ is attached to a string whose other end is attached to the wall. An unknown force F is applied so that the string makes an angle of 30° with the wall. The tension T is : (Given $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
(A) 15 N
(B) 10 N
(C) 20 N
(D) 25 N

Q19. Given below two statements : one is labeled as Assertion A and the other is labeled as Reason R
Assertion A : The nuclear density of nuclides ${ }_{5}^{10} \mathrm{~B},{ }_{3}^{6} \mathrm{Li},{ }_{26}^{56} \mathrm{Fe},{ }_{10}^{20} \mathrm{Ne}$ and ${ }_{83}^{209} \mathrm{Bi}$ can be arranged as $\rho_{\mathrm{Bi}}^{N}>\rho_{\mathrm{Fe}}^{N}>\rho_{\mathrm{Ne}}^{N}>\rho_{\mathrm{B}}^{N}>\rho_{\mathrm{ld}}^{N}$
Reason R : The radius R of nucleus is related to its mass number A as $R=R_{0} A^{1 / 3}$, where R_{0} is a constant.

In the light of the above statements, choose the correct answer from the options given below
(A) A is true but \mathbf{R} is false
(B) Both \mathbf{A} and \mathbf{R} are true but \mathbf{R} is NOT the correct explanation of \mathbf{A}
(C) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}
(D) \mathbf{A} is false but \mathbf{R} is true

Q20. The equivalent resistance between A and B is \qquad .
(A) $\frac{1}{2} \Omega$
(B) $\frac{1}{3} \Omega$
(C) $\frac{2}{3} \Omega$
(D) $\frac{3}{2} \Omega$

SECTION - B

(Numerical Answer Type)

This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.

Q1. In a Young's double slit experiment, the intensities at two points, for the path differences $\frac{\lambda}{4}$ and $\frac{\lambda}{3}$ (λ being the wavelength of light used) are I_{1} and I_{2} respectively. If I_{0} denotes the intensity produced by each one of the individual slits, then $\frac{I_{1}+I_{2}}{I_{0}}=$ \qquad .

Q2. A body of mass 2 kg initially at rest. It starts moving unidirectionally under the influence of a source of constant power P. Its displacement in 4 s is $\frac{1}{3} \alpha^{2} \sqrt{\mathrm{P}} \mathrm{m}$. The value of α will be \qquad .

Q3. A stone tied to 180 cm long string at its end is making 28 revolutions in horizontal circle in every minute. The magnitude of acceleration of stone is $\frac{1936}{\mathrm{x}} \mathrm{ms}^{-2}$. The value of x \qquad $\left(\right.$ Take $\pi=\frac{22}{7}$)

Q4. In an ac generator, a rectangular coil of 100 turns each having area $14 \times 10^{-2} \mathrm{~m}^{2}$ is rotated at 360 $\mathrm{rev} / \mathrm{min}$ about an axis perpendicular to a uniform magnetic field of magnitude 3.0 T. The maximum value of the emf produced will be \qquad V.
(Take $\pi=\frac{22}{7}$)
Q5. A uniform disc of mass 0.5 kg and radius r is projected with velocity $18 \mathrm{~m} / \mathrm{s}$ at $\mathrm{t}=0 \mathrm{~s}$ on a rough horizontal surface. It starts off with a purely sliding motion at $t=0 \mathrm{~s}$. After 2 s it acquires a purely rolling motion (see figure). The total kinetic energy of the disc after 2 s will be \qquad J (given, coefficient of friction is
 0.3 and $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$).

Q6. As shown in figure, a cuboid lies in a region with electric fieldE $=2 x^{2} \hat{i}-4 y \hat{j}+6 \hat{k} \mathrm{~N} / \mathrm{C}$. The magnitude of charge within the euboid is $n \epsilon_{0} C$. The value of n is \qquad (if dimension of euboid is $1 \times 2 \times 3 \mathrm{~m}^{3}$).

Q7. If the potential difference between B and D is zero, the value of x is $\frac{1}{n} \Omega$. The value of n is \qquad .

Q8. A faulty thermometer reads $5^{\circ} \mathrm{C}$ in melting ice and $95^{\circ} \mathrm{C}$ in steam. The correct temperature on absolute scale will be \qquad K when the faulty thermometer reads $41^{\circ} \mathrm{C}$.

Q9. The velocity of a particle executing SHM varies with displacement (x) as $4 v^{2}=50-x^{2}$. The time period of oscillations is $\frac{x}{7} \mathrm{~s}$. The value of x is \qquad .
$\left(\right.$ Take $\pi=\frac{22}{7}$)
Q10. A radioactive nucleus decays by two different process. The half life of the first process is 5 minutes and that of the second is 30s. The effective half-life of the nucleus is calculated to be $\frac{\alpha}{11}$ s. The value of α is \qquad .

PART - B (CHEMISTRY)

SECTION - A

(One Options Correct Type)
This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct.

Q1. Which of the following reaction is correct?
(A) $2 \mathrm{LiNO}_{3} \longrightarrow 2 \mathrm{Li}+2 \mathrm{NO}_{2}+\mathrm{O}_{2}$
(B) $4 \mathrm{LiNO}_{3} \xrightarrow{\Delta} 2 \mathrm{Li}_{2} \mathrm{O}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
(C) $2 \mathrm{LiNO}_{3} \xrightarrow{\Delta} 2 \mathrm{LiNO}_{2}+\mathrm{O}_{2}$
(D) $4 \mathrm{LiNO}_{3} \xrightarrow{\Delta} 2 \mathrm{Li}_{2} \mathrm{O}+2 \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{O}_{2}$

Q2. The water quality of a pond was analysed and its BOD was found to be 4 . The pond has
(A) Highly polluted water
(B) Slightly polluted water
(C) Very clean water
(D) Water has high amount of fluoride compounds

Q3. Match List I with List II

List-I(Mixture)		List-II (Separation Technique)	
A.	$\mathrm{CHCl}_{3}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	I.	Steam distillation
B.	$\mathrm{C}_{6} \mathrm{H}_{14}+\mathrm{C}_{5} \mathrm{H}_{12}$	II.	Differential extraction
C.	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O}$	III.	Distillation
D.	Organic compound in water	IV.	Fractional distillation

Choose the correct answer from the options given below:
(A) A- III, B-I, C-IV, D- II
(B) A-IV, B-I, C-III, D-II
(C) A-II, B-I, C-III, D-IV
(D) A-III, B-IV, C-I, D-II

Q4. Boric acid is solid, whereas BF_{3} is gas at room temperature because of
(A) Strong ionic bond in Boric acid
(B) Strong covalent bond in BF_{3}
(C) Strong van der Waal's interaction in Boric acid
(D) Strong hydrogen bond in Boric acid

Q5. The wave function (Ψ) of 2 s is given by
$\psi_{2 \mathrm{~s}}=\frac{1}{2 \sqrt{2 \pi}}\left(\frac{1}{a_{0}}\right)^{1 / 2}\left(2-\frac{r}{a_{0}}\right) e^{-r / 2 a_{0}}$
At $r=r_{0}$, radial node is formed. Thus, r_{0} in terms of a_{0}
(A) $\mathrm{r}_{0}=2 \mathrm{a}_{0}$
(B) $r_{0}=\frac{a_{0}}{2}$
(C) $\mathrm{r}_{0}=4 \mathrm{a}_{0}$
(D) $r_{0}=a_{0}$

Q6. The $\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}$ bond angle values in a fac- $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$ complex is / are:
(A) 90°
(B) $90^{\circ} \& 180^{\circ}$
(C) $90^{\circ} \& 120^{\circ}$
(D) 180°

Q7. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R.
Assertion A: Antihistamines do not affect the secretion of acid in stomach.
Reason R: Antiallergic and antacid drugs work on different receptors.
In the light of the above statements, choose the correct answer from the options given below:
(A) A is false but R is true
(B) A is true but R is false
(C) Both A and R are true but R is not the correct explanation of A
(D) Both A and R are true and R is the correct explanation of A

Q8. The correct order of pK_{a} values for the following compounds is:

b

C

d
(A) b $>$ d $>$ a $>$ c
(B) c $>$ a $>$ d $>$ b
(C) b $>$ a $>$ d $>$ c
(D) a $>$ b $>$ c $>$ d

Q9. Given below are two statements:
Statement I: During Electroyltic refining, the pure metal is made to act as anode and its impure metallic form is used as cathode.
Statement II: During the Hall-Heroult electrolysis process, purified $\mathrm{Al}_{2} \mathrm{O}_{3}$ is mixed with $\mathrm{Na}_{3} \mathrm{AlF}_{6}$ to lower the melting point of the mixture.
In the light of the above statements, choose the most appropriate answer from the options given below:
(A) Both Statement I and Statement II are correct
(B) Statement I is correct but Statement II is incorrect
(C) Statement I is incorrect but Statement II is correct
(D) Both statement I and Statement II are incorrect

Q10. Formulae for Nessler's reagent is;
(A) KHgl_{3}
(B) $\mathrm{K}_{2} \mathrm{Hgl}_{4}$
(C) Hgl_{2}
(D) $\mathrm{KHg}_{2} \mathrm{I}_{2}$

Q11.

In the above conversion of compound (X) to product (Y), the sequence of reagents to be used will be:
(A) $\mathrm{Br}_{2}(\mathrm{aq})$
(ii) LiAlH_{4} (iii) $\mathrm{H}_{3} \mathrm{O}^{+}$
(B) $\mathrm{Br}_{2}, \mathrm{Fe}$ (ii) $\mathrm{Fe}, \mathrm{H}^{+}$(iii) LiAlH_{4}
(C) $\mathrm{Fe}, \mathrm{H}^{+}$(ii) $\mathrm{Br}_{2}(\mathrm{aq})$ (iii) HNO_{2} (iv) $\mathrm{H}_{3} \mathrm{PO}_{2}$
(D) $\mathrm{Fe}, \mathrm{H}^{+}$(ii) $\mathrm{Br}_{2}(\mathrm{aq})$ (iii) HNO_{2} (iv) CuBr

Q12. Given below are two statements: One is labelled as Assertion \mathbf{A} and the other is labelled as Reason R.

Assertion A:

Reason \mathbf{R} : $\mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}$ is used to reduce carbonyl group to $-\mathrm{CH}_{2}$ - group.
In the light of the above statements, choose the correct answer from the options given below:
(A) Both A and R are true but R is not the correct explanation of A
(B) A is true but R is false
(C) A is false but R is true
(D) Both A and R are true and R is the correct explanation of A

Q13. Bond dissociation energy of " $\mathrm{E}-\mathrm{H}$ " bond of the " $\mathrm{H}_{2} \mathrm{E}$ " hydrides of group 16 elements (given below), follows order.
A. O
B. S
C. Se
D. Te

Choose the correct from the options given below :
(A) A $>$ B $>$ D $>$ C
(B) A $>$ B $>$ C $>$ D
(C) D $>$ C $>$ B $>$ A
(D) B $>$ A $>$ C $>$ D

Q14. Match List I with List II

List-I(complexes)		List-II (Hybridisation)	
A.	$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$	I.	sp^{3}
B.	$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$	II.	dsp^{2}
C.	$\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$	III.	$\mathrm{sp}^{3} \mathrm{~d}^{2}$
D.	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	IV.	$\mathrm{d}^{2} \mathrm{sp}^{3}$

(A) A-II, B-I, C-III, D-IV
(B) A-II, B-I, C-IV, D-III
(C) A-I, B-II, C-III, D-IV
(D) A-I, B-II, C-IV, D-III

Q15. Maximum number of electrons that can be accommodated in shell with $n=4$ are:
(A) 16
(B) 72
(C) 32
(D) 50

Q16. KMnO_{4} oxidises I^{-}in acidic and neutral / faintly alkaline solution respectively, to
(A) $\mathrm{IO}_{3}^{-} \& \mathrm{I}_{2}$
(B) $\mathrm{IO}_{3}^{-} \& \mathrm{IO}_{3}^{-}$
(C) $\mathrm{I}_{2} \& \mathrm{IO}_{3}^{-}$
(D) $I_{2} \& I_{2}$

Q17. Decreasing order towards SN^{1} reaction for the following compounds is:

a

b

C

d
(A) a $>$ c $>$ d $>$ b
(B) b $>$ d $>$ c $>$ a
(C) a $>$ b $>$ c $>$ d
(D) d $>$ b $>$ c $>$ a

Q18. The most stable carbocation for the following is:

a

b

c

d
(A) b
(C) c
(B) a
(D) d

Q19. Chlorides of which metal are soluble in organic solvents:
(A) Be
(B) Ca
(C) K
(D) Mg

Q20. $1 \mathrm{~L}, 0.02 \mathrm{M}$ solution of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$ is mixed with $1 \mathrm{~L}, 0.02 \mathrm{M}$ solution of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$. The resulting solution is divided into two equal parts (X) and treated with excess of AgNO_{3} solution and BaCl_{2} solution respectively as shown below:
1 L Solution $(\mathrm{X})+\mathrm{AgNO}_{3}$ solution (excess) $\rightarrow \mathrm{Y}$
1 L Solution (X) $+\mathrm{BaCl}_{2}$ solution (excess) $\rightarrow \mathrm{Z}$
The number of moles of Y and Z respectively are
(A) $0.02,0.01$
(B) $0.01,0.02$
(C) $0.01,0.01$
(D) $0.02,0.02$

SECTION - B

(Numerical Answer Type)

This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.

Q1. The graph of $\log \frac{x}{m}$ vs log p for an adsorption process is a straight line inclined at an angle of 45° with intercept equal to 0.6020 . The mass of gas adsorbed per unit mass of adsorbent at the pressure of 0.4 atm is \qquad $\times 10^{-1}$ (Nearest integer)
Given: $\log 2=0.3010$
Q2. Lead storage battery contains 38% by weight solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$. The van't Hoff factor is 2.67 at this concentration. The temperature in Kelvin at which the solution in the battery will freezes is (Nearest integer)
Given $\mathrm{K}_{\mathrm{f}}=1.8 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$.
Q3. An organic compound undergoes first order decomposition. If the time taken for the 60\% decomposition is 540 s, then the time required for 90% decomposition will be is \qquad s. (Nearest integer)
Given: $\ln 10=2.3 ; \log 2=0.3$

Q4. Iron oxide FeO, crystallises in a cubic lattice with a unit cell edge length of $5.0 \AA$. If density of the FeO in the crystal is $4.0 \mathrm{~g} \mathrm{~cm}^{-3}$, then the number of FeO units present per unit cell is \qquad . (Nearest integer)
Given: Molar mass of Fe and O is 56 and $16 \mathrm{~g} \mathrm{~mol}^{-1}$ respectively.
$\mathrm{N}_{\mathrm{A}}=6.0 \times 10^{23} \mathrm{~mol}^{-1}$.
Q5. The strength of 50 volume solution of hydrogen peroxide is \qquad g / L (Nearest integer).
Given:
Molar mass of $\mathrm{H}_{2} \mathrm{O}_{2}$ is $34 \mathrm{~g} \mathrm{~mol}^{-1}$
Molar volume of gas at STP $=22.7 \mathrm{~L}$
Q6. A short peptide on complete hydrolysis produces 3 moles of glycine (G), two moles of leucine (L) and two moles of valine (V) per mole of peptide. The number of peptide linkages in it are
\qquad -.

Q7. Consider the following equation:
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}), \Delta \mathrm{H}=-190 \mathrm{KJ}$
The number of factors which will increase the yield of SO_{3} at equilibrium from the following is \qquad
A. Increasing temperature
B. Increasing pressure
C. Adding more SO_{2}
D. Adding more O_{2}
E. Addition of catalyst

Q8. The electrode potential of the following half cell at 298 K
$\mathrm{X}\left|\mathrm{X}^{2+}(0.001 \mathrm{M})\right|\left|\mathrm{Y}^{2+}(0.01 \mathrm{M})\right| \mathrm{Y}$ is \qquad $\times 10^{-2} \mathrm{~V}$ (Nearest integer)
Given: $E_{X^{2}+\mathrm{X}}^{0}=-2.36 \mathrm{~V}$

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{Y}^{2}+\mathrm{Y}}^{0}=+0.36 \mathrm{~V} \\
& \frac{2.303 R T}{F}=0.06 \mathrm{~V}
\end{aligned}
$$

Q9. 1 mole of ideal gas is allowed to expand reversibly and adiabatically from a temperature of $27^{\circ} \mathrm{C}$. The work done is $3 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The final temperature of the gas is \qquad K (Nearest integer).
Given $\mathrm{C}_{\mathrm{V}}=20 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.
Q10. Number of compounds from the following which will not dissolve in cold NaHCO_{3} and NaOH solutions but will dissolve in hot NaOH solution is \qquad .

 .

PART - C (MATHEMATICS)

SECTION - A

(One Options Correct Type)

This section contains 20 multiple choice questions. Each question has four choices (A), (B), (C) and (D), out of which ONLY ONE option is correct.

Q1. Let f, g and h be the real valued functions defined on R as
$f(x)=\left\{\begin{array}{cl}\frac{x}{|x|}, & x \neq 0 \\ 1, x=0\end{array}, g(x)=\left\{\begin{array}{cl}\frac{\sin (x+1)}{(x+1)} & , x \neq-1 \\ 1 & , x=-1\end{array}\right.\right.$
and $h(x)=2[x]-f(x)$, where $[x]$ is the greatest integer $\leq x$. Then the value of $\lim _{x \rightarrow 1} g(h(x-1))$ is
(A) 0
(B) $\sin (1)$
(C) -1
(D) 1

Q2. Let \vec{a} and \vec{b} be two vectors. Let $|\vec{a}|=1,|\vec{b}|=4$ and $\vec{a} \cdot \vec{b}=2$. If $\vec{c}=(2 \vec{a} \times \vec{b})-3 \vec{b}$, then the value of $\vec{b} \cdot \vec{c}$ is
(A) -48
(B) -24
(C) -60
(D) -84

Q3. The solution of the differential equation $\frac{d y}{d x}=-\left(\frac{x^{2}+3 y^{2}}{3 x^{2}+y^{2}}\right), y(1)=0$ is
(A) $\log _{e}|x+y|-\frac{2 x y}{(x+y)^{2}}=0$
(B) $\log _{e}|x+y|+\frac{2 x y}{(x+y)^{2}}=0$
(C) $\log _{e}|x+y|+\frac{x y}{(x+y)^{2}}=0$
(D) $\log _{e}|x+y|-\frac{x y}{(x+y)^{2}}=0$

Q4. Let $\lambda \in R, \vec{a}=\lambda \hat{i}+2 \hat{j}-3 \hat{k}, \vec{b}=\hat{i}-\lambda \hat{j}+2 \hat{k}$.
If $((\vec{a}+\vec{b}) \times(\vec{a} \times \vec{b})) \times(\vec{a}-\vec{b})=8 \hat{i}-40 \hat{j}-24 \hat{k}$, then $|\lambda(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|^{2}$ is equal to
(A) 136
(B) 132
(C) 140
(D) 144

Q5. If a plane passes through the points $(-1, k, 0),(2, k,-1),(1,1,2)$ and is parallel to the line $\frac{x-1}{1}=\frac{2 y+1}{2}=\frac{z+1}{-1}$, then the value of $\frac{k^{2}+1}{(k-1)(k-2)}$ is
(A) $\frac{6}{13}$
(B) $\frac{13}{6}$
(C) $\frac{5}{17}$
(D) $\frac{17}{5}$

Q6. $\lim _{n \rightarrow \infty} \frac{3}{n}\left\{4+\left(2+\frac{1}{n}\right)^{2}+\left(2+\frac{2}{n}\right)^{2}+\ldots+\left(3-\frac{1}{n}\right)^{2}\right\}$ is equal to
(A) $\frac{19}{3}$
(B) 12
(C) 0
(D) 19

Q7. Let $\mathrm{a}_{1}=1, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \ldots \ldots$. be consecutive natural numbers.
Then $\tan ^{-1}\left(\frac{1}{1+\mathrm{a}_{1} \mathrm{a}_{2}}\right)+\tan ^{-1}\left(\frac{1}{1+\mathrm{a}_{2} \mathrm{a}_{3}}\right)+\ldots .+\tan ^{-1}\left(\frac{1}{1+\mathrm{a}_{2021} \mathrm{a}_{2022}}\right)$ is equal to
(A) $\cot ^{-1}(2022)-\frac{\pi}{4}$
(B) $\tan ^{-1}(2022)-\frac{\pi}{4}$
(C) $\frac{\pi}{4}-\tan ^{-1}(2022)$
(D) $\frac{\pi}{4}-\cot ^{-1}(2022)$

Q8. A vector \vec{v} in the first octant is inclined to the x-axis at 60°, to the y-axis at 45° and to the z-axis at an acute angle. If a plane passing through the points $(\sqrt{2},-1,1)$ and (a, b, c) is normal to \vec{v}, then
(A) $a+b+\sqrt{2} c=1$
(B) $\sqrt{2} \mathrm{a}+\mathrm{b}+\mathrm{c}=1$
(C) $a+\sqrt{2} b+c=1$
(D) $\sqrt{2} a-b+c=1$

Q9. If the functions $f(x)=\frac{x^{3}}{3}+2 b x+\frac{a x^{2}}{2}$ and $g(x)=\frac{x^{3}}{3}+a x+b x^{2}, a \neq 2 b$ have a common extreme point, then $a+2 b+7$ is equal to :
(A) 3
(B) 6
(C) $\frac{3}{2}$
(D) 4

Q10. Let q be the maximum integral value of p in $[0,10]$ for which the roots of the equation $x^{2}-p x+\frac{5}{4} p=0$ are rational. Then the area of the region $\left\{(x, y): 0 \leq y \leq(x-q)^{2}, 0 \leq x \leq q\right\}$ is
(A) 164
(B) $\frac{125}{3}$
(C) 243
(D) 25

Q11. Let A be a point on the x-axis. Common tangents are drawn from A to the curves $x^{2}+y^{2}=8$ and $y^{2}=16 x$. If one of these tangents touches the two curves at Q and R, then $(Q R)^{2}$ is equal to
(A) 76
(B) 81
(C) 72
(D) 64

Q12. The number of ways of selecting two numbers a and $b, a \in\{2,4,6, \ldots, 100\}$ and $b \in\{1,3,5, \ldots ., 99\}$ such that 2 is the remainder when $a+b$ is divided by 23 is
(A) 268
(B) 108
(C) 54
(D) 186

Q13. For $\alpha, \beta \in R$, suppose the system of linear equations
$x-y+z=5$
$2 x+2 y+\alpha z=8$
$3 x-y+4 z=\beta$
has infinitely many solutions. Then α and β are the roots of
(A) $x^{2}+18 x+56=0$
(B) $x^{2}-10 x+16=0$
(C) $x^{2}-18 x+56=0$
(D) $x^{2}+14 x+24=0$

Q14. Let $x=(8 \sqrt{3}+13)^{13}$ and $y=(7 \sqrt{2}+9)^{9}$. If [t]denotes the greatest integer $\leq t$, then
(A) $[x]$ is even but $[y]$ is odd
(B) $[x]$ is odd but $[y]$ is even
(C) $[x]$ and $[y]$ are both odd
(D) $[x]+[y]$ is even

Q15. Let S be the set of all values of a_{1} for which the mean deviation about the mean of 100 consecutive positive integers $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots, \mathrm{a}_{100}$ is 25 . Then S is
(A) $\{99\}$
(B) $\{9\}$
(C) N
(D) ϕ

Q16. The parabolas: $a x^{2}+2 b x+c y=0$ and $d x^{2}+2 e x+f y=0$ intersect on the line $y=1$. If a, b, c, d, e, f are positive real numbers and a, b, c are in G.P., then
(A) $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in G.P.
(B) d,e,f are in G.P.
(C) d,e,f are in A.P.
(D) $\frac{\mathrm{d}}{\mathrm{a}}, \frac{\mathrm{e}}{\mathrm{b}}, \frac{\mathrm{f}}{\mathrm{c}}$ are in A.P.

Q17. If P is a 3×3 real matrix such that $P^{\top}=a P+(a-1) I$, where $a>1$, then
(A) \mid Adj $P \mid>1$
(B) P is a singular matrix
(C) \mid Adj $P \left\lvert\,=\frac{1}{2}\right.$
(D) \mid Adj $P \mid=1$

Q18. The range of the function $f(x)=\sqrt{3-x}+\sqrt{2+x}$ is :
(A) $[\sqrt{5}, \sqrt{10}]$
(B) $[\sqrt{5}, \sqrt{13}]$
(C) $[2 \sqrt{2}, \sqrt{11}]$
(D) $[\sqrt{2}, \sqrt{7}]$

Q19. Consider the following statements :
P : I have fever
Q : I will not take medicine
R : I will take rest
The statement "If I have fever, then I will take medicine and I will take rest" is equivalent to :
(A) $(P \vee Q) \wedge((\sim P) \vee R)$
(B) $((\sim P) \vee \sim Q) \wedge((\sim P) \vee R)$
(C) $((\sim P) \vee \sim Q) \wedge((\sim P) \vee \sim R)$
(D) $(P \vee \sim Q) \wedge(P \vee \sim R)$

Q20. Let $a, b, c>1, a^{3}, b^{3}$ and c^{3} be in A.P., and $\log _{a} b, \log _{c} a$ and $\log _{b} c$ be in G.P. If the sum of first 20 terms of an A.P., whose first term is $\frac{a+4 b+c}{3}$ and the common difference is $\frac{a-8 b+c}{10}$ is -444 , then abc is equal to:
(A) 343
(B) 216
(C) $\frac{125}{8}$
(D) $\frac{343}{8}$

SECTION - B

(Numerical Answer Type)

This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.

Q1. If the value of real number $a>0$ for which $x^{2}-5 a x+1=0$ and $x^{2}-a x-5=0$ have a common real root is $\frac{3}{\sqrt{2 \beta}}$ then β is equal to......

Q2. The number of seven digits odd numbers, that can be formed using all the seven digits $1,2,2,2$, 3,3 , 5 is \qquad
Q3. Let A be the area of the region $\left\{(x, y): y \geq x^{2}, y \geq(1-x)^{2}, y \leq 2 x(1-x)\right\}$. Then $540 A$ is equal to.......

Q4. A bag contains six balls of different colours. Two balls are drawn in succession with replacement. The probability that both the balls are of the same colour is p. Next four balls are drawn in succession with replacement and the probability that exactly three balls are of the same colour is q. If $p: q=m: n$, where m and n are coprime, then $m+n$ is equal to \qquad

Q5. If $\int \sqrt{\sec 2 x-1} d x=\alpha \log _{e}\left|\cos 2 x+\beta+\sqrt{\cos 2 x\left(1+\cos \frac{1}{\beta} x\right)}\right|+\operatorname{constant,~then~} \beta-\alpha$ is equal to........

Q6. Let a line L pass through the point $P(2,3,1)$ and be parallel to the line $x+3 y-2 z-2=0=x-y+2 z$. If the distance of L from the point $(5,3,8)$ is α, then $3 \alpha^{2}$ is equal to \qquad
Q7. Let $A=\{1,2,3,5,8,9\}$. Then the number of possible functions $f: A \rightarrow A$ such that $f(m \cdot n)=f(m) \cdot f(n)$ for every $m, n \in A$ with $m \cdot n \in A$ is equal to \qquad
Q8. $50^{\text {th }}$ root of a number x is 12 and $50^{\text {th }}$ root of another number y is 18 . Then the remainder obtained on dividing ($x+y$) by 25 is \qquad

Q9. Let $\mathrm{P}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right)$ be two distinct points on a circle with center $\mathrm{C}(\sqrt{2}, \sqrt{3})$. Let O be the origin and OC be perpendicular to both $C P$ and CQ. If the area of the triangle OCP is $\frac{\sqrt{35}}{2}$, then $a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}$ is equal to \qquad
Q10. The $8^{\text {th }}$ common term of the series
$\mathrm{S}_{1}=3+7+11+15+19+\ldots .$. ,
$S_{2}=1+6+11+16+21+\ldots$.
is. \qquad

FIIT EE

KEYS to J EE (Main)-2023 PART - A (PHYSICS)
 SECTION - A

1.	B	2.	B	3.	C	4.	A
5.	A	6.	A	7.	D	8.	C
9.	B	10.	D	11.	A	12.	A
13.	C	14.	C	15.	B	16.	B
17.	B	18.	C	19.	D	20.	C

SECTION - B

1. 3
2. 4
3. 125
4. 1584
5. 54
6. 12
7. 2
8. 313
9. 88
10. 300

PART - B (CHEMISTRY)
SECTION - A

1. B
2. A
3. C
4. B
5. B
6. C
7. A
8. B
9. D

18 C
3. D
7. D
11. C
15. C
19. A
4. D
8. A
12. C
16. C
20. C

SECTION - B

1. 16
2. 243
3. 1350
4. 4
5. 150
6. 6
7. 3
8. 275
9. 150
10. 3

PART - C (MATHEMATICS)
 SECTION - A

1.	D	2.	A	3.	B	4.	C
5.	B	6.	D	7.	BD	8.	C
9.	B	10.	C	11.	C	12.	B
13.	C	14.	D	15.	C	16.	D
17.	D	18	A	19.	B	20.	B

SECTION - B

1. 13
2. 240
3. 25
4. 14
5. 1
6. 158
7. 432
8. 23
9. 24
10. 151

FIITJ EE

Solutions to J EE (Main)-2023 PART - A (PHYSICS)

SECTION - A

Sol1. $\langle v\rangle=\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}=\frac{2 \times 3 \times 5}{3+5}=\frac{15}{4} \mathrm{~km} / \mathrm{hr}=3.75 \mathrm{~km} / \mathrm{hr}$
Sol2. For dispersion without deviation,

$$
\begin{aligned}
& \left(\mu_{1}-1\right) \times A_{1}=\left(\mu_{2}-1\right) \times A_{2} \\
& \Rightarrow \mu_{1}=1.54, \quad A_{1}=6^{\circ}, \mu_{2}=1.72 \\
& \text { So, }(1.54-1) \times A_{1}=(1.72-1) \times A_{2} \\
& \Rightarrow 0.54 \times 6^{\circ}=(1.72-1) \times A_{2} \\
& \Rightarrow A_{2}=4.5^{\circ}
\end{aligned}
$$

Sol3. At V_{1}, wavelength $=\lambda$
At V_{2}, wavelength $=\lambda+50 \%$ of $\lambda=\frac{3 \lambda}{2}$
As we know, debroglie wavelength
$\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{meV}}} \propto \frac{1}{\sqrt{V}}$
$\therefore \frac{\lambda}{\left(\frac{3 \lambda}{2}\right)}=\sqrt{\frac{V_{2}}{V_{1}}} \Rightarrow \frac{2}{3}=\sqrt{\frac{V_{2}}{V_{1}}} \Rightarrow \frac{V_{1}}{V_{2}}=\frac{9}{4}$
Sol4. A-IV, B-III, C-II, D-I
Sol5. Using Gauss's Law

$$
\begin{aligned}
& \phi=\frac{\mathrm{Q}_{\text {enclosed }}}{\varepsilon_{0}} \\
& \text { For conductor, } \mathrm{Q}_{\text {enclosed }}=0 \\
& \therefore \mathrm{E}=0, \quad \mathrm{a} \leq \mathrm{r} \leq \mathrm{b} \\
& \mathrm{E} \neq 0, \quad \mathrm{r}<\mathrm{a} \& \mathrm{r}>\mathrm{b}
\end{aligned}
$$

Sol6. B at centroid $=\left\{\frac{\mu_{0} \mathrm{l}}{4 \pi \mathrm{~d}}\left[\sin \theta_{1}+\sin \theta_{2}\right]\right\} \times 3$

$$
\begin{aligned}
& \theta_{1}=\theta_{2}=60^{\circ} \\
& d=2 \mathrm{~cm} \\
& \therefore B=\frac{\left(4 \pi \times 10^{-7}\right) \times 2}{4 \pi \times 2 \times 10^{-2}}\left[\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}\right] \times 3 \\
& =3 \sqrt{3} \times 10^{-5} \mathrm{~T}
\end{aligned}
$$

Sol7. Intensity (I) $\quad=\frac{\operatorname{Power}(\mathrm{P})}{\operatorname{Area}(\mathrm{A})}$

$$
\mathrm{I}=\frac{(100 \mathrm{~W}) 0.05}{4 \pi \times(5)^{2} \mathrm{~m}^{2}}=\frac{1}{20 \pi} \mathrm{~W} / \mathrm{m}^{2}
$$

Sol8. For wire - A
$\frac{\mathrm{F}}{\mathrm{A}}=\left(\frac{\Delta \ell}{\ell}\right) \mathrm{Y}$
$\Rightarrow \frac{\mathrm{F}}{\pi \mathrm{r}^{2}}=\frac{0.2}{\ell} \times \mathrm{Y}$
For wire - B
$\frac{\mathrm{F}}{\pi(5.76) \mathrm{r}^{2}}=\left(\frac{\Delta \ell}{2 \ell}\right) \mathrm{Y}$
\Rightarrow From (i) \& (ii), we get

$$
\frac{5.76}{1}=\frac{0.2 \times 2}{\Delta \ell}
$$

$$
\Delta \ell=\frac{0.4}{5.76}=6.9 \times 10^{-2} \mathrm{~mm}
$$

Sol9. From Truth table, we can say that it is NAND Gate.
Sol10. Average kinetic energy is equal to $\frac{3}{2} \mathrm{kT}$
or, $\langle\mathrm{KE}\rangle \propto \mathrm{T}$
So $\frac{\langle\mathrm{KE}\rangle_{\mathrm{H}_{2}}}{\langle\mathrm{KE}\rangle_{\mathrm{O}_{2}}}=\frac{1}{1}$ or $1: 1$
Sol11. Torque $=\mathrm{F} \times \mathrm{r}=\mathrm{kg} \mathrm{m}^{2} / \mathrm{s}^{2}$
Energy density $=\frac{\text { Energy }}{\text { vol }}=\frac{\mathrm{kgm}^{2} / \mathrm{s}^{2}}{\mathrm{~m}^{3}}=\mathrm{kgm}^{-1} \mathrm{~s}^{-2}$
Pressure gradient $=\frac{\Delta \mathrm{P}}{\Delta \mathrm{x}}=\frac{\mathrm{ML}^{-1} \mathrm{~T}^{-2}}{\mathrm{~L}}=\mathrm{kgm}^{-2} \mathrm{~s}^{-2}$
Impulse $=F \Delta t=k g m / s$ or $\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$.
Sol12. T $=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}} \quad \rightarrow$ Time period of spring block system
$\omega=\sqrt{\frac{k}{m}}$
or $\omega \propto \frac{1}{\sqrt{\mathrm{~m}}}$
$\therefore \frac{\omega_{2}}{\omega_{1}}=\frac{\sqrt{2 \mathrm{~kg}}}{\sqrt{1 \mathrm{~kg}}}=\frac{\sqrt{2}}{1}$

Sol13. Both Reason \& assertion are two \& reason is the correct explanation of assertion.
Sol14. $\left(\frac{F_{1}}{\ell}\right)=F_{P Q}^{\ell}=\frac{\left.\mu_{0}\right|^{2}}{2 \pi \mathrm{~d}} \&\left(\frac{\mathrm{~F}_{2}}{\ell}\right)=\mathrm{F}_{\mathrm{PQ}}^{2 \ell}=\frac{\mu_{0}(2 I)^{2}}{2 \pi \mathrm{~d}}$
$\therefore \mathrm{F}_{\mathrm{PQ}}^{\ell}: \mathrm{F}_{\mathrm{PQ}}^{2 \ell}=1: 4$
Sol15. $\mathrm{I}_{\mathrm{rms}}=\frac{\mathrm{V}_{\mathrm{rms}}}{\mathrm{z}}=\frac{\mathrm{V}_{\mathrm{rms}}}{\sqrt{R^{2}+\left(\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}\right)^{2}}}$
$=\frac{200 \sqrt{2}}{\sqrt{(100)^{2}+(100)^{2}}}$
$=\frac{200 \sqrt{2}}{100 \sqrt{2}}$
$=2$
Sol16. As $F_{\text {ext }}=0$
So $\quad \vec{P}_{\text {net }}=0$
or momentum of gun = momentum of bullets
$\Rightarrow 10 \times \mathrm{V}_{\text {gun }}=\frac{180}{60} \times \frac{20}{1000} \times 100$
$\therefore \mathrm{V}_{\text {gun }}=0.6 \mathrm{~m} / \mathrm{s}$
Sol17. Using conservation of mechanical energy:
$P E_{i}+K E_{i}=P E_{f}+K E_{f}$
$\Rightarrow \frac{-\mathrm{GMm}}{2 R}+0=\frac{-\mathrm{GMm}}{\mathrm{R}}+\frac{1}{2} m v^{2}$
$\Rightarrow \frac{-G M m}{2 R}+\frac{G M m}{R}=\frac{1}{2} m v^{2}$
$\Rightarrow \frac{\mathrm{GMm}}{2 \mathrm{R}}=\frac{1}{2} \mathrm{mv}^{2}$
$\Rightarrow v=\sqrt{\frac{G M}{R}}=\sqrt{g R}$

Sol18. For Translation equilibrium

$$
\sum F_{x}=0 \& \sum F_{y}=0
$$

For vertical

$$
\begin{aligned}
& \mathrm{T}_{1} \cos 30^{\circ}=\sqrt{3} \mathrm{~g} \\
& \Rightarrow \mathrm{~T}_{1} \frac{\sqrt{3}}{2}=\sqrt{3} \mathrm{~g} \\
& \Rightarrow \mathrm{~T}_{1}=20 \mathrm{~N}
\end{aligned}
$$

For Horizontal

$$
\begin{aligned}
& \mathrm{T}_{1} \sin 30^{\circ}=\mathrm{F} \\
& \Rightarrow 20 \times \frac{1}{2}=\mathrm{F} \\
& \Rightarrow \mathrm{~F}=10 \mathrm{~N}
\end{aligned}
$$

Sol19. Assertion is false but Reason is True.
Sol20. $\frac{1}{\mathrm{R}_{\mathrm{eq}}}=\frac{1}{4}+\frac{7}{12}+\frac{2}{3}=\frac{3+7+8}{12}=\frac{18}{12}$
$\therefore \mathrm{R}_{\mathrm{eq}}=\frac{12}{18} \Omega=\frac{2}{3} \Omega$

SECTION - B
Sol1. As we know that the phase difference $(\Delta \phi)$ is related to path difference (Δx) as :

$$
\Delta \phi=k \Delta x
$$

So, $\quad \Delta \phi_{1}=\frac{2 \pi}{\lambda} \cdot \frac{\lambda}{4}=\frac{\pi}{2}$
\& $\Delta \phi_{2}=\frac{2 \pi}{\lambda} \cdot \frac{\lambda}{3}=\frac{2 \pi}{3}$
Now resultant intensity is given as

$$
\begin{array}{ll}
& I_{1}=I_{0}+I_{0}+2 \sqrt{I_{0}} \sqrt{I_{0}} \cos \left(\Delta \phi_{1}\right)=2 I_{0} \\
\& & I_{2}=I_{0}+I_{0}+2 \sqrt{I_{0}} \sqrt{I_{0}} \cos \left(\Delta \phi_{2}\right)=I_{0} \\
\therefore & \frac{I_{1}+I_{2}}{I_{0}}=\frac{2 I_{0}+I_{0}}{I_{0}}=\frac{3}{1}
\end{array}
$$

Sol2. $\mathrm{P}=\mathrm{Fv}=\mathrm{ma} \mathrm{v}$

$$
\begin{aligned}
& \Rightarrow \frac{P}{m}=v \cdot \frac{d v}{d t} \\
& \Rightarrow \frac{P}{m} d t=v d v \\
& \frac{P}{m} t=\frac{v^{2}}{2} \Rightarrow v=\sqrt{\left(\frac{2 P}{m}\right)}(t)^{1 / 2} \\
& \text { Also, } \quad v=\frac{d x}{d t} \\
& \text { So, } \quad \begin{aligned}
\frac{d x}{d t} & =\sqrt{\frac{2 P}{m}}\left(t^{1 / 2}\right) \\
& d x=\sqrt{\frac{2 P}{m}} \int t^{1 / 2} d t \\
x & =\frac{2}{3} \sqrt{\frac{2 P}{m}} \cdot t^{3 / 2} \\
x & =\frac{1}{3} \times \sqrt{P} \sqrt{\frac{8}{2}} \times(4)^{3 / 2}=\frac{1}{3} \cdot 4^{2} \sqrt{P} \\
\therefore & \alpha=4
\end{aligned}
\end{aligned}
$$

Sol3. $\ell=180 \mathrm{~cm}=1.8 \mathrm{~m}$
\because In $60 \mathrm{sec} \longrightarrow 28$ revolution $=28 \times 2 \pi \mathrm{rad}$
\therefore In $1 \mathrm{sec} \longrightarrow \frac{28 \times 2 \pi}{60} \frac{\mathrm{rad}}{\mathrm{sec}}$
or

$$
\omega=\frac{14 \pi}{15} \mathrm{rad} / \mathrm{sec}
$$

$$
=\frac{14}{15} \times \frac{22}{7}
$$

$$
\omega=\frac{44}{15} \mathrm{rad} / \mathrm{sec}
$$

$\therefore \quad \mathrm{a}=\omega^{2} \ell$
$=\frac{44 \times 44 \times 1.8}{225}$
$=\frac{1936 \times 1.8}{225}$
$=\frac{1936}{x}$
$\therefore \quad x=\frac{225}{1.8}=125$
Sol4. As we know that

$$
\begin{aligned}
& \varepsilon_{\max }=\mathrm{NBA} \omega \\
& =(100) \times 3 \times\left(14 \times 10^{-2}\right) \times\left(\frac{360 \times 2 \pi}{60}\right) \\
& =1584 \text { Volt }
\end{aligned}
$$

Sol5. As we know that
$f_{r}=m(-a)$
$\Rightarrow \mu \mathrm{mg}=-\mathrm{ma}$
$\Rightarrow \mathrm{a}=-\mu \mathrm{g}=-3 \mathrm{~m} / \mathrm{s}^{2}$
\& $u=18 \mathrm{~m} / \mathrm{s}$
So, at $t=2 \mathrm{sec}, \quad v=18-3 \times 2$
$v=18-6=12 \mathrm{~m} / \mathrm{s}$
Thus, $\mathrm{KE}_{\text {Total }}=\mathrm{KE}_{\text {Translational }}+\mathrm{KE}_{\text {rotational }}$

$$
\begin{aligned}
& =\frac{1}{2} m v^{2}+\frac{1}{2}\left(\frac{m r^{2}}{2}\right)\left(\frac{v}{r}\right)^{2} \\
& =\frac{1}{2} m v^{2}+\frac{1}{2}\left(\frac{m r^{2}}{2}\right)\left(\frac{v}{r}\right)^{2} \\
& =\frac{3}{4} m v^{2} \\
& =\frac{3}{4} \times 0.5 \times 144 \\
\mathrm{KE}_{\text {Total }}= & 54 \mathrm{~J}
\end{aligned}
$$

Sol6. From the diagram, we can conclude that sides of cuboid is $1 \mathrm{~m}, 2 \mathrm{~m} \& 3 \mathrm{~m}$ along x, y and z -axis. As we know that

$$
\begin{gathered}
\text { flux }(\phi)=\overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{~A}} \\
\phi_{\mathrm{x}=0}=0 \text { \& } \phi_{\mathrm{x}=1 \mathrm{~m}}=2(1)^{2} \cdot(2 \times 3)=12 \\
\Rightarrow \phi_{\mathrm{y}=0}=0 \text { \& } \phi_{\mathrm{y}=2 \mathrm{~m}}=-4 \times 2 \times(1 \times 3)=-24 \\
\& \phi_{\mathrm{z}=0}=6 \times(1 \times 2)=12 \& \phi_{\mathrm{z}=3}=6 \times(1 \times 2)=12 \\
\therefore \phi_{\text {Total }}=(0+12)+(0-24)+(12+12)=12 \\
\text { Also } \quad \phi=\frac{\mathrm{Q}_{\text {enclosed }}}{\varepsilon_{0}} \\
12=\frac{\mathrm{Q}}{\varepsilon_{0}} \Rightarrow \mathrm{Q}=12 \varepsilon_{0} \\
\therefore \mathrm{n}=12
\end{gathered}
$$

Sol7. If $\quad V_{B}-V_{D}=0$

$$
\text { or } V_{B}=V_{D}
$$

\therefore Resistance is in Proportion

$$
\begin{aligned}
& \frac{P}{Q}=\frac{R}{S} \\
\Rightarrow & \frac{\left(\frac{6 \times 3}{6+3}\right)}{1+2}=\frac{\left(\frac{x \times 1}{x+1}\right)}{x} \\
\Rightarrow & \frac{2}{3}=\frac{x}{x(x+1)} \\
\Rightarrow & 2 x^{2}+2 x=3 x \\
\Rightarrow & 2 x^{2}-x=0
\end{aligned}
$$

$\Rightarrow \mathrm{x}(2 \mathrm{x}-1)=0$

$$
\begin{aligned}
& x=0, \quad x=\frac{1}{2} \\
& \text { Thus } \quad x=\frac{1}{n}=\frac{1}{2} \Rightarrow n=2
\end{aligned}
$$

Sol8. Using Temperature relation :-
$\frac{41^{\circ} \mathrm{C}-5^{\circ} \mathrm{C}}{95^{\circ} \mathrm{C}-5^{\circ} \mathrm{C}}=\frac{\mathrm{C}-0^{\circ} \mathrm{C}}{100^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}}$
$\Rightarrow \frac{36}{90}=\frac{c}{100}$
$\Rightarrow \mathrm{x}=40^{\circ} \mathrm{c}$
Thus temperature in Kelvin is $(40+273) k=313 k$
Sol9. $4 v^{2}=50-x^{2}$
$v^{2}=\frac{50}{4}-\frac{x^{2}}{4}$
$v=\sqrt{\frac{50-x^{2}}{4}}$
$v=\frac{1}{2} \sqrt{(5 \sqrt{2})^{2}-x^{2}}$
$v=\omega \sqrt{A^{2}-x^{2}}$
$\therefore \omega=\frac{1}{2}, \quad$ Now Time period, $T=\frac{2 \pi}{\omega}$

$$
\begin{aligned}
& \mathrm{T}=\frac{2 \pi}{1 / 2}=4 \pi \\
& \mathrm{~T}=4 \times \frac{22}{7}=\frac{\mathrm{x}}{7} \\
& \therefore \mathrm{x}=88
\end{aligned}
$$

Sol10. In radioactive successive decay,
$\lambda_{\text {eff }}=\lambda_{1}+\lambda_{2}$
$\frac{\ell \mathrm{n} 2}{\mathrm{~T}_{\text {eff }}}=\frac{\ell \mathrm{n} 2}{\mathrm{~T}_{1}}+\frac{\ell \mathrm{n} 2}{\mathrm{~T}_{2}}$
$\frac{1}{T_{\text {eff }}}=\frac{1}{5 \times 60}+\frac{1}{30}$
$\frac{1}{T_{\text {eff }}}=\frac{1+10}{300}$
$\mathrm{T}_{\text {eff }}=\frac{300}{11}=\frac{\alpha}{11}$
$\therefore \alpha=300$

PART - B (CHEMISTRY)
 SECTION - A

Sol1. $4 \mathrm{LiNO}_{3} \longrightarrow 2 \mathrm{Li}_{2} \mathrm{O}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
Sol2. BOD value $<5 \Rightarrow$ clean water
Sol3. (A) Due to large difference in B.pt of $\mathrm{CHCl}_{3} \& \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ these can be separated by simple distillation.
(B) Due to very small difference in B.pt of $\mathrm{C}_{6} \mathrm{H}_{14}$ and $\mathrm{C}_{5} \mathrm{H}_{12}$ these can be separated by fractional distillation.
(C) Mixture of aniline and water can be separated by steam distillation because aniline is steam volatile and it is insoluble in water.
(D) Generally organic compounds are water insoluble so these can be separated by using differential extraction technique.

Sol4. In Boric acid strong H -bonding are present therefore it exist as solid.
Sol5. At node $\psi_{2 \mathrm{~s}}=0$
$2-\frac{r_{0}}{a_{0}}=0$
$\Rightarrow \mathrm{r}_{0}=2 \mathrm{a}_{0}$
Sol6.

$\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}$ Bond angle $=90^{\circ}$

Sol7. Antihistamines do not affect the secretion of acid in stomach because antiallergic and aniacid drugs work on different receptors.

Sol8.

(a)

(b)

(c)

(d)

So the correct order of acidic strength is $c>a>d>b$
\because pka $\propto \frac{1}{\text { acidic strength }}$
\therefore correct order of pKa is $\mathrm{b}>\mathrm{d}>\mathrm{a}>\mathrm{c}$
Sol9. In electrolytic refining, the pure metal is used as cathode and impure metal is used as anode. $\mathrm{Na}_{3} \mathrm{AlF}_{6}$ is added during electrolysis of $\mathrm{Al}_{2} \mathrm{O}_{3}$ to lower the melting point and increase conductivity.

Sol10. Nessler's reagent is $\mathrm{K}_{2} \mathrm{Hgl}_{4}$
Sol11.

Sol12.

If acid sensitive group is present then side reaction can also occurs.
Sol13.

\because extent of overlapping decreases
\therefore Bond dissociation energy also decreases.
Sol14.

	$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$	$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$	$\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
Hybridisation	Sp^{3}	dsp^{2}	$\mathrm{Sp}^{3} \mathrm{~d}^{2}$	$\mathrm{~d}^{2} \mathrm{sp}^{3}$

Sol15. Maximum no of electrons in a shell $=2 n^{2}=2(4)^{2}=32$
Sol16. Oxidation of I^{\ominus} in acidic medium
$2 \mathrm{MnO}_{4}^{\ominus}+10 \mathrm{I}^{\ominus}+16 \mathrm{H}^{\oplus} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{I}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
Oxidation of I^{\ominus} in neutral / faintly alkaline solution
$2 \mathrm{MnO}_{4}^{\ominus}+1^{\ominus}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{MnO}_{2}+2 \stackrel{\ominus}{\mathrm{O}} \mathrm{H}+\mathrm{IO}_{3}^{\Theta}$

Sol17. Rate of SN^{1} reaction \propto stability of C^{\oplus}
(a)

(b)

(c)

(d)

Stability of $\mathrm{C}^{\oplus} \longrightarrow \mathrm{b}>\mathrm{d}>\mathrm{c}>\mathrm{a}$

Sol18.

Most stable due to extended conjugation.
Sol19. BeCl_{2} are covalent in nature and soluble in organic solvent.
Sol20. $\underset{0.01 \mathrm{~mol}}{\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}}+\mathrm{AgNO}_{3} \longrightarrow \underset{0.01 \mathrm{~mol}}{\mathrm{AgBr}}$
$\underset{0.01 \mathrm{~mol}}{\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}}+\mathrm{BaCl}_{2} \longrightarrow \underset{0.01 \mathrm{~mol}}{\mathrm{BaSO}_{4}}$

SECTION - B

Sol1. $\log \frac{x}{m}=\frac{1}{n} \log p+\log k$
$\frac{1}{n}=\tan 45^{\circ}=1$
$\log \mathrm{k}=0.6020 \Rightarrow \mathrm{k}=4$
$\log \frac{x}{m}=\log \left(k \cdot p^{\frac{1}{n}}\right)$
$\frac{x}{m}=k p^{\frac{1}{n}} \Rightarrow \frac{x}{m}=4(0.4)^{1}$

$\frac{\mathrm{x}}{\mathrm{m}}=1.6=16 \times 10^{-1}$
Sol2. $\quad \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{iK} \mathrm{f} \mathrm{m}$
$\mathrm{i}=2.67$
$\mathrm{k}_{\mathrm{f}}=1.8 \mathrm{~K} \mathrm{kgmol}^{-1}$
$\mathrm{m}=\frac{\text { moles of solute }}{\text { mass of solvent }}=\frac{38 \times 1000}{98 \times 62}$
$\Delta T_{f}=\frac{2.67 \times 1.8 \times 38 \times 1000}{98 \times 62}$
$\Delta \mathrm{T}_{\mathrm{f}}=30.05^{\circ} \mathrm{C}$
So, freezing point of solution $=273-30=243 \mathrm{~K}$
Sol3. For $1^{\text {st }}$ order reaction rate constant is
$k=\frac{1}{t} \ln \frac{[A]_{0}}{[A]_{t}} \Rightarrow t=\frac{1}{k} \ln \frac{[A]_{0}}{[A]_{t}}$
$\frac{t_{1}}{t_{2}}=\frac{\frac{1}{k} \ln \frac{[A]_{0}}{0.4[A]_{0}}}{\frac{1}{k} \ln \frac{[A]_{0}}{0.1[A]_{0}}} \Rightarrow \frac{540}{t_{2}}=\frac{\ln \frac{10}{4}}{\ln 10}$
$\frac{540}{\mathrm{t}_{2}}=\frac{\ln 10-\ell \mathrm{n} 4}{\ell \mathrm{n} 4} \Rightarrow \mathrm{t}_{2}=1350 \mathrm{sec}$
Sol4. $\quad d=\frac{Z M}{N_{A} \times a^{3}} \Rightarrow 4=\frac{Z \times 72}{6.0 \times 10^{23} \times 125 \times 10^{-24}}$
$Z=4.166 \approx 4$
Sol5. Strength $=$ molarity \times molarmass
Strength of $\mathrm{H}_{2} \mathrm{O}_{2}=\frac{50}{11.35} \times 34 \approx 150$
Sol6. Number of peptide linkage $=$ amino acid-1

$$
\begin{aligned}
& =7-1 \\
& =6
\end{aligned}
$$

Sol7. $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})} ; \Delta \mathrm{H}=-190 \mathrm{~kJ}$ the yield of SO_{3} can be increases by
(B) Increasing pressure
(C) Adding more SO_{2}
(D) Adding more O_{2}

Sol8. Anode $X \longrightarrow X^{2+}+2 \mathrm{e}^{-}$

$$
\begin{aligned}
\text { Cathode } & \mathrm{Y}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Y} \\
& \mathrm{X}+\mathrm{Y}^{2+} \longrightarrow \mathrm{X}^{2+}+\mathrm{Y} \\
& \mathrm{E}_{\text {cell }}^{0}=\mathrm{E}_{\mathrm{c}}^{0}-\mathrm{E}_{\mathrm{A}}^{0} \\
& =0.36-(-2.36) \approx 2.72 \mathrm{~V} \\
& \mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{0}-\frac{0.0591}{2} \log \frac{0.001}{0.01} \\
& \mathrm{E}_{\text {cell }}=275 \times 10^{-2} \mathrm{~V}
\end{aligned}
$$

Sol9. For reversible adiabatic process
$\mathrm{w}=\Delta \mathrm{U}=\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{T}$
$-3000=1 \times 20 \times\left(\mathrm{T}_{2}-300\right)$
$\mathrm{T}_{2}=150 \mathrm{~K}$
Sol10. Ester will not dissolve in cold NaHCO_{3} and NaOH solution but dissolve in hot NaOH solution.

PART - C (MATHEMATICS)
 SECTION - A

Sol1. LHL

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} g(h(x-1)) \\
& =\lim _{x \rightarrow 1^{-}} g\left(2[x-1]-\frac{(x-1)}{|x-1|}\right) \\
& =\lim _{x \rightarrow 1^{-}} g(-2+1) \\
& =\lim _{x \rightarrow 1^{-}} g(-1) \\
& =1
\end{aligned}
$$

Sol2. $\vec{c}=(2 \vec{a} \times \vec{b})-3 \vec{b}$
take dot product with \vec{b}
$\vec{c} \cdot \vec{b}=0-3(\vec{b} \cdot \vec{b})$
$=-3|b|^{2}=-48$
Sol3. $y=v x$, homogeneous equation $\frac{d y}{d x}=v+\frac{x d v}{d x}$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{x}}=\frac{-\left(3+\mathrm{v}^{2}\right)}{(\mathrm{v}+1)^{3}} \mathrm{dv}$
$\Rightarrow \int \frac{\mathrm{dx}}{\mathrm{x}}=-3 \int \frac{\mathrm{dv}}{(\mathrm{v}+1)^{3}}-\int \frac{\mathrm{v}^{2} \mathrm{dv}}{(\mathrm{v}+1)^{3}}+c$
$\Rightarrow \ln x=-\int \frac{3 d v}{(v+1)^{3}}-\int \frac{d v}{v+1}+2 \int \frac{d v}{(v+1)^{2}}-\int \frac{d v}{(v+1)^{3}}+c$
$\Rightarrow \ln x=-4 \int \frac{d v}{(v+1)^{3}}-\int \frac{d v}{v+1}+2 \int \frac{d v}{(v+1)^{2}}+c$
$\Rightarrow \ln x=\frac{-4}{(-2)(v+1)^{2}}-\ln (v+1)-\frac{2}{(v+1)}+c$
$\Rightarrow \ln x+\ln \left(\frac{y}{x}+1\right)=\frac{-2 x}{x+y}+\frac{2 x^{2}}{(x+y)^{2}}+c$
$\Rightarrow \ln (x+y)=\frac{-2 x(x+y)+2 x^{2}}{(x+y)^{2}}+c$
$\Rightarrow \ln (x+y)=\frac{-2 x y}{(x+y)^{2}+c}$
$y(1)=0 \Rightarrow c=0$
$\Rightarrow \ln (x+y)=\frac{-2 x y}{(x+y)^{2}}$

Sol4. Use $\vec{a} \cdot(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$

$$
\begin{aligned}
& ((\vec{a}+\vec{b}) \times(\vec{a} \times \vec{b})) \times(\vec{a}-\vec{b})=((\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b}))(\vec{a} \times \vec{b})-((\vec{a} \times \vec{b}) \cdot(\vec{a}-\vec{b}))(\vec{a}+\vec{b}) \\
& \begin{aligned}
& \Rightarrow 8 \hat{i}-40 \hat{j}-24 \hat{k}=\left(|\vec{a}|^{2}-|\vec{b}|^{2}\right)(\vec{a} \times \vec{b})-0 \\
& \Rightarrow 8(\hat{i}-5 \hat{j}-3 \hat{k})=\left(\lambda^{2}+4+9-\left(1+\lambda^{2}+4\right)\right)(\vec{a} \times \vec{b}) \\
& \Rightarrow \hat{i}-5 \hat{j}-3 \hat{k}=\vec{a} \times \vec{b}=\hat{i}(4-3 \lambda)-\hat{j}(2 \lambda+3)+\hat{k}\left(-\lambda^{2}-2\right) \\
& \Rightarrow \lambda=1 \\
& \vec{a}+\vec{b}=2 \hat{i}+\hat{j}-\hat{k} \\
& \begin{aligned}
\vec{a}-\vec{b}=3 \hat{j}-5 \hat{k}
\end{aligned} \\
& \begin{aligned}
(\vec{a}+\vec{b}) \times\left.(\vec{a}-\vec{b})\right|^{2} & =|\vec{a} \times \vec{a}-\vec{a} \times \vec{b}+\vec{b} \times \vec{a}-\vec{b} \times \vec{b}|^{2} \\
& =4|\vec{a} \times \vec{b}|^{2} \\
& =4(1+25+9)=140
\end{aligned}
\end{aligned} . \begin{aligned}
\end{aligned}
\end{aligned}
$$

Sol5. line $\frac{x-1}{1}=\frac{y-(-1 / 2)}{1}=\frac{z-(-1)}{-1}$
Let $A(-1, k, 0), B(2, k,-1), C(1,1,2)$
$\overrightarrow{\mathrm{CA}}=-2 \hat{i}+(\mathrm{k}-1) \hat{\mathrm{j}}-2 \hat{k}$
$\overrightarrow{C B}=\hat{i}+(k-1) \hat{j}-3 \hat{k}$
line \perp normal $\Rightarrow\left|\begin{array}{ccc}1 & 1 & -1 \\ -2 & k-1 & -2 \\ 1 & k-1 & -3\end{array}\right|=0$

Sol6. $\lim _{n \rightarrow \infty} \frac{3}{n}\left(\sum_{r=0}^{n-1}\left(2+\frac{r}{n}\right)^{2}\right)$ convert to continuous integral
$3 \int_{0}^{1}(2+x)^{2} d x$
$\left.\Rightarrow 3 \frac{(2+x)^{3}}{3}\right|_{0} ^{1}$
$=3^{3}-2^{3}=19$
Sol7. $\quad t_{r}=\tan ^{-1}\left(\frac{1}{1+a_{r} a_{r+1}}\right)$
$=\tan ^{-1}\left(\frac{a_{r+1}-a_{r}}{1+a_{r} \cdot a_{r+1}}\right)$
$=\tan ^{-1}\left(\mathrm{a}_{\mathrm{r}+1}\right)-\tan ^{-1} \mathrm{a}_{\mathrm{r}}$
Put $r=1,2, \ldots . .2021$

$$
\begin{aligned}
\text { Sum } & =\tan ^{-1} a_{2022}-\tan ^{-1} a_{1} \\
& =\tan ^{-1}(2022)-\tan ^{-1} 1 \\
& =\tan ^{-1}(2022)-\frac{\pi}{4} \\
& \text { or }=\frac{\pi}{2}-\cot ^{-1} 2022-\frac{\pi}{4} \\
& =\frac{\pi}{4}-\cot ^{-1}(2022)
\end{aligned}
$$

Sol8. Direction cosine of vectors $\pm\left(\cos 60^{\circ}, \pm \cos 45^{\circ}, \cos \theta\right)$
$\Rightarrow \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
$\Rightarrow \frac{1}{4}+\frac{1}{2}+\cos ^{2} \theta=1$
$\Rightarrow \cos ^{2} \theta=\frac{1}{4} \Rightarrow \cos \theta=\frac{1}{2}$ as θ is acute.
Equation of plane $\frac{1}{2}(x-\sqrt{2})+\frac{1}{\sqrt{2}}(y+1)+\frac{1}{2}(z-1)=0$
$\Rightarrow x-\sqrt{2}+\sqrt{2} y+\sqrt{2}+z-1=0$
$\Rightarrow x+\sqrt{2} y+z=1$
$\Rightarrow(\mathrm{a}, \mathrm{b}, \mathrm{c})$ lies in it $\Rightarrow \mathrm{a}+\sqrt{2} \mathrm{~b}+\mathrm{c}=1$
Sol9. At extreme point slope is ' 0 '.
So $f^{\prime}(x)=0$ and $g^{\prime}(x)=0$, will have common solution.
$f^{\prime}(x)=x^{2}+a x+2 b$
$g^{\prime}(x)=x^{2}+2 b x+a$
$x=1$, is the common root.
Sol10. $D=P^{2}-4 \cdot \frac{5}{4} P$
$=P^{2}-5 P$
$=P(P-5)$
$P \in[0,10]$, for D to perfect square P can be 0,9
So, $q=9$
now required area $=\int_{0}^{9}(x-9)^{2} d x=243$
Sol11. $y=m x+\frac{4}{m}$ is tangent to $x^{2}+y^{2}=8$
$\Rightarrow 2 \sqrt{2}=\left|\frac{\frac{4}{m}}{\sqrt{1+\mathrm{m}^{2}}}\right| \Rightarrow \mathrm{m}^{2}\left(1+\mathrm{m}^{2}\right)=2$

$\mathrm{m}= \pm 1$
$y=x+4$

For parabola at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$

$$
\mathrm{yy}_{1}=8\left(\mathrm{x}+\mathrm{x}_{1}\right)
$$

\Rightarrow compare $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\mathrm{R}(4,8)$
For circle at $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
$\mathrm{xx}_{2}+\mathrm{yy}_{2}=8$
$\left(x_{2}, y_{2}\right)=Q(-2,2)$
Sol12. $\mathrm{a}+\mathrm{b}$ will be an odd number
$a+b \in\{25,71,117,163\}$
$(a, b)=(2,23),(4,21), \ldots . .,(2,4,1) \rightarrow 12$ cases
$(2,69),(4,67), \ldots \ldots,(7,0,1) \rightarrow 35$ cases
$(18,99),(20,97), \ldots . .,(100,17) \rightarrow 92$ cases
$(64,99), \ldots . .,(100,63) \rightarrow 19$ cases
Sol13. use cramer's rule
$\Delta=\left|\begin{array}{ccc}1 & -1 & 1 \\ 2 & 2 & \alpha \\ 3 & -1 & 4\end{array}\right|=0 ; \Delta_{3}=\left|\begin{array}{ccc}1 & -1 & 5 \\ 2 & 2 & 8 \\ 3 & -1 & \beta\end{array}\right|=0$
$\alpha=0, \beta=14$
Sol14. Let $x=(8 \sqrt{3}+13)^{13}=I+f$
where $\mathrm{I}=[\mathrm{x}]$
$0 \leq f<1$
Let $f^{\prime}=(8 \sqrt{3}-13)^{13}$
It will be a fraction
now $I+f-f^{\prime}=(8 \sqrt{3}+13)^{13}-(8 \sqrt{3}-13)^{13}$
$\mathrm{I}+\mathrm{f}-\mathrm{f}^{\prime}=2$ (Natural number)
$\Rightarrow f-f$ ' must be an integer
So, $f=f^{\prime}=0$
So, I = 2 (Natural number)
Similarly $[\mathrm{y}]$ is an even number
So $[x]+[y]$ is an even number
Sol15. Pattern is $a_{1}, a+1, a_{1}+2, \ldots . ., a_{1}+99$
Mean deviation remains unchanged while shifting the pattern.
So, 0, 1, 2, 3 ,
,99
Mean $=\frac{99 \cdot 100}{2 \times 100}=49 \cdot 5$
Mean deviation about mean
$\Rightarrow \frac{2\left(\frac{1}{2}+\frac{3}{2}+\ldots . .+\frac{99}{2}\right)}{100}=\frac{50^{2}}{100}=25$.

It is true as given value. So, $a_{i} \in N$.
Sol16. $a x^{2}+2 b x+c y=0$
$y=1, b^{2}=a c$
$\Rightarrow a x^{2}+2 \sqrt{a c} x+c=0$
$\Rightarrow(\sqrt{\mathrm{a}} \mathrm{x}+\sqrt{\mathrm{c}})^{2}=0 \Rightarrow \mathrm{x}=\frac{-\sqrt{\mathrm{c}}}{\sqrt{\mathrm{a}}}$
Now, $d x^{2}+2 e x+f y=0$
$x=-\sqrt{\frac{c}{a}}, y=1$
$\Rightarrow \frac{d \cdot c}{a}-2 e \sqrt{\frac{c}{a}}+f=0$
$\Rightarrow \mathrm{d} \cdot \mathrm{c}-2 \cdot \mathrm{e} \sqrt{\mathrm{ca}}+\mathrm{fa}=0$
$\Rightarrow \mathrm{dc}-2 \mathrm{eb}+\mathrm{af}=0$
$\Rightarrow \mathrm{dc}+\mathrm{af}=2 \mathrm{eb}$
$\Rightarrow \frac{\mathrm{d}}{\mathrm{a}}+\frac{\mathrm{f}}{\mathrm{c}}=\frac{2 \mathrm{eb}}{\mathrm{ac}}$
$\Rightarrow \frac{\mathrm{d}}{\mathrm{a}}+\frac{\mathrm{f}}{\mathrm{c}}=\frac{2 \mathrm{e}}{\mathrm{b}} \Rightarrow \frac{\mathrm{d}}{\mathrm{a}}, \frac{\mathrm{e}}{\mathrm{b}}, \frac{\mathrm{f}}{\mathrm{c}} \rightarrow \mathrm{AP}$
Sol17. $P^{\top}=\alpha P+(\alpha-1)$ I
$P=\alpha P^{\top}+(\alpha-1) \mid$
$\Rightarrow \mathrm{P}=\alpha(\alpha \mathrm{P}+(\alpha-1)!)+(\alpha-1) \mid$
$\Rightarrow\left(1-\alpha^{2}\right)(P+I)=0$
$\Rightarrow P=-1$
use $|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{\mathrm{n}-1}$
Sol18. Domain $x \in[-2,3]$
$f^{\prime}(x)=\frac{1}{2 \sqrt{2+x}}-\frac{1}{2 \sqrt{3-x}}=\frac{\sqrt{3-x}-\sqrt{2+x}}{2 \sqrt{2+x} \sqrt{3-x}}$
$f^{\prime}(x)$ sign

Maxima at $x=\frac{1}{2}$
$f\left(\frac{1}{2}\right)=\sqrt{10}$
$f(-2)=\sqrt{5}=f(3)$
$f(x) \rightarrow[\sqrt{5}, \sqrt{10}]$
Sol19. $P \Rightarrow(\sim Q \wedge R)$
Use $p \Rightarrow q=\sim p \vee q$

So, $\sim P \vee(\sim Q \wedge R)=(\sim P \vee \sim Q) \wedge(\sim P \vee R)$
Sol20. $2 b^{3}=a^{3}+c^{3} ;\left(\frac{\log a}{\log c}\right)^{2}=\frac{\log b}{\log a} \cdot \frac{\log c}{\log b}$
$\Rightarrow(\log \mathrm{c})^{3}=(\log \mathrm{a})^{3}$
$\Rightarrow \mathrm{c}=\mathrm{a}$
$\Rightarrow 2 \mathrm{~b}^{3}=2 \mathrm{a}^{3}$
$\Rightarrow \mathrm{a}=\mathrm{b}=\mathrm{c}$
$\mathrm{T}_{1}=\frac{\mathrm{a}+4 \mathrm{~b}+\mathrm{c}}{3}=2 \mathrm{a} ;$
Common difference $=\frac{a-8 b+c}{10}=\frac{-3 a}{5}$
Sum $\Rightarrow-444=\frac{20}{2}\left(2 \cdot(2 a)+(19)\left(-\frac{3 a}{5}\right)\right)$
$\Rightarrow \mathrm{a}=6$

SECTION - B

Sol1. Let common root be ' α '
$\Rightarrow \frac{\alpha^{2}}{26 \mathrm{a}}=\frac{\alpha}{6}=\frac{1}{4 \mathrm{a}} \Rightarrow \alpha=\frac{13 \mathrm{a}}{13}=\frac{3}{2 \mathrm{a}}$
$\Rightarrow \mathrm{a}^{2}=\frac{9}{2 \cdot 13} \Rightarrow \frac{9}{2 \beta}=\frac{9}{2 \cdot 13}$
$\Rightarrow \beta=13$

Sol2. Pattern \qquad $.1 \rightarrow \frac{6!}{2!3!}$ ways $3 \rightarrow \frac{6!}{3!}$ ways $\ldots ~ 5 ~(~ 6!~ w a y s ~$
total $=\frac{6!}{3!} \times 2=240$
Sol3. Plot $y=x^{2}$
$y=(1-x)^{2}$
$y=-2 x(x-1)$
required region is
$2 \int_{0}^{\frac{1}{2}}\left(2 x-2 x^{2}-x^{2}\right) d x$
$=2\left[\mathrm{x}^{2}-\mathrm{x}^{3}\right]_{0}^{\frac{1}{2}}$

$A=\frac{1}{4} \Rightarrow 540 \mathrm{~A}=135$

Sol4. $\mathrm{p}={ }^{6} \mathrm{C}_{1} \cdot\left(\frac{1}{6} \cdot \frac{1}{6}\right)=\frac{1}{6}$
$\mathrm{q}={ }^{6} \mathrm{C}_{2} \cdot 2!\left(\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6}\right) \cdot 4$
here pattern is aaab \rightarrow select ${ }^{6} \mathrm{C}_{2} \cdot 2$! arrange $\frac{4!}{3!}=4$ each balls have probability $\frac{1}{6}$.
$\frac{p}{q}=\frac{1 / 6 \cdot 6 \cdot 6 \cdot 6 \cdot 6}{6 \cdot 5 \cdot 4}$
$\frac{\mathrm{p}}{\mathrm{q}}=\frac{9}{5} \Rightarrow \mathrm{~m}+\mathrm{n}=14$
Sol5. $\int \sqrt{\sec 2 x-1} d x=\int \sqrt{\frac{1-\cos 2 x}{\cos 2 x}} d x$
$=\int \frac{\sqrt{2} \sin x}{\sqrt{2 \cos ^{2} x-1}} d x ;$ put $\sqrt{2} \cos x=t ;-\sqrt{2} \sin x d x=d t$
$\Rightarrow-\int \frac{\mathrm{dt}}{\sqrt{\mathrm{t}^{2}-1}}=-\ell n\left|\mathrm{t}+\sqrt{\mathrm{t}^{2}-1}\right|+\mathrm{c}$
$=-\ln \left|\sqrt{2} \cos x+\sqrt{2(\cos x)^{2}-1}\right|+c$
$=-\ln |\sqrt{2} \cos x+\sqrt{\cos 2 x}|+c$
$=-\frac{1}{2} \cdot \ln |\sqrt{2} \cos x+\sqrt{\cos 2 x}|^{2}+c$
$=-\frac{1}{2} \cdot \ln \left|2 \cos ^{2} x+\cos 2 x+2 \sqrt{2} \cos x \cdot \sqrt{\cos 2 x}\right|+c$
$=-\frac{1}{2} \cdot \ln \left|2 \cos ^{2} x+\cos 2 x+2 \sqrt{1+\cos 2 x} \cdot \sqrt{\cos 2 x}\right|+c$
$=-\frac{1}{2} \cdot \ln |1+2 \cos 2 x+2 \sqrt{\cos 2 x} \sqrt{1+(\cos 2 x)}|+c$
$=-\frac{1}{2} \cdot \ln \left|\cos 2 x+\frac{1}{2}+\sqrt{\cos 2 x} \sqrt{1+\cos 2 x}\right|+$ constant, $\alpha=\frac{-1}{2}, \beta=\frac{1}{2}$
$\Rightarrow \beta-\alpha=1$
Sol6. Let line be $\frac{x-2}{a}=\frac{y-3}{b}=\frac{z-1}{c}$
It will also satisfy $\Rightarrow a+3 b-2 c=0$
$a-b+2 c=0$
$\Rightarrow \frac{\mathrm{a}}{-1}=\frac{\mathrm{b}}{1}=\frac{\mathrm{c}}{1}$
General pt on line $\mathrm{P}(-\lambda+2, \lambda+3, \lambda+1)$
Direction ratio of $\mathrm{PQ}(-\lambda-3, \lambda, \lambda-7)$
$\mathrm{PQ} \perp$ line $\Rightarrow \lambda+3+\lambda+\lambda-7=0 \Rightarrow \lambda=\frac{4}{3}$
$P Q=\sqrt{(\lambda+3)^{2}+\lambda^{2}+(\lambda-7)^{2}}=\sqrt{3 \lambda^{2}-8 \lambda+58}$
$\Rightarrow \alpha=\sqrt{\frac{158}{3}}$
$\Rightarrow 3 \alpha^{2}=158$
Sol7. $\quad f(m \cdot n)=f(m) \cdot f(n)$
Let $m=1, f(n)=f(1) \cdot f(n)$
$\Rightarrow \mathrm{f}(\mathrm{n})(\mathrm{f}(1)-1)=0$
$\Rightarrow f(1)=1$
Let check for $\mathrm{m}=\mathrm{n}=3$
$f(9)=(f(3))^{2}$
So $f(3)$ can be $1,3 \Rightarrow f(9)$ will be decided automatically.
Now total ways $=1 \cdot 6 \cdot 2 \cdot 6 \cdot 6 \cdot 1=432$
Sol8. $x=12^{50}, y=18^{50}$
$\Rightarrow \mathrm{x}+\mathrm{y}=12^{50}+18^{50}$
$=6^{50}\left(4^{25}+9^{25}\right)$
$=(5+1)^{50}\left((5-1)^{25}+(10-1)^{25}\right)$
$=(25 \lambda+1)[25 \mu-1+25 v-1]$
or $(25 \lambda+1)[25 x+23]$
so, remainder is 23 .
Sol9. PQ will be diameter $\frac{\sqrt{35}}{2}=\frac{1}{2} \cdot \mathrm{OC} \cdot \mathrm{PC}$
$\Rightarrow \sqrt{35}=\sqrt{5} \cdot P C \Rightarrow P C=\sqrt{7}$
$\mathrm{OP}=\mathrm{OQ}=\sqrt{12}$
So, $a_{1}^{2}+b_{1}^{2}+a_{2}^{2}+b_{2}^{2}=12+12=24$

Sol10. $1^{\text {st }}$ common term $=11$
common difference $=$ LCM of both $4 \& 5=20$
$\mathrm{t}_{8}=11+(8-1) 20$
$=11+140=151$

[^0]: - Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose.

 ## Important Instructions:

 1. The test is of 3 hours duration.
 2. This test paper consists of 90 questions. Each subject (PCM) has 30 questions. The maximum marks are 300.
 3. This question paper contains Three Parts. Part-A is Physics, Part-B is Chemistry and Part-C is Mathematics. Each part has only two sections: Section-A and Section-B.
 4. Section - A : Attempt all questions.
 5. Section - B : Do any 5 questions out of 10 Questions.
 6. Section-A (01-20) contains 20 multiple choice questions which have only one correct answer. Each question carries +4 marks for correct answer and -1 mark for wrong answer.
 7. Section-B (1 - 10) contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value. Each question carries $\mathbf{+ 4}$ marks for correct answer and -1 mark for wrong answer.
