APPENDIX-8

SYLLABUS FOR WBJEE-2024 MATHEMATICS

Abstract

Algebra: A.P., G.P., H.P.: Definitions of A. P. and G.P.; General term; Summation of first n-terms of series $\sum \mathrm{n}, \sum \mathrm{n}^{2}, \sum \mathrm{n} 3$; Arithmetic/Geometric series, A.M., G.M. and their relation; Infinite G.P. series and its sum.

Logarithms: Definition; General properties; Change of base. Complex Numbers: Definition in terms of ordered pair of real numbers and properties of complex numbers; Complex conjugate; Triangle inequality; amplitude of complex numbers and its properties; Square root of complex numbers; Cube roots of unity; De Moivre's theorem (statement only) and its elementary applications. Solution of quadratic equation in the complex number system.

Polynomial equation: nth degree equation has exactly n roots (statement only); Quadratic Equations: Quadratic equations with real coefficients; Relations between roots and coefficients; Nature of roots; Formation of a quadratic equation, sign and magnitude of the quadratic expression $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ (where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ arerational numbers and $\mathrm{a} \neq 0$).
Permutation and combination: Permutation of n different things taken r at a time ($r \leq n$). Permutation of n things not all different. Permutation with repetitions (circular permutation excluded). Combinations of n different things taken r at a time ($r \leq n$). Combination of n things not all different. Basic properties. Problems involving both permutations and combinations.

Principle of mathematical induction: Statement of the principle, proof by induction for the sum of squares, sum of cubes of first n natural numbers, divisibility properties like $2^{2 n}-1$ is divisible by $3(n \geq 1)$, 7 divides $3^{2 n+1}+2^{n+2}(n \geq 1)$
Binomial theorem (positive integral index): Statement of the theorem, general term, middle term, equidistant terms, properties of binomial coefficients.
Matrices: Concepts of $\mathrm{m} \times \mathrm{n}(\mathrm{m} \leq 3, \mathrm{n} \leq 3)$ real matrices, operations of addition, scalar multiplication and multiplication of matrices. Transpose of a matrix. Determinant of a square matrix. Properties of determinants (statement only). Minor, cofactor and adjoint of a matrix. Non-singular matrix. Inverse of a matrix. Finding areaof a triangle. Solutions of system of linear equations. (Not more than 3 variables).
Sets, Relations and Mappings: Idea of sets, subsets, power set, complement, union, intersection and differenceof sets, Venn diagram, De Morgan's Laws, Inclusion / Exclusion formula for two or three finite sets, Cartesian product of sets.
Relation and its properties. Equivalence relation - definition and elementary examples, mappings, range and domain, injective, surjective and bijective mappings, composition of mappings, inverse of a mapping.
Statistics and Probability: Measure of dispersion, mean, variance and standard deviation, frequency distribution. Addition and multiplication rules of probability, conditional probability and Bayes' Theorem, independence of events, repeated independent trails and Binomial distribution.

Trigonometry

Trigonometric functions, addition and subtraction formulae, formulae involving multiple and submultiple angles, general solution of trigonometric equations. Properties of triangles, inverse trigonometric functions and their properties.

Coordinate geometry of two dimensions

Distance formula, section formula, area of a triangle, condition of collinearity of three points in a plane. Polar co-ordinates, transformation from Cartesian to polar coordinates and vice versa. Parallel transformation of axes.
Concept of locus, locus problems involving all geometrical configurations,
Slope of a line. Equation of lines in different forms, angle between two lines. Condition of perpendicularity and parallelism of two lines. Distance of a point from a line. Distance between two parallel lines. Lines through the point of intersection of two lines. Angle bisector
Equation of a circle with a given center and radius. Condition that a general equation of second degree in x, y may represent a circle. Equation of a circle in terms of endpoints of a diameter. Equation of tangent, normal and chord. Parametric equation of a circle. Intersection of a line with a circle. Equation of common chord of two intersecting circles.
Definition of conic section, Directrix, Focus and Eccentricity, classification based on eccentricity. Equation of Parabola, Ellipse and Hyperbola in standard form, their foci, directrices, eccentricities and parametric equations.

Co-ordinate geometry of three dimensions
Direction cosines and direction ratios, distance between two points and section formula, equation of a straight line, equation of a plane, distance of a point from a plane.

Calculus

Differential calculus: Functions, domain and range set of functions, composition of two functions and inverse of a function, limit, continuity, derivative, chain rule and derivative of functions in various forms. Concept of differential.

Rolle's Theorem and Lagrange's Mean Value theorem (statement only). Their geometric interpretation and elementary application. L'Hospital's rule (statement only) and applications. Second order derivative.

Integral calculus: Integration as a reverse process of differentiation, indefinite integral of standard functions. Integration by parts. Integration by substitution and partial fraction.
Definite integral as a limit of a sum with equal subdivisions. Fundamental theorem of integral calculus and its applications. Properties of definite integrals.
Differential Equations: Formation of ordinary differential equations, solution of homogeneous differential equations, separation of variables method, linear first order differential equations.
Application of Calculus: Tangents and normals, conditions of tangency. Determination of monotonicity, maxima and minima. Differential coefficient as a measure of rate. Motion in a straight line with constant acceleration. Geometric interpretation of definite integral as area, calculation of area bounded by elementary curves and Straight lines. Area of the region included between two elementary curves.
Vectors: Addition of vectors, scalar multiplication, dot and cross products, scalar triple product.

